
User-level Power Monitoring and Application Performance
on Cray XC30 Supercomputers

Alistair Hart, Harvey Richardson
Cray Exascale Research Initiative Europe

King’s Buildings
Edinburgh, UK

{ahart,harveyr}@cray.com

Jens Doleschal, Thomas Ilsche, Mario Bielert
Technische Universität Dresden,

ZIH
Dresden, Germany

{jens.doleschal,thomas.ilsche,mario.bielert}@tu-dresden.de

Matthew Kappel
Cray Inc.

St. Paul MN, USA
mkappel@cray.com

Abstract—In this paper we show how users can access and
display new power measurement hardware counters on Cray
XC30 systems (with and without accelerators), either directly
or through extended prototypes of the Score-P performance
measurement infrastructure and Vampir application perfor-
mance monitoring visualiser.

This work leverages new power measurement and control
features introduced in the Cray XC supercomputer range and
targeted at both system administrators and users.

We discuss how to use these counters to monitor energy
consumption, both for complete jobs and also for application
phases. We then use this information to investigate energy
efficient application placement options on Cray XC30 ar-
chitectures, including mixed use of both CPU and GPU on
accelerated nodes and interleaving processes from multiple
applications on the same node.

Keywords-energy efficiency; power measurement; application
analysis

I. INTRODUCTION

Energy and power consumption are increasingly important
topics in High Performance Computing. Wholesale electric-
ity prices have recently risen sharply in many regions of the
world, including in the European states [1], prompting an
interest in lowering energy consumption of HPC systems.
Environmental (and political) concerns also motivate HPC
data centres to reduce their “carbon footprints”. This has
driven an interest in energy-efficient supercomputing, as
shown by the rise in popularity of the “Green 500” list
of the most efficient HPC systems since its introduction
in 2007 [2]. In many regions, the need to balance demand
across the electricity supply grid has also led to a require-
ment to be able to limit the maximum power drawn by a
supercomputing system.

Looking forward, energy efficiency is one of the
paramount design constraints on a realistic exascale super-
computer. The United States Department of Energy has set
a goal of 20MW [3] for such a machine. Compared to a
typical petaflop system, this requires a thousand-fold leap in
computational speed in only three times the power budget.

Energy efficiency goes beyond hardware design, however.
To deliver sustained, but energy-efficient, performance of

real applications will require software engineering decisions,
both at the systemware level but also in the applications
themselves. Such application decisions might be made when
the software is designed or at runtime via an autotuning
framework.

For these to be possible, fine-grained instrumentation is
needed to measure energy and power usage not just of
overall HPC systems, but of individual components within
the architecture. This information also needs to be accessible
not just to privileged system administrators but also to
individual users of the system, and in a way that is easily
correlated with the execution of their applications.

In this paper, we describe some ways that users can mon-
itor the energy and power consumption of their applications
when running on the Cray XC supercomputer range We
exploit some of the new power measurement and control
features that were introduced in the Cray Cascade-class
architectures, aimed both at system-administrators and non-
privileged users.

We demonstrate how users can access and display new
power measurement hardware counters on Cray XC30 sys-
tems (with and without accelerators) to measure energy
consumption by node-specific hardware components. Of par-
ticular interest to users is charting power consumption as an
application runs, and correlating this with other information
in full-featured performance analysis tools. We therefore are
extending the Score-P scalable performance measurement
infrastructure for parallel codes [4] to gather power mea-
surement counter values on Cray XC30 systems (with and
without accelerators). The framework is compatible with a
number of performance analysis tools, and we show how one
example, Vampir [5], displays this data in combination with
application monitoring information. We describe how this
was achieved and give some usage examples of these tools
on Cray XC30 systems, based on benchmarks and large-
scale applications.

We will use this information to illustrate some of the
design decisions that users may then take when tuning their
applications, using a set of benchmark codes. We will do this
for two Cray XC30 node architecture designs, one based

solely on CPUs and another using GPU accelerators. For
CPU systems, we will show that reducing the clockspeed
of applications at runtime can reduce the overall energy
consumption of applications. This shows that modern CPU
hardware already deviates from the “received wisdom” that
the most energy-efficient way to run an application is always
the fastest although, as we discuss, the energy savings are
perhaps not currently large enough to justify the increased
runtime.

For hybrid systems, the GPU does indeed offer higher
performance for lower energy consumption, but both of these
are further improved by harnessing both CPU and GPU in
the calculation, and we show a simple way of doing this.

The structure of this paper is as follows. In Sec. II we
describe the Cray XC30 hardware used for the results in
this paper, some relevant features of the system software
and the procedure for reading the user-accessible power
counters. We use these counters to measure the power draw
of the nodes when idle. In Sec. III we present performance
results (both runtime- and energy-based) when running some
benchmark codes in various configurations on CPUs and/or
GPUs. The energy results here were obtained using simple
API calls; in Sec. IV we describe how the Score-P/Vampir
framework has been modified to provide detailed tracing of
application energy use, and present results both for synthetic
benchmarks and a large-scale parallel application (Gromacs).
Finally, we draw our conclusions in Sec. V.

This work was carried out in part as part of the EU FP7
project “Collaborative Research in Exascale Systemware,
Tools and Applications (CRESTA)” [6]. Some early results
from this work were presented in Ref. [7].

Related work reported at this conference can be found in
Refs. [8], [9], [10].

II. THE HARDWARE CONSIDERED

For this work, we consider two configurations of the
“Cascade-class” Cray XC30 supercomputer. The first uses
nodes containing two twelve-core Intel Xeon E5-2697 “Ivy-
bridge” CPUs with a clockspeed of 2.7GHz (as used in,
for instance, the UK “Archer” and ECMWF systems). The
second uses hybrid nodes containing a single eight-core Intel
Xeon E5-2670 “Sandybridge” CPU with a clockspeed of
2.6GHz and an Nvidia Tesla K20x “Kepler” GPU (as used
in the Swiss “Piz Daint” system installed at CSCS). For
convenience, we refer to these configurations as “Marble”
and “Graphite” respectively.

A. Varying the CPU clockspeed at runtime

Linux OSes, including the Cray Linux Environment that
runs on the Cray XC30 compute nodes, offer a CPUFreq
governor that can be used to change the clock speed of the
CPUs [11]. The default governor setting is “performance”
on Cray XC30 systems, with CPUs consistently clocked to
their highest settings. For this work, we concentrate on the

“userspace” governor, which allows the user to set the CPU
to a specific frequency (“p-state”).

