
Fan-In Communications On A Cray Gemini Interconnect

Terry Jones1, Bradley W. Settlemyer1

1 Oak Ridge National Laboratory
Oak Ridge, TN 37831, USA
{trj, settlemyerbw }@ornl.gov

Abstract

Using the Cray Gemini interconnect as our platform, we
present a study of an important class of communication
operations––the fan-in communication pattern. By its nature,
fan-in communications form ‘hot spots’ that present
significant challenges for any interconnect fabric and
communication software stack. Yet despite the inherent
challenges, these communication patterns are common in
both applications (which often perform reductions and other
collective operations that include fan-in communication such
as barriers) and system software (where they assume an
important role within parallel file systems and other
components requiring high-bandwidth or low-latency I/O).
Our study determines the effectiveness of differing client-
server fan-in strategies. We describe fan-in performance in
terms of aggregate bandwidth in the presence of varying
degrees of congestion, as well as several other key attributes.
Comparison numbers are presented for the Cray Aries
interconnect. Finally, we provide recommended communi-
cation strategies based on our findings.

Keywords: Time service, clock synchronization, MPI,
supercomputing, system software, programming tools

1. Introduction

Fan-in communication patterns are collections of data
transfer between two groups of distributed nodes in which
one group is larger in node count than the other (M to N
communications where M > N). Many times, the smaller
group of nodes consists of a single node forming an N-ary
tree graph. Fan-in communications may be characterized
in terms of scalability (incorporating both bandwidth and
latency aspects), fairness, and performance variability.
Because of their pervasiveness and their capacity to be an
impediment to overall performance, fan-in communi-
cations are important to both applications and system
software.

Our interest stems from research of user-level
reservation schemes. Fan-in patterns intrinsically create
hot-spots; congestion caused by hot-spot traffic can
significantly degrade the performance of a computer
network therefore requiring specialized techniques for

optimizing one or more fan-in attributes. A reservation
scheme coordinates message traffic flow by establishing a
multiplexing capability. In our previous work, we
presented several techniques to improve the fine-grained
communication of a sophisticated application (NAMD)
using the uGNI library for Gemini [1], fan-in based time
synchronization protocols [2], the performance and
scalability measurements of key parallel file system
components [3] and reservation-based quality of service
schemes for parallel storage systems [4]. Our current
work is focused at user-level communication strategies
and is being explored with a tool we have developed on
top of MPI that we call reservation [5]. Using the
reservation tool, we are able to arbitrarily establish the
scale of the fan-in tree as well as the other pertinent
communication factors including the number of large
message-size clients, the number of small message-size
clients, the associated buffer sizes, and details about
request queues and fairness properties. We have chosen to
implement our strategies over MPI which carries certain
benefits and liabilities. Unlike our earlier work, MPI
provides less control than programming the uGNI layer
directly. On the positive side, all techniques that we have
employed are available to uGNI-based implementations
(the reverse is not necessarily true), our methods are
available to a wide audience including MPI-based
applications, and we were able to fully explore the
strategies we wished to investigate over an MPI layer.
Finally, our work seeks to address general solutions and
we do not require pre-determined coordination as in some
collective reductions or gather operation strategies.

Our contributions therefore are: reservation, a
performance analysis tool designed specifically to explore
fan-in communication patterns; an assessment of the fan-
in capabilities of Gemini 3D-torus interconnect; a
comparison to a different topology (Cray Aries, a
Dragonfly topology); and a collection of recommended
communication strategies based on our findings.

The rest of this paper is organized as follows. In
section 2, we introduce our testing environment and
methodologies. Section 3 provides a series of relevant
data measurements, followed by a discussion of these
measures in Section 4. In Section 5, we describe work
related to our own. We close with our future plans and a
conclusion.

