
Analysis and reporting of service data using the SAFE

Stephen Booth

EPCC

University of Edinburgh

Edinburgh, UK

s.booth@ed.ac.uk

Abstract—The SAFE (Service Administration from EPCC) is a

user services system developed by EPCC that handles user

management and report generation for all our HPC services

including the Cray services. An important function of this

system is the ingestion of accounting data into the database

and the generation of usage reports. This presents the design

and implementation of this reporting system.

Keywords-component; reporting, accounting, database

I. INTRODUCTION

The SAFE (Service Administration from EPCC) is a

software system developed by EPCC to administer High

Performance Computing services. It is a web based system

built using java-servlets[1] and a SQL relational database. It

can be responsible for almost all aspects of user

management ranging from user registration and helpdesk to

resource management and reporting. One of the big

advantages of using a single integrated system is that it

allows many operations to be delegated to appropriate users.

For example a project manager can approve access to,

generate reports on, and manage resources within their

projects.

The generation of reports and the analysis of system use is

an important activity for any HPC service. There are many

different groups that may require different levels of access

to this data. Individual users need to be able to access

information on their own use of the system. Project

managers need to generate overview reports on the use by

their project. System operators and funding agencies need

reports on the overall use of the system. In addition reports

need to be generated from a variety of different data

sources. The Reporting sub-system of the SAFE[2] is

capable of ingesting data from a variety of sources including

most major batch systems. It uses a system of plug-in

parsers to allow addition types of data source to be easily

added to the system. The reporting system is not restricted

to batch job information and can also handle such diverse

information as project resource allocations, file-transfer

activity or disk usage data. In addition policy plug-ins can

be used to trigger side-effects such as job charging and to

augment the raw information based on local site policies.

For example additional accounting properties can be derived

based on the queue where the job runs or additional log files

can be parsed to add additional information such as

executables used.

II. REQUIREMENTS

The requirements on the SAFE reporting sub-system can be

grouped into three main types.

A. Performance

The key performance requirements are driven by the large

numbers of accounting records generated by typical HPC

services. In our experience it is relatively common to

require reports that cover several years of operation of a

service. A large HPC service can easily run several million

individual compute jobs over such a period. The reporting

problem can be several orders of magnitude harder for

services that need to support high throughput rather than

high performance. This kind of workload typically consists

of very large numbers of much smaller jobs, a high

throughput service can generate several orders of magnitude

more accounting records than a similarly sized HPC service.

B. Flexibility

We chose to build a general purpose reporting system rather

than focus solely on the generation of reports of jobs run on

the HPC resource. This allows the same framework to be

used to generate reports on disk utilization and helpdesk

activity. The general nature of the reporting system has also

allowed us to re-use the code in other unrelated software

projects.

One clear requirement was to support many different

sources of accounting data. The SAFE has been under

continual development since 2002. Over this time we have

needed to support many different types of data. As well as

data from a variety of batch systems, we have also had to

import data from Unix process-level accounting and support

data imports from a variety of Grid-middleware. Unlike

some alternative accounting systems we did not choose to

normalize all data into a single common internal format.

Instead data from each different source is stored in a

separate table where the data format can be customized to

meet the current operational requirements. This reduces the

likelihood of loss of information as the format of the stored

data closely follows the original form of the data. A

normalized view of the data is still available but this is

generated dynamically. This approach requires the system to

be very flexible about the database format of the data. In

practice this flexibility has proved to be invaluable as it has

ensured that historic data never needs to be reformatted to

maintain compatibility with newer versions of the SAFE. It

also makes it significantly easier to extend the remit of the

system to new kinds of data such as file-transfer data or

energy consumption data.

C. Extensability

General usage reports that are used to track overall changes

in the use of the service are of perpetual importance and are

run on a frequent basis. These kinds of report look at known

metrics and change very infrequently. However in addition

to these fixed reports it is also useful to be able to easily add

new metrics and new types of report in order to look for

new insights into the operation of the service and find ways

of improving its operation. It is therefore desirable to be

able to add new and complex reports without the need for

source code access to the reporting system.