The p-state is labelled by an integer that corresponds
to the CPU clock frequency in kHz. So a p-state label
of 2600000 corresponds to a 2.6GHz clock frequency1.
The only exception is that the Intel CPUs studied here
have the option (depending on power and environmental
constraints) of entering a temporary boost state above the
nominal top frequency of the CPU; this option is available
to the hardware if the p-state is set to 2601 (for a 2.6GHz
processor). For the Sandybridge CPUs, the p-states ranged
from 1200 to 2600, with a boost-able 2601 state above that
(where the “turbo frequency” can be as high as 3.3GHz).
For the Ivybridge CPUs, the range was from 1200 to 2700,
with a boost-able 2701 state (where the frequency can reach
3.5GHz).

On Cray systems, the p-state of the node can be varied
at application launch through the --p-state flag for the
ALPS aprun job launch command (which also sets the
governor to “userspace”). The range of available p-states on
a given node is listed in file:
/sys/devices/system/cpu/cpu0/cpufreq/ \

scaling_available_frequencies

B. Enhanced MPMD with Cray ALPS on the Cray XC30

The aprun command provides the facility to run more
than one binary at a time as part of the same MPI ap-
plication (sharing the MPI_COMM_WORLD communicator).
Historically, this MPMD mode only supported running a
single binary on all cores of a given node. In this work,
we take advantage of a new capability to combine different
binaries on the same node. This is done by using aprun
to execute a script multiple times in parallel (once for each
MPI rank in our job). Within this script, a new environment
variable ALPS_APP_PE gives the MPI rank of that instance
of the script. We can then use modular arithmetic (based
on the desired number of ranks per node) to decide which
MPI binary should be executed (and set appropriate control
variables). Environment variable PMI_NO_FORK must be
set in the main batch jobscript to ensure the binaries launch
correctly. Fig. 1 gives an example of mixing (multiple)
OpenACC and OpenMP executables on the same nodes, with
appropriate -cc binding.

C. User-accessible power counters

The Cray Linux Environment OS provides access
to a set of power counters via files in directory
/sys/cray/pm_counters. Further details of these
counters are implemented can be found in Ref. [8].

Counter power records the instantaneous power con-
sumption of the node in units of Watts. This node power
includes CPU, memory and associated controllers and other
hardware contained on the processor daughter card. It does

1For brevity, we drop the final three zeros when quoting p-state values.

1 # Excerpt from job script (written in bash)
2 export PMI_NO_FORK=1
3 export CRAY_CUDA_MPS=1
4 cclist=’0:1:2,3:5,6’
5 aprun -n16 -N4 -cc $cclist ./wrapper.bash

1 #!/bin/bash
2 # wrapper.bash
3 node_rank=$((ALPS_APP_PE % 4))
4 if [$node_rank -lt 2]; then
5 export OMP_NUM_THREADS=1
6 ./openacc.x
7 else
8 export OMP_NUM_THREADS=2
9 ./openmp.x

10 fi

Figure 1. Launching a 16-rank MPMD job with 4 ranks per node: two
OpenACC and two OpenMP with 2 threads per rank.

not include the energy consumption of the (shared) Aries
network controllers on that node, nor of any other hardware
in the chassis or cabinet. Counter energy records the
cumulative energy consumption of the node (in Joules) from
some fixed time in the past.

The power and energy counters are available for all
node architectures and always measure the consumption of
the full node. On accelerated nodes, additional counters
accel_power and accel_energy measure the part of
the full node consumption that is due to the accelerator.

These counters are updated with a frequency of 10Hz,
giving a time resolution of 100ms, which is fine-grained
enough to resolve different phases of application execution,
but not individual instructions (which would need to be mea-
sured using multiple repetitions in separate benchmarks).
When the counters are updated, an integer-valued counter
freshness is also incremented (although the value should
not be interpreted as a timestamp). Using the Linux OS,
changes to all counters are done atomically, so the values
cannot be read until all counters have updated. The counters
must, however, be read sequentially in a script or application.
To ensure that a consistent set of values are obtained, the
procedure for reading should be as follows.

The value of the freshness counter should be read
twice: once immediately before reading the other counters,
and then once immediately after they have all been read. If
the two freshness values are the same, then we have a
consistent set of counter readings. If not, we should repeat
the process.

A simple bash shell script that implements this for just the
energy counters is shown in Fig. 2. No inputs are expected
by the script and the outputs are ENERGY, ACCEL_ENERGY

and FRESHNESS.
Scripts like this are useful for measuring the energy used

by the nodes when executing a complete application. If the
application is executed using P nodes (usually with multiple
processes per node), we can execute the script (once on each
node, using command aprun -nP -N1) before and after
the application execution. Some postprocessing of the job
log file is then needed to collate the readings for each node
and then subtract the “before” and “after” readings and sum
the results across nodes2.

The advantage of this approach is that it requires no
modification of the application, but it cannot provide any
information on how energy usage changed during the phases
of the application. For instance, we may want to measure
only the energy consumption for the main part of an ap-
plication, excluding the initialisation process. For a multi-
phase application, we may want to break down the energy
consumption across the phases to target optimisation work.

For this reason, as part of the CRESTA project, we de-
veloped pm_lib, a small library with associated application
programming interface (API) that allows Fortran, C or C++
programs to read multiple counters via a single library
call [13].

Simple (and incomplete examples of use are given in
Fig. 3. The user can insert measurement calls into an
application at any point. This is at the cost of modifying
the source code, both to insert the API calls and also to ap-
propriately subtract readings within a given parallel process
and then sum these differences over processes. Such manual
instrumentation has a low measurement overhead, but is
usually only practical for simple codes like the benchmarks
that we discuss in Sec. III. For larger applications, where
a greater resolution of measurements is required, a more
systematic approach is required. An example of this is
the Score-P/Vampir tracing framework that we discuss in
Sec. IV. This framework, however, internally collects the
counter information using a very similar API.

D. Idle power draw

The first stage in understanding the energy consumption
of applications is to measure the baseline power consump-
tion of an idle node in the various available p-states. We
measured the energy consumption of each node (and, where
relevant, of the accelerator on each node) while each CPU
core executed a 10s sleep command. We then divide these
figures by the time interval to give the mean power.