2. Testing Environment and Methodologies

Frequently in parallel machines, it is useful to have a
client-server arrangement. While multiple client scenarios
are common, it is often desirable to limit the number of
servers to avoid inconsistencies in data state. Such an
arrangement naturally results in fan-in communications.
Fan-in communication patterns are collections of data
transfer between two groups of distributed nodes in which
one group is larger in node count than the other (M to N
communications where M > N), see Figure 1. Many times,
the smaller group of nodes consists of a single node
forming an N-ary tree graph.

Figure 1. Fan-In communication: A fan-in root exchanges

messages with both large buffer clients (in teal) and small
buffer clients (in orange).

Notice that Fan-in communications may vary along
several attributes. The number of large-buffer clients can
range from 0 to the available nodes of the environment.
(Here, we define a “large-buffer client” as a communi-
cating client that is transferring messages sizes above
some minimum threshold, 64Kbytes in our testing).
Likewise, the number of “small-buffer” clients can vary
from 0 to the number of available nodes. The message
sizes associated with both large and small provides
another basic attribute. Our primary interest is in
maximizing the large-buffer bandwidth; we refer to the
interfering small-buffer bandwidth as chatter traffic.

The communication interface and underlying network
protocol can influence the behavior of fan-in communi-
cations. We have chosen to use MPI, the Message Passing
Interface, in our studies [6]. MPI is the de facto standard
for inter-node communication within our test
environment, a DOE managed supercomputer center
charged with yielding scientific insight in the nation’s
interest through computer applications. While our results
are presented in MPI-specific terms, non-MPI interfaces
(including uGNI and UNIX sockets) usually expose
similar API choices. MPI provides collective topology
functions for many Cartesian communication patters
(rings, meshes, etc.). However, fan-in communication
patterns are not typically provided as a pre-defined
topology. As with many APIs, MPI incorporates a receive

queue to buffer incoming messages until they are matched
via source tags and user defined message tags. This
design yields several possible design choices for the MPI
programmer: the depth of the receive queue; the number
of receive queues; and the communication fairness which
may be managed through how strict or open the policy is
defined for accepting arriving messages (i.e., arriving
messages may be included or excluded based on policies
ranging from the very restrictive exact match of both
message-source and message-tag, to the completely
unrestricted case of using special match-any flags for both
message-sources and message-tags). These design choices
yield a rich environment for performance variation.
[7,8,9].

To help us understand the impact of these various
attributes and parameters, we developed a performance
measure tool that we call Reservation.

2.1. A Tool For Evaluating Fan-Ins: Reservation

The Reservation tool is an MPI program capable of

measuring the performance for various fan-in
configurations. It measures performance for a single-
queue design as well as a dual-queue design. The dual-
queue measurements result from large-buffers being
handled separately than small buffers and control
messages. In addition, it permits adjustable sizes for both
“small” messages and “large” messages. Finally,
messages may be either matched with wildcard match-any
tags, or with specific matching. The basic logic for the
application is presented in Figure 2.

ROOT:
(1) First, the single root node posts Irecvs for the

clients;
(2) then the root primes a set of handshake

communications from each client by cycling
through sending a message to each client and
enters a response loop (small or large
message depending on client);

(3) in the root response loop, the root receives a
message from any client, then it returns it back
to the same client.

CLIENTS:
(1) Meanwhile, the client posts a set of Irecvs for

the root.
(2) then the client enters its response loop: first

receiving a message from root, then returning
the message (small or large message
depending or client).

Figure 2. “Reservation” is a tool developed at ORNL to
perform performance measurements for fan-in communication.
Various aspects of the communication can be tailored.

2.2. The Gemini and Aries Network

The Gemini computer interconnect is based on a three-
dimensional torus topology (see Figure 3). An n-
dimensional torus is a mesh with the processors on the end
of each dimension connected together. This reduces the
diameter of the network by half. The diameter of an X x Y

x Z torus is (X + Y + Z)/2. Each Gemini chip is connected
to 6 of its nearest neighbors: X+, X-, Y+, Y-, Z+, and Z-.
While this maps well to nearest-neighbor exchanges, fan-
in communications can pose challenges. In Gemini, near-
neighbors according to the routing scheme are given more
bandwidth than farther clients, which receive
geometrically less a share of bandwidth according to fan-
in/distance (the network is locally fair, but globally
unfair). This means that for large machines, unless each
link has adequate bandwidth for the traffic pattern, the
chances of contention increase as messages travel farther
and farther; large fan-in communications therefore can
pose significant challenges for such topologies. Link
speeds for Gemini are presented below in Table 1 [10].