III. DATA MODEL

Because of our need for a general and flexible reporting

framework we use a property based data model. Each data

record is viewed as a collection of key-value pairs

representing the various properties in the data record. This

abstraction results in a great deal of flexibility as the same

code can process records representing different kinds of

data.

The simplest implementation of a property based model

would result in records being retrieved from the data-base

and converted into an in-memory Java Object representation

before being processed. This would in turn severely limit

performance. In order to meet our performance targets we

need to translate as many operations as possible into

efficient SQL queries. We therefore introduce Factory

classes for data records of similar types. These Factory

classes roughly correspond to the data-base tables and as

well as retrieving sets of records they also implement high

level query operation (expressed in terms of properties) that

can be mapped onto efficient SQL queries. Each Factory

can provide a set of supported properties. The Records

managed by the Factory are constrained to only implement

properties from this set.

While many of the properties will map directly onto fields

in the underlying database it is also possible to define

properties as expressions over other supported properties. In

the SAFE properties are strongly typed. The keys used to

specify a property contain type information as well as the

name of the property. This allows type constraints to be

checked when creating expressions.

This ability to implement expressions is vital to support the

flexibility and extensibility we require. It allows us to define

new properties for example:

 WallClock = EndTime – StartTime

 Residency = Numnodes * WallClock

 SlowDown = (EndTime–StartTime)/

 (EndTime-SubmitTime)

As well as supporting Numeric, Date and String; types,

properties can also be defined as references to records in

other data-base tables, which allows expressions to include

values from referenced tables. For example:

 Charge = Residency * Machine[ChargeRate]

When mapped to SQL this requires a JOIN to the referenced

table.

By defining new derived properties in this fashion we can

add a set of standard properties to each accounting table

producing a normalized view of the data, independent of the

underlying data formats. The SAFE supports composite

Factories where multiple data-base tables can be queried

through a single Factory object and a unified report can then

be run combining data from all tables. The report has to be

written in terms of the set of common standard properties

but the implementation of these properties can be different

for each table.

The above examples show the text representation of a

property-expression. This is the form used in configuration

files and report templates. Internally these expressions are

parsed into an Abstract-Syntax-Tree Object representation.

We use the Visitor Pattern[3] to implement operations on

these objects. One important operation that needs to be

implemented is to translate the expression into an SQL

fragment. These fragments are represented by the SQLValue

interface. A SQLValue provides methods for adding the

fragment to a SQL statement and methods for extracting the

resulting value from the Java ResultSet object returned by

the query. Optionally a SQLValue can also provide a

SQLFilter that modifies the FROM and WHERE parts of

the SQL statement for example to add a required JOIN.

A special sub-interface of SQLValue is the SQLExpression.

This is functionally equivalent to a SQLValue except that in

a SQLExpression the value of the returned object is

equivalent to the underlying SQL fragment so it is possible

to combine SQLExpressions at the SQL level to make more

complex expressions.

SQLExpressions are needed for SQL reduction operations

like SUM, MIN or MAX. In other contexts a SQLValue is

sufficient and the code may choose to simplify the SQL

query by performing some of the processing in Java.

It is also possible to implement a property using a fragment

of Java code that has no SQL equivalent however this forces

the Factory class to implement queries involving these

properties by iterating over individual records. This is only

required in exceptional circumstances where the

performance requirements are low and the property is easier

to calculate in Java. For example the helpdesk component of

the safe uses this feature when calculating properties that

depend on the number of elapsed working hours for a

helpdesk request.

IV. DATA IMPORT

The SAFE uses a common mechanism to import external

data of various kinds. Parsing and processing of data is

handled by a series of plug-in modules. Each data table is

configured with a parser and a series of policy plug-ins.

A. Parsers

The parser is responsible for breaking the input into a series

of individual records and parsing each record into a

collection of properties. Each parser usually generates a set

of properties unique to that parser that faithfully reflects the

data provided in the raw input. Parsers can also provide a set

of default mappings (defined in terms of property-

expressions) between these properties and the standard

properties used in writing generic reports. In addition the

parser specifies which of the properties it generates can be

used to uniquely identify a record. These are used during the

import process to identify if a data record already exists in

the system.

B. Policies

Once the parser has performed the initial data-parse the

collection of properties is passed through a series of policy

objects. The purpose of a policy object is to generate

additional properties based on local site policies rather than

properties that are inherent in the data being parsed. Typical

uses of a policy include:

 Generating a charged cost for a job.