For Marble nodes, the base power increases fairly steadily
from 91.3W to 119.5W as the p-state is raised from 1200
to 2700. In the boost-able 2701 state, the base power is
essentially unchanged at 119.9W. This is not surprising; if
the CPU is idle, we would not expect the hardware to use
the boosting.

2This information can also be obtained using the Cray RUR reporting
framework [12], if enabled.

1 PM=/sys/cray/pm_counters # The location of the counters
2 good_freshness=0 # Value 1 when we have reliable measurements
3 while [$good_freshness -eq 0]; do # Loop until measurements reliable
4 start_freshness=$(cat $PM/freshness)
5 ENERGY=$(awk ’{print $1}’ $PM/energy)
6 ACCEL_ENERGY=$(awk ’{print $1}’ $PM/accel_energy)
7 end_freshness=$(cat $PM/freshness)
8 if [$end_freshness -eq $start_freshness]; then
9 good_freshness=1 # Measurements are reliable...

10 FRESHNESS=$end_freshness
11 fi
12 done # ... otherwise we should repeat the measurements

Figure 2. A simple bash shell script to reliably read the energy counters; output values are in upper case.

For Graphite nodes, the base node power increases
smoothly from 59.6W to 67.1W as the p-state is raised from
1200 to 2600. If the boost-able 2601 state is used, the base
power consumption jumps to 73.3W. Part of this node power
is due to the GPU; it draws a relatively constant 14.6W, with
the only deviation being for the top, boost-able p-state, when
the accelerator draws 18.9W.

When an application runs, we can multiply these base
power figures by the runtime to understand what portion of
the energy consumption is the baseline, idle consumption of
the nodes.

III. BENCHMARKS

The NAS Parallel Benchmarks (NPB) suite provides sim-
ple applications that mimic different phases of a typical
Computational Fluid Dynamics (CFD) application [14]. We
use version 3.3.1 of the suite, parallelised with MPI and
compiled using the Cray Compilation Environment (CCE)
with no further performance tuning.

The global problem size (known as “CLASS” within the
NPB) and the number of MPI ranks are fixed at compile
time; the latter is generally restricted to be a power of two.
To ensure that we equally load the 24-core Marble nodes
used in a calculation, we will run the benchmarks using
8 (of the possible 12) cores per CPU. For the exploratory
studies in this paper, we use 4 nodes per calculation and the
appropriate problem size is CLASS=C.

By default, each application reports the runtime and we
modified the application using pm_lib to also measure the
energy expenditure of the nodes. We can then calculate some
derived metrics. The energy divided by the runtime gives
the mean power expenditure. Given the number of floating
point operations (“flop”) made by the application, we can
construct the floating point operations per second (“flop/s”
or “flops”) measure of runtime performance (as is used to
rank supercomputers in the Top 500 list [15]). The flop count
can either be done manually, counting the operations in the
source code (as is done in the NPB), or using hardware
counters in the CPU.

An alternative metric is the number of floating point
operations carried out per Joule of expended energy (flop/J
or, equivalently, flops/W), as used in the Green 500 list [2];
we will calculate this using the nodal energy expenditure.

A. Marble results

We begin by studying benchmark performance on the pure
CPU Marble nodes, investigating how hyperthreads affect
energy use. The benchmarks were run in two ways across 4
nodes. First, we compiled to use 64 ranks and ran these with
one rank per physical core (aprun -n64 -S8 -j1).
This was compared with compiling the same global problem
size with 128 ranks and run utilising the two hyperthreads
available on each Intel core (aprun -n128 -S16 -j2).

The results are shown in Fig. 4. Each row shows one
of the five benchmarks considered. For each benchmark,
the left graph shows application performance as reported by
the benchmark. The right graph shows the combined energy
consumption of the four nodes. In each case, we vary the
p-state of the node between the lowest and highest settings.
Each data point shown is the mean calculated from ten
independent runs of the benchmark, occasionally excluding
obvious outliers from the average.

As expected, we see a decrease in application performance
as the p-state is reduced. As is also commonly seen, some
applications (EP) give improved performance with hyper-
threading, and some (CG, FT, MG) without. IS is an unusual
case, as hyperthreading is advantageous at high p-state but
not at lower clockspeeds. The energy consumption trends
are inverse to those of the runtime; if no hyperthreading
gives the best performance, it also gives the lowest energy
consumption.

The most interesting result here is the pattern of energy
consumption as the p-state is varied. If the node power
consumption were independent of the p-state, we would
expect the energy consumption to be proportional to the
runtime and thus to increase as the p-state of the nodes
was reduced. The most energy efficient way to run would
therefore be the fastest. We see this pattern for the EP and

1 ! Fortran
2 use pm_lib
3 type(pm_counter) :: counters(3)=[&
4 PM_COUNTER_FRESHNESS, &
5 PM_COUNTER_ENERGY, &
6 PM_COUNTER_ACCEL_ENERGY]
7 integer(kind=i64) :: values(3)
8

9 call pm_init
10 nc = pm_get_counters(3,counters,values,1)

1 // C/C++
2 #include ’pm_lib.h’
3 pm_counter_e counters[3]=\{ \
4 PM_COUNTER_FRESHNESS, \
5 PM_COUNTER_ENERGY, \
6 PM_COUNTER_ACCEL_ENERGY \};
7 pm_counter_value values[3];
8

9 pm_init();
10 nc = pm_get_counters(3,counters,values,1);

Figure 3. Simple (and incomplete) examples reading three counters from
Fortran or C/C++. Setting the final argument of the measurement call to 1
ensures the counters are read consistently (i.e. atomically).

(to a lesser extent) IS benchmarks. For the CG, FT and
MG benchmarks, however, we see a pattern where the most
energy efficient way to run is with an intermediate value of
the p-state. By sacrificing overall runtime, we can increase
the energy efficiency.