Figure 3. The Gemini interconnect connects nodes via a

3D torus network.

Each Gemini chip supports two nodes, and those
nodes communicate via “lanes”. Three lanes comprise a
“link”. The link speed depends on the link type, and
protocol overheads are about 35% for large messages
[11]. The expected bandwidths are shown in Table 1.
Note that Gemini bandwidth is asymmetrical among X, Y,
and Z with Y bandwidth equal to ½ X bandwidth and ½ Z
bandwidth.

Table 1. Gemini Speeds by Link Type.

GEMINI Speeds
gbps = Giga bits per second

GBytes/s = Giga bytes per second

Link Type Data Rate # Links Bitrate Data Rate

Y-Mezzanine 6.25 gbps 12 9.375 GB/s ~6 GByte/s
Z-Backplane 5.0 gbps 24 15 GB/s ~9.75 GByte/s

X,Z Cable 3.125 gbps 24 9.375 GB/s ~6 GByte/s
Y Cable 3.125 gbps 12 4.687 GB/s ~3 GByte/s

In Contrast, Aries is based on a Dragonfly topology

(see Figure 4). Systems can be configured to meet
bandwidth requirements by varying the number of optical
connections. Bidirectional bandwidth for two Aries nodes
at 4K message size is approximately 14.3 GBytes/s. Peak
global bandwidth is 11.7 GBytes/s per node for a full
network; with a payload efficiency of 64 percent this
equates to 7.5 GBytes/s per direction [12].

Figure 4. The Aries interconnect connects nodes via a

Dragonfly network.

Table 2. Aries Speeds by Link Type.

ARIES Speeds
gbps = Giga bits per second

Aries Component Link Type Data Rate

Black PCI Express Gen3 x16 16 gbps per lane
Green Electrical cables 14 gbps per lane
Blue Optical Cable 12.5 gbps per lane

2.3. The OLCF Environment: Titan and EOS

Titan, currently the world’s largest machine for open
science, is located at Oak Ridge National Laboratory at
the Oak Ridge Leadership Computing Facility (OLCF)
[13]. A Cray XK7, Titan is based on the Gemini network
and features a hybrid-architecture with a theoretical peak
performance exceeding 27,000 trillion calculations per
second (27 petaflops). It contains both advanced 16-core
AMD Opteron central processing units (CPUs) and
unconventional NIVIDIA Kepler graphics processing
units (GPUs) [14]. Titan incorporates 18,688 compute
nodes, a total system memory of 710 terabytes, and
Cray’s high-performance Gemini network. Its 299,008
CPU cores guide simulations while the accompanying
GPUs that can handle hundreds of calculations
simultaneously. The 3D-torus for Titan has the
dimensions of Z=24, X=25, Y=16 (that is, 24 blades per
cabinet, 25 cabinets, 2*8 rows).

Eos is a 744-node Cray XC30 cluster with a total of
47.6 TB of memory [15]. The processor is the Intel®
Xeon® E5-2670 (10-core Ivy Bridge). Eos uses Cray’s
Aries interconnect. Aires provides a higher bandwidth and
lower latency interconnect than Gemini. In total, the Eos
compute partition contains 11,904 traditional processor
cores (23,808 logical cores with Intel Hyper-Threading
enabled), and 47.6 TB of memory. The Dragonfly
topology interconnect of Eos is configured with 240 Blue
links using 60 optical cables, 4 links per cable.