 Generating a reference property pointing to a

known user based on the username in the job-

record.

 Cross-referencing related data from two different

sources.

When the data being imported is usage data an extended

form of policy can be specified that implements the

Observer pattern[3] so that the policy object can be notified

whenever a new record is added or removed. This allows

additional side-effects such as decrementing/refunding

budget allocations.

For systems with very large record counts, policies can be

used to build aggregated records. Each individual record is

still parsed into its own data-base record but an aggregation

policy can be used to build an additional table where records

with similar properties and similar time ranges are merged

together into aggregated records. Reports can then be

rapidly generated from these aggregated tables.

C. Database representation

The mapping between the properties generated by the

parsers/policies and the values stored in the database is

generated dynamically depending on the database fields

available. A property is only stored if a corresponding

database field is available. Even if not stored directly a

property may still available in reports if defined as a

property-expression over other properties that are available.

Parsers and Policies provide a default set of database fields

that are used to create the database table if it does not

already exist, however these only represent a reasonable

default. In normal operation the database schema can be

modified to control the behavior of the system.

V. TIME MAPPING

The SAFE reporting model provides special support for

handling data records that overlap the boundaries of a

reporting period. When the reporting periods are very long

compared to the duration of the record it is sufficient to use

a single time property to determine if the record should be

included in the report. However shorter reporting periods

suffer from artificial variability as records are arbitrarily

assigned to a single reporting period. This is a particular

problem when generating charts that show the evolution of a

property against time as each point on the graph represents a

short period of time, quite possibly significantly shorter than

the records being graphed (see Figure 1. for an example of

this). Two distinct types of scaling are required to avoid this

problem depending on the nature of the property being

viewed.

If the property is a quantity that accumulates during the

accounting record, for example CPU-time or wall-clock-

time, then the value from a single record needs to be divided

proportionally between each of the time-periods it overlaps.

The contribution to a particular period therefore has to be

weighted by the fraction of the record that overlaps with the

period.

We can calculate the value accumulated over the time

period by summing the weighted values of records that

overlap the period. This can be converted into an average

rate by dividing by the length of the period.

If the property is a quantity that can be measured at a

particular instance in time, for example Number-of-

processors or Memory-in-use, then the value at any single

point in time would be calculated by summing the values

from all records that cross that point. A representative value

for a time-period would be the time average across the

period of this instantaneous value. This can be calculated by

weighting the value from each record by the fraction of

period that is overlapped by the record and summing over

records.

We can always generate an accumulated property from an

instantaneous property by multiplying by the length of the

record. The time average of the original property is the same

as the average rate calculated from this property.

In order to perform these weightings it is necessary to

specify two time-valued properties to denote the start and

end of the record. The choice of which properties to use

depends on the value being mapped, for example, if charting

the number of queued jobs submit-time and start-time would

be used.

VI. REPORT GENERATION

The report generation system uses an XML based language

to define the report to be generated. This XML template is

processed using a series of steps. Each step is implemented

using a XLST style-sheet with custom extension elements

that implement queries on the database. XML queries that

are expanded in one processing stage may be interpreted as

input for later stages. Once all the query elements have been

processed a final XLST transform converts the document to

the desired document format. This has the advantage that

the same report specification can be used to generate output

in a variety of different formats including HTML, XML,

PDF and spreadsheet formats. This abstraction also makes it

easier to support new formats such as mobile applications.

The current version of the reporting language supports the

following features:

A. Access control

Access control elements define which users are allowed to

view a report. Access control can be applied to full reports

or to individual report sections.

B. Parameters

Parameter elements define variables that control the report

being generated, for example to select the reporting period.

A parameter form is generated from these elements and

presented to the user. The values the user selects are then

inserted into the report document to control subsequent

processing.

C. Filters

Filter elements are the syntax used to specify a set of

records (equivalent to the FROM and WHERE clauses in

SQL). Filters are defined in terms of properties. The

reporting syntax allows records to be selected from multiple

data sources (provided they all define the required

properties) and will automatically merge the results from the

different data sources.