This effect has not been commonly seen; on most previous
HPC architectures, tuning an application to minimise energy
consumption would be the same as tuning to maximise
performance. On more modern architectures like the Cray
XC30, it is now clear that these are two separate (but
probably still not completely independent) operations. Of
course, we are limited here to measuring the energy con-
sumption of the nodes, omitting that of the network and
other cabinet hardware (notably power conversion losses and
cooling), as well as that of all the ancillary infrastructure
(rotating storage, login nodes...). Using a linear Power Usage
Effectiveness (PUE) model, we may approximate these as
being proportional to the node energy use, but on the Cray
XC30 this information is not easily accessible to a non-
privileged user, so we do not focus on it here3. Also, as we
discuss later, the energy/runtime trade-offs that we see (even
based on node power alone) are currently not significant
enough to be economically viable. For these reasons, we
postpone discussion of the additional system power draws
to possible later studies.

The results so far have used the default -O2 optimisation

3Ref. [9] discusses this in more detail.

Figure 4. Performance of the NAS Parallel benchmarks on Marble nodes.
Diamonds (red) and triangles (green) denote runs with and without hyper-
threading, respectively. Solid symbols are compiled with -O2 optimisation;
open symbols denote unoptimised -O0 compilation.

level for CCE. An interesting question is whether the runtime
gains from optimisation justify potentially higher power
consumption. The short answer is “yes”, as is shown by
the open symbols in Fig. 4 (which uses the hyperthreading
setting that worked best with -O2). In all cases optimisation
gives faster codes which overall consume less energy. The
mean power consumption of the node is indeed higher with
optimisation, but this is more than compensated by the
decreased runtime.

Further, more thorough investigations of intermediate op-
timisation levels are clearly warranted. A reduced optimi-
sation level could be used if there were a need to cap

the maximal power consumption (as opposed to the total
energy consumption) of the system, but the same effect could
be achieved using a lower p-state without recompiling the
applications.

So far, we have studied energy consumption as we change
system parameters, but not looked at the effects of using
different algorithms. As an example of this, we can compare
the pure MPI codes used so far with a hybrid MPI/OpenMP
programming model. Using only a small number of nodes
where MPI scaling should be good, we are unlikely to see
much benefit on Marble nodes, but we shall see later that a
hybrid programming model is very important on accelerated
Graphite nodes.

The NPB suite does not include hybrid versions for most
of the benchmarks, so we developed a hybrid MPI/OpenMP
version of the MG benchmark. Time did not permit hy-
bridisation of all the codes, and MG has features that are
representative of a good range of HPC codes. Scoping fea-
tures of the Cray Reveal tool helped in this port, with some
code changes. No particular effort was made to optimise
the OpenMP directives, but scaling appeared good for the
threadcounts considered here.

For the hybrid investigation, we reduced the number of
MPI ranks per node whilst increasing OMP_NUM_THREADS
to keep the total threadcount per NUMA node constant
(8 for each CPU on Marble nodes). Again, we executed
the CLASS=C on four nodes, so the aprun options were:
-n64 -S8 -d1; -n32 -S4 -d2; -n16 -S2 -d4;
-n8 -S1 -d8. Options -j1 -ss were used throughout
(the latter to ensure that cores on a CPU access only their
local memory controller).

As expected on Marble nodes, threading did not signifi-
cantly change runtime performance or energy consumption
on four nodes, and the same pattern was seen of minimum
energy consumption occuring at an intermediate p-state
value.

B. Graphite results

We now turn our attention to energy measurements on
accelerated nodes containing a CPU and associated GPU.

Using the pure MPI version of the NPB codes, we carried
out a similar study of hyperthreading and optimisation using
the CPUs of four Graphite nodes. Eight MPI ranks (16
with hyperthreading) were used per node. We obtained the
same pattern of results seen for the Marble nodes. Once
more, an intermediate p-state value led to the lowest energy
consumption for computationally intensive CG, FT and MG
benchmarks.

We also investigated the effect of OpenMP threading on
the node for the MG benchmark, using up to 8 threads per
MPI rank. As with Marble nodes, threading had little effect
on any of the performance metrics, except when we reached
8 threads per rank, when the runtime performance was
around 10% lower (and energy consumption consequently

Figure 5. Performance of the MPI/OpenACC version of MG running on
Graphite nodes. Open symbols show the idle power draw/energy use for
the entire node (upper line) and the GPU (lower line).

higher). The best performance:power ratio obtained was
approximately 100 Mflop/J, compared to around 120 Mflop/J
for the Marble nodes, showing that the idle accelerator is not
unduly penalising the energy efficiency of the system.

We now consider just using the GPU of the Graphite
blades. Given the host-based execution model, at least one
core of the CPU must be used to control the GPU, so by
this we mean a code where all computational tasks have
been ported to the GPU and no significant data transfers
occur between CPU and GPU, beyond initialisation data
(outside the timed region) and MPI send/receive buffers. We
ported the MG benchmark to the GPU in this way using
the directive-based OpenACC programming model and ran
this on 4 Graphite nodes using one MPI rank per node
(and without “G2G” MPI optimisation). Again, we did not
investigate kernel tuning with the OpenACC.

The results are shown in Fig. 5. Once more, we see
that lower p-states result in lessened performance. Profiling
the OpenACC code with CrayPAT showed that reduced p-
states affected not only the rate of (unpinned) CPU/GPU
data transfers but also kernel performance. The difference to
using the CPU is that the mean power per node is relatively
constant, so the total energy used to complete the calculation
just increases as we reduce the p-state, rather than showing
a minimum at some intermediate CPU clockspeed.

The best performance from the GPU was just under
70 Gflop/s, compared to just over 50 Gflop/s for the full
CPU.

The OpenACC code is faster, but (as we expect) not sig-
nificantly. To make best use of accelerated nodes, we would
really like to use both CPU and GPU for the computation.

If an application is sufficiently task-based, we can effi-
ciently make full use of an accelerated node by overlapping
the computation of independent tasks on the CPU and

the GPU. An example of this approach is the GROMACS
code. This approach is, however, difficult to implement in
many applications. Alternatively, the application can be re-
engineered so that within the executable binary, some MPI
ranks will execute on the GPU and some on the CPU. Again,
this requires a lot of work in the application to allow the code
to compile in this form.

A third approach is to compile the application in two
ways, one targeting the CPU and one the GPU, and then
run them as a single MPI job on the Cray XC30 using the
extended MPMD mode in Fig. 1. The complication is that
we would like the MPI ranks to be load balanced, but (for
simplicity) they will probably each calculate equally-sized
portions of the global problem and a GPU is much faster
than a single CPU core. We should therefore make sure
that the CPU version of the code has OpenMP threading
in addition to the MPI parallelism.