3. Experimentation and Data Measurements

3.2. Measurements

We began our investigation by conducting multiple
measurements of a basic fan-in scenario in which a
variable number of large buffer clients exchange
messages with one root node; the average results are
presented in Figure 5. The graph (and the subsequent
graphs) show aggregate bandwidth as measured at the
fan-in root on the Y-axis versus the number of large-
buffer clients on the X-axis (higher numbers on Y-axis is
better). In each test, large-buffer is defined as 4MB and
small buffer is defined as 4K. The four series of Figure 5
present results for: (i) Aries interconnect with only large-
buffer clients; (ii) Aries interconnect with both large-
buffer clients and small-buffer clients where the number
of small-buffer and large-buffer clients are arranged in a
4:1 ratio; (iii) Germini interconnect with only large-buffer
clients, (iv) Gemini interconnect with both large-buffer
clients and small-buffer clients – also with small-buffer
and large-buffer clients in a 4:1 ratio. The “DualQ” series
utilize separate queues for small & large messages;
“SingleQ” series use a single queue; this is explained in
more detail below.

Figure 5. Performance measurements for Aries and Gemini;

bandwidth is given for chatter clients with a 4:1 client to chatter
client ratio, and in the absence of chatter clients. The “+ chatter”
means with chatter present, “- chatter” means without chatter present.

Since Figure 5 presents averages, it’s interesting to
look a little deeper into the data and check for variability
between runs. Figures 6 and 7 present individual runs on
both Gemini and Aries. The remarkable consistency of
the Aries interconnect stands out in Figure 7. In fact, the
multiple runs appear to be a single series as each
indivdual series lies almost exactly on its predecessor.

Figure 6. Variability: The figure at left shows bandwidth variance when no chatter is present; the right figure shows bandwidth with a 4:1
client to chatter client ratio.

Figure 7. Aries Variability in Detail: Aries exhibits very little variability. The figure at left shows bandwidth variance when no chatter is
present; the right figure shows bandwidth with a 4:1 client to chatter client ratio.

Figure 8. Separate Queues and Single Queues: These graphs depict performance when using multiple queues for different message
types (red) and the performance for all messages being routed to the same queue (blue). As above, the figure at left shows bandwidth
variance when no chatter is present; the right figure shows bandwidth with a 4:1 client to chatter client ratio. The “+ chatter” means with
chatter present, “- chatter” means without chatter present

In Figure 8 we provide information on the
effectiveness of using separate MPI queues for different
message types. Non-blocking communications use opaque
request objects to identify communication operations and
match the operation that initiates the communication with
the operation that terminates it. These are system objects
that are accessed via a handle. A request object identifies
various properties of a communication operation, such as
the send mode, the communication buffer that is
associated with it, its context, the tag and destination
arguments to be used for a send, or the tag and source
arguments to be used for a receive. In addition, this object
stores information about the status of the pending
communication operation [6]. The “DualQ” series utilize
separate queues for small & large messages; “SingleQ”
series use a single queue.

Figure 9 returns interest to another MPI programming
choice. MPI programmers must decide how deep the
queue should be for these request objects. Figure 8
presents results for deep queues (1 queue entry for each
client) and shallow clients (fixed queues of 20 entries).

Figure 9. Affect of strategies fixed MPI queue depth versus

equal to clients. All series include chatter (small-buffer clients).
The “+ chatter” means with chatter present, “- chatter” means without
chatter present

Figure 10 shows the impact of message-matching
decisions upon fan-in communications. The selection of a
message by a receive operation is governed by the value
of the message envelope. A message can be received by a
receive operation if its envelope matches the source, tag
and communicator values specified by the receive
operation. The receiver may specify a wildcard
MPI_ANY_SOURCE value for source, and/or a wildcard
MPI_ANY_TAG value for tag, indicating that any source
and/or tag are acceptable. Thus, a message can be
received by a receive operation only if it is addressed to
the receiving process, has a matching communicator, has
matching source unless source=MPI_ANY_SOURCE in
the pattern, and has a matching tag unless
tag=MPI_ANY_TAG in the pattern. The message tag is
specified by the tag argument of the receive operation.
The argument source, if different from
MPI_ANY_SOURCE, is specified as a rank within the
process group associated with that same communicator
[6]. Figure 10 presents series with wildcard match-any
tags, and with specific matching.