D. Single value query

These elements expand to a single value that can be placed

in-line in the body of text.

E. Tables and Charts

The reporting language supports high level syntax for the

creation of tables and charts.

F. Formatting

The Format operation specifies a fragment of the report that

is expanded multiple times, once for each record selected.

This can be used to generate record listings in common

interchange formats such as the OGF-UR XML format[4].

VII. CUSTOM ANALYSIS

The XML report generation engine is suitable for most

general reports, though it is also possible to use the

underlying code to perform more specialized analysis than

is available in from the template interface.

A. Utilization vs. Job waiting

An example of such an analysis is shown in Figure 2. This

was an exercise to look at the correlations between machine

utilization and job waiting times. Normally such an analysis

is conducted using the wait times of individual batch jobs.

However as jobs of different sizes will tend to experience

different wait times we wanted to use a metric which

reflected the amount of work queued on the machine as a

whole. In the figure each point on the graph represents a

time average over a calendar week in order to remove any

natural periodic variations over the course of the week. The

X axis is the average utilization of the system (normalized

by the overall size of the machine). The Y axis is the

average amount of waiting work over the week (normalized

by the maximum performance of the machine to give a time

in hours). The data covers three different hardware

generations of the Hector service. The graph shows a

remarkable consistency over these three different

generations of the service and appears to show a clear

threshold of utilization above which job waiting increases

significantly.

B. Project use profiles

One of the advantages of a unified management system is

that job usage data can be combined with administrative

data such as project allocation information. Figure 3. shows

one such analysis. We calculated the fraction of overall

allocation that each project had consumed at various points

throughout the lifetime of the project. The graph shows

percentiles from the data available at each point. Note that

many of projects considered were still in progress so the

number of points in each sample is higher at the lower end

of the graph. This graph illustrates how a proportion of

projects consume very little of their allocation until almost

halfway through the project lifetime, and that a similar

proportion (probably the same projects) fail to consume all

of their allocated resources.

VIII. CONCLUSION

The report generation and accounting code in the SAFE is

capable of efficiently handling the large data sets generated

by HPC job-loads while still retaining sufficient flexibility

to be re-usable as a more general report generation tool. In

addition by integrating this code into a larger user

management application reports gain access to additional

contextual information that improves the usefulness of the

reports.

ACKNOWLEDGMENT

SAFE is maintained, developed, and by EPCC at the

University of Edinburgh. Development of the accounting

sub-system Grid-SAFE was funded by JISC.

REFERENCES

[1] JSR-000154 JavaTM Servlet 2.5 Specification
http://download.oracle.com/otndocs/jcp/servlet-2.5-mrel2-eval-oth-
JSpec/

[2] Grid-SAFE http://gridsafe.sourceforge.net/

[3] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides “Design
Patterns: Elements of Reusable Object-Oriented Software”, Addison-
Wesley 1994, ISBN:0-201-63361-2

[4] GFD-R-P.098, OGF Usage Record Working Group,
https://forge.gridforum.org/projects/ur-wg/

Figure 1. A comparison of CPU plots with and without overlap mapping. The graph on the left shows the full overlap calculation (time average of CPUs in

use) where the graph on the right selects records that completed in the target period.

Figure 2. Analysis of the impact of machine utilisation on job waiting.

0

5

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1 1.2

D
ra

in
 t

im
e

 (
h

o
u

rs
)

Utilisation fraction

phase2b

phase2a

phase3

http://download.oracle.com/otndocs/jcp/servlet-2.5-mrel2-eval-oth-JSpec/
http://download.oracle.com/otndocs/jcp/servlet-2.5-mrel2-eval-oth-JSpec/
http://gridsafe.sourceforge.net/
https://forge.gridforum.org/projects/ur-wg/

Figure 3. Analysis of job usage profiles

0

0.2

0.4

0.6

0.8

1

1.2

1 6
1
1
1
6
2
1
2
6
3
1
3
6
4
1
4
6
5
1
5
6
6
1
6
6
7
1
7
6
8
1
8
6
9
1
9
6

Fr
ac

ti
o

n
 o

f
al

lo
ca

ti
o

n
 u

se
d

Percentage through project

20%

30%

40%

50%

60%

70%

80%

90%