We did this using the versions of MG developed for this
paper. We use one OpenACC rank per node, and reserve one
CPU core per node for this. We then choose a number of
CPU-only MPI ranks between 1 and 7 per node and compile
both versions of the code to consequently use between 8 and
32 ranks in total. We then execute both versions together on
four nodes with increasing OpenMP threadcounts per CPU-
specific rank, such that the total number of threads per node
does not exceed 7.

For each number of ranks we select the value of
OMP_NUM_THREADS that gives best overall performance.
For 32 ranks, it must be 1; for 16 ranks, it is 2; and
for 8 ranks it is 6 (rather than 7). The results for these
are compared with the pure CPU and pure GPU results in
Fig. 6. Looking at the Performance plot, we see that the
best hybrid CPU/GPU version of the code delivers nearly
90 Gflop/s compared to 70 Gflop/s for just the GPU or
50 Gflop/s for just the CPU. This is obtained using the
highest value of OMP_NUM_THREADS, which is expected to
be the most balanced configuration. Increasing the number of
MPI ranks rapidly degrades performance. The fastest hybrid
CPU/GPU combination is also (within small fluctuations)
the most efficient in terms of energy use for the full range
of p-states (matching the pure GPU at high values and the
pure CPU at lower values). Expressing these results in terms
of a performance:power ratio, the best hybrid CPU/GPU
combination is a clear winner, giving around 110 Mflop/J.
As before, this is obtained at an intermediate value of the
p-state.

IV. APPLICATION PERFORMANCE MONITORING

In the previous Section, we considered a set of simple
benchmarks. For more complicated applications, we would
like to monitor the power usage as the application runs and,
crucially, present this data as part of an integrated view
of the application performance. Collection of the power
counter information should therefore be integrated into a

Figure 6. Hybrid CPU/GPU performance of the MG benchmark. “CPU
N/d” denotes N ranks of the MPI/OpenMP application per node, each with
d threads. “GPU” denotes one rank of the MPI/OpenACC application per
node. Open symbols denote the idle power draw of the entire node (upper
line) and of the GPU (lower line).

wider performance measurement suite. For the Cray XC30
platforms, this has been done in the Cray Performance
Analysis Toolkit (CrayPAT) [10]. We describe a separate
implementation using the event-based tracing module of the
monitoring system Score-P [4], with the detailed trace files
then analysed with the performance visualiser Vampir [5].

In contrast to job energy monitoring, detailed monitoring
of energy and power during performance analysis of appli-
cations is more challenging. This new information must be
correlated with the fine-grained events of the application,
whilst remaining mindful of the accuracy and intrusion
of the monitoring process. In addition, missing a sample
of the measured power and energy counters can result in
misleading results and conclusions. Derived metrics (such
as the average power of the last interval calculated from
energy measurements) must thus be treated with care.

In this Section, we present the infrastructure needed to
read the power and energy counters in the application mon-
itoring system Score-P for Cray XC30 platforms, and the
challenges for a detailed performance analysis. In addition,
we visualised the monitoring data of two benchmarks (a
synthetic load-idle pattern benchmark, and the HPL CUDA
code) and the real-life Gromacs application [16] (one of the
exascale applications defined within the CRESTA project)
with the performance visualiser Vampir and analysed the
characteristics and behaviour of the energy and power met-
rics.

A. Cray XC30 energy and power monitoring with Score-P

The application measurement system Score-P has been
able to record external generic and user-defined hierarchical
performance counters since version 1.2. This is done with a
flexible “metric plugins” interface to address the complexity

Figure 7. Load-idle benchmark with colour-coded visualisation of the load-idle regions (topmost timeline, load-idle regions are coloured in green respectively
in brown) and corresponding energy (second timeline), average power derived from energy (third timeline), and instantaneous power information (lowest
timeline) with Vampir for an interval of 46.3s.

of machine architectures both today and in the future. The
metric plugin interface provides an easy way to extend the
core functionality of Score-P to record additional counters,
which can be defined in external libraries and loaded at
application runtime by the measurement system. We built
a Score-P metric plugin to monitor the application external
energy and power information on Cray platforms during the
application measurement with the following properties on
synchronicity and scope.

As described above, the Cray XC30 energy and power
counters are updated with a frequency of 10Hz. The scope
of these metrics is per node and therefore the Score-P
measurement system instructs and steers the first process
of each node to start the metric plugin.

Energy and power information are generally independent
of the occurrence of events during the program monitoring.
To reduce the overhead during a specific event we decided
to collect all energy and power values asynchronously. We
start an additional thread that polls the files and checks if
updates are available, collects the new values, and links it
with an actual timestamp. At the end of the monitoring the
vector of timestamp-value pairs is written to disk together
with the application monitoring information. The frequency
of the update check can be set by the developer of the
metric plugin and should be chosen under the constraints of

accuracy and overhead. For a 10Hz counter we suggest an
update check frequency higher than the original frequency
of the counter, e.g. 100Hz, to ensure that no update of the
energy and power information will be missed. The age of
the sample therefore depends on the latency of the internal
measurement infrastructure and the update check frequency.

B. Performance and metric visualisation with Vampir

The energy and power metrics are timestamp-value pairs
and, by their nature, only reflect a specific point in time and
cannot be easily correlated to the events of the processes and
threads. In addition, these metrics are valid within a scope
with a set of processes and threads. Therefore, the aggrega-
tion of energy and power metrics within the function statistic
of each process/thread (which is usually done by profiling
approaches) requires knowledge of correlation factors.

In the performance visualiser Vampir [5], we decouple
power and energy metrics from the event stream and display
the behaviour over time in special timelines. For instance, the
“counter timeline” can be used to visualise the behaviour of
one metric for a specific node over time, or the “performance
radar” can be used to visualise the behaviour of one metric
for a set of nodes over time. With these combinations of
timelines (such as the “master timeline”), which visualise
the event stream over time, visual correlation of the different

Figure 8. Length of load-idle pattern of 50ms. The instantaneous power (lowest timeline) is not able to reflect this alternating pattern. Even the average
power derived from the energy (third timeline) is not able to reflect this alternating pattern.

information is possible.