Figure 10. Affect of strategies MPI_SOURCE_ANY versus

specific client. All series include chatter (small-buffer clients). The
“+ chatter” means with chatter present, “- chatter” means without chatter
present.

4. Discussion of Measurements

4.1. General Findings

Several initial observations stand out from our data.

First, not only does Aries exhibit significantly higher
bandwidths (which is to be expected from a later
generation interconnect), it also maintains its performance
over a much broader spectrum of client loads and
programming choices. This was true for every graph, but
is perhaps most pronounced in Figure 6. Meanwhile,
Gemini bandwidth is stronly influenced by the particular
placement of communicating nodes as seen in run-to-run
variability of Gemini data series in Figure 6 –– likely a
consequence of the routing scheme which gives more
bandwidth to closer clients (recall farther Gemini clients
receive geometrically less a share of bandwidth according
to fan-in/distance resulting in locally fair, but globally
unfair routing). Hence, a favorable Gemini mapping of
ranks to nodes in one run can have significantly higher
performance than an unfavorable mapping, and a
collection of runs with different mappings may exhibit
large variability. We did test this hypothesis by running
the same tests that exhibited large variability in Figure 6,
but all with the same mappings (multiple jobs within the
same batch script), and Gemini exhibited very little
variation under this scenario (see Figure 11).

Figure 11. Variation of Gemini across 7 series when both

program parameters & node-to-rank mappings are held constant.

Neither Aries nor Gemini showed strong reaction to
the depth of the non-blocking receive queue (Figure 9),
but Gemini was heavily influenced by the absence or
presence of wildcard matching on the message source
and/or message tag (Figure 10): when the receiver
employs restrictive measures (that is, matching on a
specific source and message tag), the achieved bandwidth
remains constant at about 5.1 GB/sec –– a significant win
for large numbers of clients under load from small-buffer
clients, but a significant loss when there is less than 128
large-buffer clients and no small-buffer clients.

These observations lead to the following generaliz-
ations:

• Neither Aries or Gemini are able to reach their
peak bandwidth with only one large-buffer
client (i.e., two or more clients are required to
saturate a servers bandwidth capacity).

• Aries is able to achieve slightly more than 13
GB/sec bandwidth at the root; Gemini is able to
achieve slightly more than 9 GB/s.

• Aries bandwidth does not vary considerably
from run to run, nor does it drop considerably
under increased contention (more client nodes),
the depth of the non-blocking receive queue, the
rank-to-node mapping, or the presence or
absence of wildcard matching for either message
source or message tag.

• Gemini drops between 50% and 20% under
contention from small-buffer clients, and
exhibits a constant bandwidth of around 5.1
GB/sec regardless of the number of clients when
the message source and tag are restricted.

4.2. Recommendations

Our results indicate several policies will help to ensure

maximum performance for fan-in communication
scenarios.

For Aries, adding additional code complexity or
constraints upon batch submissions is probably
unwarranted: the Aries interconnect simply does an
impressive job of delivering its best performance across a
very wide range of scenarios. In particular, we observed
little benefit for managing the rank-to-node mappings,
whether one or more queues are employed, adding
restrictive matching for non-blocking communications,
adding deep message queues. You should be able to
achieve around 13 GB/sec

For Gemini, performance may be tuned for different
scenarios. Fan-in communications should benefit from
several choices when possible: limit concurrent small-
buffer traffic, choose a dual-queue architecture if small
amounts of chatter (small-buffer traffic) are anticipated;
choose restrictive message matching policies for large-
buffer client counts above 128, and choose rank-to-node
mappings which minimize the number of hops for the
most performance sensitive communications.