1) Synthetic load idle pattern: To test this framework, we
developed a synthetic load-idle benchmark that repetitively
executes regions with high and low power requirement. The
transitions between the different phases are synchronized
across processes and threads. Thus, the resulting power
consumption over time can be considered to be a square
wave, if side effects are not taken into account. However,
we reduce the wave period while executing the benchmark
to check whether the energy and power counter can capture
and reflect this alternating switch of extreme states. Fig. 7
shows the colour-coded visualisation of this benchmark. In
the upper part the load-idle regions are coloured in green
and respectively in brown. In the lower part the behaviour of
the three metrics (node energy, average node power [derived
from the node energy using a backward difference operator]
and the native instantaneous node power) over time for the
first 45s is displayed. In the beginning of the execution,
there is an obvious correlation between the load-idle patterns
and the node energy and power metrics. At the end of the
benchmark, when the duration of each state of the load-idle
pattern is 50ms, the energy and power metrics (especially
the instantaneous power) can no longer resolve the state
changes. These aliasing effects can be seen in Fig. 8. We
therefore can only provide meaningful results if the duration

of a state (or a set of states) is longer than the time between
two energy and power samples, ensuring that there will be at
least one sample that can be monitored and correlated with
this region.

2) HPL CUDA: To demonstrate how information about
accelerators is collected and displayed, we executed the HPL
CUDA benchmark [17] on a Cray XC30, using MPI pro-
cesses, OpenMP threads and CUDA kernels. In addition to
the traditional application behaviour monitoring we recorded
the energy and power counter for the nodes and the installed
graphic cards. Fig. 9 shows the colour-coded visualisation
with Vampir. The topmost timeline shows the behaviour
of the processes, threads, and CUDA streams over time
for an interval of 2 seconds. The second timeline displays
the instantaneous node power over time. The third timeline
displays the instantaneous graphic card power and the lowest
timeline displays the node “exclusive” power (i.e. without
the graphic card) derived from the energy for the first of the
four nodes (nid00348).

It is clear from Vampir that the node power usage is driven
by the execution of the CUDA kernels (blue boxes) for this
application. We note also that the instantaneous power values
are hard to interpret and can lead to misleading decisions.
This can be seen in in the third and fifth timelines in Fig. 10,
which display the instantaneous node and accelerator power

Figure 9. Colour-coded visualisation of HPL CUDA with Vampir. The topmost timeline shows the behaviour of the processes, threads, and CUDA streams
over time for an interval of 2s. The second timeline displays the instantaneous node power over time. The third timeline displays the instantaneous graphic
card power and the lowest timeline displays the board exclusive power without the graphic card derived from the energy for the first node nid00348 out
of the four nodes.

draws (respectively). Since we have seen that the accelerator
power has a strong impact on the node power, it is interesting
to note that the decrease of the node power is two samples
earlier than for the accelerator power. The rates of change of
the node and accelerator power draws are displayed in the
fourth and the lowest timeline. The main conclusion is that it
is hard to trust only in the instantaneous values, and further
work is needed to understand why this occurs. It is better to
compare it with an average power for the last interval derived
by a difference operator on the energy metric, visualised
within the second timeline of Fig. 10. Curiously, the average
node power curve (second timeline) appears smoother than
the curve for the instantaneous node power (third timeline)
and the application event timeline (topmost timeline). This
effect is often due to digital filtering, although this is not
carried out for these metrics. We are investigating this effect
further.

3) Gromacs: Finally, we monitored a tri-hybrid
MPI/OpenMP/CUDA version of Gromacs 4.6.5 running
on a Cray XC30 with four nodes, with each node hosting
one MPI process with six OpenMP CPU threads and two
GPU CUDA streams. Fig. 11 shows the colour-coded
performance visualisation with Vampir of 4000 iterations
with corresponding timelines for the energy, instantaneous

board power, average board power derived from the board
energy, instantaneous accelerator power, and average
accelerator power derived from the accelerator energy. The
colour-coded visualisation of the board energy (second
timeline) gives us a first rough impression of the dynamic
load balancing behaviour of Gromacs. The second node
consumes the most energy (8507J) for this application run
of 49.393s, followed by the third (8252J), first (8031J) and
fourth (7859J) nodes. This can be also observed within the
various power timelines. In addition, we can identify two
intervals within this run (from 7 to 10 seconds and from 17
to 20 seconds), when the accelerators have increased power
consumption. We are investigating the cause of this. We
also encounter an artefact where the average accelerator
power derived from the energy is zero on the first and
fourth nodes (around 28.5 seconds into the run). This
failure to update the counters was due to a bug in the
system software that has since been fixed.

Fig. 12 shows a zoomed-in, colour-coded visualisation of
80 iterations over an interval of 0.993s. The timelines show:
events on all four nodes (white background); the events of
the first (nid00348, blue background) and second (nid00349,
green background) nodes; and instantaneous power informa-
tion for the four boards and accelerators. Statistics for the

Figure 10. Colour-coded performance visualisation with Vampir of the first node of the HPL CUDA application for an interval of 1.8s with according
timelines for the events (topmost), average node power derived from the node energy by a backwards difference operator (second timeline), instantaneous
node power(third timeline), rate of change of the node power (fourth timeline), instantaneous accelerator power (fifth timeline) and rate of change of the
accelerator power (lowest timeline).

exclusive time on the right part of the figure. It is interesting
to see that the second node (nid00349) has a higher power
consumption than the first node (nid00348) mainly caused
by the accelerator power consumption peaking at 99W on
the second node, compared to 87W for the first node. The
dynamic load-balancing of the CUDA kernels (dark blue
boxes in the timelines and statistic displays) places a higher
computational load on the second node (0.59s) than on the
first node (0.35s). However, since the CUDA kernels of
Gromacs are highly optimized and have only a very short
runtime, the frequency of the energy and power counter
is too low to properly investigate the energy and power
consumption of individual kernels. Instead, we suggest in-
vestigating the energy and the average power derived by a
difference operator on the energy information for a set of
kernels, as in the 80 iterations in Fig. 12.

V. CONCLUSIONS

With energy and power efficiency increasingly important
in HPC, developers require a fine-grained view of energy
consumption in their applications. This information will
allow algorithmic and runtime decisions to be made in
the software to tune performance against a wider range of
energy-based metrics, rather than just runtime.

Understanding how energy is used when executing real-
life applications can then also feed back into design of
processors and other HPC architecture components in a
cyclic process of co-design. This should allow the large fur-
ther energy savings required to move towards the predicted
exascale era of supercomputing.

In this paper, we have shown how application energy and
power consumption of the node-exclusive (rather than shared
blade- and cabinet-level) components can be measured by
users on Cray XC systems. We have concentrated on two
methods for achieving this. The first is relatively coarse-
grained, either on a per-application level (from the jobscript)
or via the user inserting API calls into the application code.
While this is both sufficient and tractable for the exploratory
work using simple, single-purpose benchmarks presented in
this paper, it is often difficult to extract such exemplars from
real applications. A whole-application tracing framework
removes the need for this, and we described the framework
for doing this and its implementation in the widely-used
Score-P and Vampir packages.

As examples of the tuning decisions that a user can make
based on this information, we investigated some aspects of
running the NAS Parallel Benchmark codes on two versions
of the Cray XC30 architectures: one CPU-based and one

Figure 11. Colour-coded visualisation of 4000 iterations of a hybrid version of Gromacs running on four nodes (with each node hosting one MPI process
with six CPU threads and two GPU CUDA streams running on the accelerator) for an interval of 49.393s with according timelines for the events on all
four nodes (topmost) and corresponding energy (second timeline), instantaneous power (third timeline), average board power derived from energy (fourth
timeline), instantaneous accelerator power (fifth timeline), average accelerator power derived from accelerator power (lowest timeline) for the four nodes,
and according statistics for the exclusive time on the right part of the figure.

also using GPU accelerators. In particular, we studies how
both runtime and energy consumption of an application is
changed as the CPU clockspeed is varied via the p-state. For
both node architectures, if the application is run on the CPU,
we found that the overall nodal energy consumption could
be reduced by running at a clockspeed intermediate between
the highest (default) and lowest settings. This demonstrates
that modern HPC hardware has already moved beyond the
previously true “fastest is most energy efficient” position.

We also investigated how introducing OpenMP threading
in the MG benchmark changed energy consumption; for the
small testcases we studied here it neither saved nor cost
significant amounts of energy. In contrast to the CPU results,
when running on GPUs using an OpenACC port of the MG
benchmark, reducing the CPU p-state uniformly increased
both the application runtime and energy consumption.

We also demonstrated that the best performance for the
MG benchmark (both in terms of runtime and energy
consumption) came from using both CPU and GPU in the
parallel calculation, and we demonstrated how to do this
using separate MPI/OpenMP and MPI/OpenACC binaries.
OpenMP threading is very important on the CPU; without
this the poor load balancing leads to reduced runtime per-

formance and energy efficiency.
We have used the power-instrumented versions of Score-

P and Vampir to trace and display the execution of a
range of applications, from synthetic benchmarks to the
highly-optimised, GPU-accelerated version of the Gromacs
Molecular Dynamics package. The ability to correlated the
instantaneous power draw of the nodes’ components with
other measures of application progression is very important.
In particular, we showed how the Vampir trace can be used
to diagnose the asymmetric power consumption of the nodes,
showing this is due to the code’s automatic scheduling of
CUDA kernels.

A. A trade-off model for runtime and energy consumption

We have seen that varying the p-state of the CPU can
reduce the overall energy consumption of an application, at
the cost of it taking longer to run. If energy consumption is
the primary concern of the user or system provider, this is a
good thing. The downside, however, is that fewer jobs can
be run during the lifetime of the system and the depreciation
of the capital cost per job is therefore higher.

We can develop a (very) simple model of this trade-off4. If

4We thank Mark Bull for first drawing our attention to this issue.

Figure 12. Colour-coded visualisation of 80 iterations of a hybrid version of Gromacs running on four nodes (with each node hosting one MPI process
with six CPU threads and two GPU CUDA streams running on the accelerator) for an interval of 0.993s with according timelines for the events on all
four nodes (white background), the events of the first node nid00348 (blue background), the events of the second node nid00349 (green background),
instantaneous power information for the four boards and accelerators. Statistics for the exclusive time on the right part of the figure.

the initial cost of the system is S and it will run for T years,
the capital cost depreciates at rate of S/T per year. If each
year we run N (assumed similar) jobs, with an electricity
cost of C, then the overall financial cost per job is:

K0 =
S

NT
+

C

N
. (1)

If we run the jobs in a more energy-efficient, throttled
manner, the runtime changes by a factor R > 1, whilst the
energy consumed consequently changes by a factor E ≤ 1.
We will therefore run R fewer jobs per year and the cost
becomes:

K1 =
SR

NT
+

CE

N
. (2)

Overall, this change is financially viable if K1 < K0. If
running costs are dominant, this favours reducing E as much
as possible, regardless of the runtime penalty. At the other
extreme, if the capital depreciation is the main concern, we
should keep R at its minimum value of 1. Between these
limits, the payback time Tpb measures how long we would
need to run a system with throttled applications before K1 ≤
K0:

Tpb =
R− 1

1− E
× S

C
. (3)

As a very rough figure, a typical contemporary HPC system
has a ratio of annual electricity bill to initial system cost
around C/S = 5%.

In the case of MG benchmark running on 4 nodes, if we
compare the performance at the top p-state to that which
gives the best energy efficiency, we find that a 5% increase
in runtime (R = 1.05) is balanced by a 15% decrease in
energy use (E = 0.85). Given this, the payback time Tpb is
6.7 years, far longer than the three to five year lifetime of
most HPC systems. This estimate was for the p-state giving
the lowest energy consumption. Even if we look across the
entire range of p-states for all benchmarks, there is only one
instance where the payback time is less than five years. So,
even though downclocking the CPUs reduces node energy
use, we are not yet in an era where this is a cost-effective
way to run an HPC system.

At present, most HPC systems implement user accounting
based purely on runtime. There is, however, increasing inter-
est in “billing by the Joule”; charging for the energy used in
executing an application. The analysis above suggests that
a pure energy expenditure metric could be overly simplistic
and not reflect the capital depreciation costs in running a sys-
tem. A more in-depth analysis, covering all HPC system and
HPC data centre components, is clearly needed. The model

above does not include the energy consumption of shared
architectural infrastructure (e.g. network- and cabinet-level),
which needs to be divided somehow between the executing
jobs. If we assume that the fractional change in nodal energy
consumption is reflected in the overall energy expenditure
of the system (i.e. a linear PUE model to include network
and cabinet infrastructure), the above conclusions still hold.
If, however, the additional components contribute a more
constant overhead (as seemed to be seen in Ref. [9]), the
model would need to be refined.