5. Related Work

Reservation schemes [16, 17, 18] have been a popular
mechanism for delivering quality of service (QoS)
guarantees to long-haul networking. These protocols
have typically not been leveraged in the system software
running on the high performance interconnection
networks common to modern high performance

computing systems. Our study measures the interference
costs associated with the fan-in communication patterns
anticipated for a storage system QoS reservation scheme.

Benchmarking and evaluation of high performance
interconnection networks, while a popular area of study
[19, 20, 21, 22, 23, 24], has been primarily focused on
exploring the performance of popular scientific
application patterns, such as collectives and bulk
transfers. Although small message performance is
typically included in the evaluation, the focus has been on
the aggregate performance rather than the interference
patterns generated by competing clients.

Bhatelé and Kalé examined the effects of contention in
high performance interconnection networks [25]. A
benchmark was constructed to have all pairs of processes
send messages at the same time with the number of hops
between each sender fixed. The results indicated that
large message sizes and high-hop counts could severely
reduce the performance of the entire interconnection
network. The confidence toolkit [26] also examined the
performance impacts of interference workloads with
point-to-point messages by constructing empirical
distributions of message latencies that described
interference-based delay. The work presented here builds
on these efforts by including recent high performance
interconnection networks and fan-in communication
patterns.

6. Future Work and Conclusion

This paper has described reservation, a performance
analysis tool designed specifically to explore fan-in
communication patterns and an assessment of the fan-in
capabilities of both the Cray Gemini 3D-torus and Cray
Aries Dragonfly interconnect. Aries is able to maintain its
maximum bandwidth under a wide range of settings and
code simplicity should probably influence design choices;
for Gemini, limit concurrent small-buffer traffic, choose
restrictive message matching policies for large-buffer
client counts above 128, and choose rank-to-node
mappings which minimize the number of hops for the
most performance sensitive communications.

While these results meet our immediate needs and
objectives, this line of inquiry has led us to consider still
further related lines of inquiry. We have plans to pursue
data collection for additional machines. Finally, we intend
to investigate methods of scheduling client activity to
realize better overall bandwidth or better bandwidth from
a predefined client.

Acknowledgements

The authors thankfully acknowledge the computer
resources and assistance provided by the National Center
for Computational Sciences at Oak Ridge National

Laboratory. These Oak Ridge National Laboratory
resources are supported by the Office of Science of the
Department of Energy and were made available by a
Director’s Discretion award. Research sponsored by the
Laboratory Directed Research and Development Program
of Oak Ridge National Laboratory, managed by UT-
Battelle, LLC, for the U. S. Department of Energy.
Finally, we would like to express our gratitude to the
anonymous reviewers for their helpful comments and
suggestions.

The submitted manuscript has been authored by a
contractor of the U.S. Government under Contract No.
DE-AC05-00OR22725. Accordingly, the U.S.
Government retains a non-exclusive, royalty-free license
to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S.
Government purposes.

7. References

[1] Yanhua Sun, Gengbin Zheng, Chao Mei, Eric Bohm,

James Phillips, Laxmikant Kale, and Terry Jones.
Optimizing Fine-grained Communication in a
Biomolecular Simulation Application on Cray XK6.
The 25th International Conference for High
Performance Computing, Networking, Storage and
Analysis (SC'12). Salt Lake City, UT. November 2012.

[2] Terry Jones, and Gregory Koenig. “Clock
Synchronization in High-end Computing
Environments: A Strategy for Minimizing Clock
Variance at Runtime.” Journal of Concurrency and
Computation: Practice & Experience, Volume 25,
Issue 6, doi: 10.1002/cpe.2868, pages 881-897,
April 25, 2013.

[3] Feiyi Wang, Mark Nelson, Sarp Oral, Scott Atchley,
Sage Weil, Bradley W. Settlemyer, Blake Caldwell,
and Jason Hill. 2013. Performance and scalability
evaluation of the Ceph parallel file system. In
Proceedings of the 8th Parallel Data Storage
Workshop (PDSW '13). ACM, New York, NY, USA,
14-19. DOI=10.1145/2538542.2538562
http://doi.acm.org/10.1145/2538542.2538562.