Individual, non-privileged users cannot, however, access
information about the shared components, so this work goes
beyond the scope of this paper.

Even based on the above analysis, the conclusions would
already change if energy prices were to rise by, say, 30%,
reducing Tpb. Alternatively, if the decision were made to
procure a long-lifetime system, it would also make reducing
performance more attractive from the overall cost perspec-
tive. These benefits would, at least currently, probably be
outweighed by efficiency gains in new systems available
midway through this long-lifetime procurement.

In conclusion, then, we appear to have reached a point
where not only is energy consumption important in HPC, but
also where it is measureable and can be visibly influenced
by choices made by application developers. An exascale
supercomputer is unlikely to be built from current hardware,
but we can now (from a measurement and visualisation per-
spective) begin a meaningful co-design process for energy-
efficient exascale supercomputers and applications.

ACKNOWLEDGMENT

We thank S. Martin (Cray Inc.), M. Weiland (EPCC) and
D. Khabi (HLRS) for valuable discussions and assistance.
This work has been supported in part by the CRESTA
project that has received funding from the European Com-
munity’s Seventh Framework Programme (ICT-2011.9.13)
under Grant Agreement no. 287703.

REFERENCES

[1] “EU energy, transport and GHG emissions trends to 2050
reference scenario 2013,” (Accessed 26.Feb.14).

[2] “The Green 500 list.” [Online]. Available: http://www.
green500.org

[3] P. Beckman et al., “A decadal DOE plan for
providing exascale applications and technologies for
DOE mission needs,” (Accessed 26.Feb.14). [Online].
Available: http://science.energy.gov/∼/media/ascr/ascac/pdf/
meetings/mar10/Awhite.pdf

[4] A. Knüpfer, C. Rössel, D. an Mey, S. Biersdorff, K. Diethelm,
D. Eschweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Mal-
ony, W. E. Nagel, Y. Oleynik, P. Philippen, P. Saviankou,
D. Schmidl, S. Shende, R. Tschüter, M. Wagner, B. Wesarg,
and F. Wolf, “Score-P: A Joint Performance Measurement
Run-Time Infrastructure for Periscope, Scalasca, TAU, and

Vampir,” in Tools for High Performance Computing 2011,
2012, pp. 79–91.

[5] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber,
H. Mickler, M. S. Müller, and W. E. Nagel, “The Vampir Per-
formance Analysis Tool Set,” in Tools for High Performance
Computing, 2008, pp. 139–155.

[6] A. Hart, M. Wieland, D. Khabi, and J. Doleschal, “Power
measurement across algorithms,” Mar. 2014, deliverable
D2.6.3, EU CRESTA project (in review).

[7] T. Ilsche and J. Doleschal, “Application energy
monitoring on hpc systems - measurement and
models,” in Adept Workshop on Efficient Modelling
of Parallel Computer Systems, Vienna, Austria, Jan.
2014. [Online]. Available: http://www.adept-project.eu/
images/slides/HiPEAC2014 ThomasIlsche1.pdf

[8] S. Martin and M. Kappel, “Cray XC30 power monitoring and
management,” in Proc. Cray User Group (CUG) conference,
Lugano, Switzerland, May 2014.

[9] G. Fourestey, B. Cumming, L. Gilly, and T. Schulthess,
“First experiences with validating and using the Cray power
management database tool,” in Proc. Cray User Group (CUG)
conference, Lugano, Switzerland, May 2014.

[10] H. Poxon, “New functionality in the Cray Performance Anal-
ysis and Porting Tools,” in Proc. Cray User Group (CUG)
conference, Lugano, Switzerland, May 2014.

[11] D. Brodowski and N. Golde, “Linux CPUFreq Governors,”
(Accessed 24.Feb.14). [Online]. Available: https://www.
kernel.org/doc/Documentation/cpu-freq/governors.txt

[12] A. Barry, “Resource utilization reporting,” in Proc. Cray
User Group (CUG) conference, Napa CA., U.S.A.,
May 2013. [Online]. Available: https://cug.org/proceedings/
cug2013 proceedings/includes/files/pap103.pdf

[13] H. Richardson, “pm_lib: A power monitoring library for
Cray XC30 systems,” Jan. 2014, EU CRESTA project.

[14] “The NAS Parallel Benchmarks,” (Accessed 24.Feb.14).
[Online]. Available: https://www.nas.nasa.gov/publications/
npb.html

[15] “The Top 500 list.” [Online]. Available: http://www.top500.
org

[16] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GRO-
MACS 4: Algorithms for Highly Efficient, Load-Balanced,
and Scalable Molecular Simulation,” Journal of Chemical
Theory and Computation, vol. 4, no. 3, pp. 435–447, 2008.

[17] “The CUDA HPL package,” (Accessed 28.Feb.14). [Online].
Available: https://github.com/avidday/hpl-cuda

http://www.green500.org
http://www.green500.org
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/mar10/Awhite.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/mar10/Awhite.pdf
http://www.adept-project.eu/images/slides/HiPEAC2014_ThomasIlsche1.pdf
http://www.adept-project.eu/images/slides/HiPEAC2014_ThomasIlsche1.pdf
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://cug.org/proceedings/cug2013_proceedings/includes/files/pap103.pdf
https://cug.org/proceedings/cug2013_proceedings/includes/files/pap103.pdf
https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html
http://www.top500.org
http://www.top500.org
https://github.com/avidday/hpl-cuda

	Introduction
	The hardware considered
	Varying the CPU clockspeed at runtime
	Enhanced MPMD with Cray ALPS on the Cray XC30
	User-accessible power counters
	Idle power draw

	Benchmarks
	Marble results
	Graphite results

	Application performance monitoring
	Cray XC30 energy and power monitoring with Score-P
	Performance and metric visualisation with Vampir
	Synthetic load idle pattern
	HPL CUDA
	Gromacs

	Conclusions
	A trade-off model for runtime and energy consumption

	References