[4] Michael J. Brim, David A. Dillow, Sarp Oral,
Bradley W. Settlemyer, and Feiyi Wang. 2013.
Asynchronous object storage with QoS for scientific
and commercial big data. In Proceedings of the 8th
Parallel Data Storage Workshop (PDSW '13).
ACM, New York, NY, USA, 7-13.
DOI=10.1145/2538542.2538565
http://doi.acm.org/10.1145/2538542.2538565.

[5] ORNL LDRD Project: Towards a Resilient and
Scalable Infrastructure for Big Data. Oak Ridge
National Laboratory.

[6] MPI Forum. MPI: A Message-Passing Interface
Standard. Version 3.0, September 21st 2012.
available at: http://www.mpi-forum.org (Apr.
2014).”

[7] Sur, S., Chai, L., Jin, H. W., & Panda, D. K. (2006,
April). Shared receive queue based scalable MPI
design for InfiniBand clusters. In Parallel and
Distributed Processing Symposium, 2006. IPDPS
2006. 20th International (pp. 10-pp). IEEE.

[8] Underwood, K. D., & Brightwell, R. (2004,
August). The impact of MPI queue usage on
message latency. In Parallel Processing, 2004.
ICPP 2004. International Conference on, pp. 152-
160. IEEE.

[9] Brightwell, Ron, Sue Goudy, and Keith Underwood.
"A preliminary analysis of the mpi queue
characterisitics of several applications." In Parallel
Processing, 2005. ICPP 2005. International
Conference on, pp. 175-183. IEEE, 2005.

[10] R. Alverson, D. Roweth, and L. Kaplan, “The
Gemini system interconnect.” In High Perofmance
Interconnects (HOTI), 2010 IEEE 18th Annual
Symposium on, Aug., pp. 83-87.

[11] Matt Ezell. Understanding the Impact of
Interconnect Failures on System Operation. Napa
Valley, CA. CUG 2013. May, 2013.

[12] Greg Faanes, Abdulla Bataineh, Duncan Roweth,
Tom Court, Edwin Froese, Bob Alverson, Tim
Johnson, Joe Kopnick, Mike Higgins, and James
Reinhard. 2012. Cray cascade: a scalable HPC
system based on a Dragonfly network. In
Proceedings of the International Conference on
High Performance Computing, Networking, Storage
and Analysis (SC '12). IEEE Computer Society
Press, Los Alamitos, CA, USA, , Article 103 , 9
pages.

[13] OLCF. The Oak Ridge Leadership Computing
Facility. https://www.olcf.ornl.gov

[14] Cray XK7 Data Sheet,
http://www.cray.com/Products/Computing/XK7/Spe
cifications.aspx.

[15] Cray XC Data Sheet,
http://www.cray.com/Products/Computing/XC/Spec
s/Spcifications-XC30.aspx.

[16] Zhang, L., Deering, S., Estrin, D., Shenker, S., &
Zappala, D. (1993). RSVP: A new resource
reservation protocol. Network, IEEE, 7(5), 8-18.

[17] Le Faucheur, F., Wu, L., Davie, B., Davari, S.,
Vaananen, P., Krishnan, R., ... & Heinanen, J.
(2002). Multi-protocol label switching (MPLS)
support of differentiated services. RFC 3270, May.

[18] Eriksson, A., & Gehrmann, C. (1998, May). Robust
and secure light-weight resource reservation for
unicast IP traffic. In Quality of Service,
1998.(IWQoS 98) 1998 Sixth International
Workshop on (pp. 168-170). IEEE.

[19] Fabrizio Petrini, Eitan Frachtenberg, Adolfy Hoisie,
and Salvador Coll, Performance evaluation of the
quadrics interconnection network, Cluster
Computing 6 (2003), no. 2, 125–142

[20] Kei Davis, Adolfy Hoisie, Greg Johnson, Darren J.
Kerbyson, Mike Lang, Scott Pakin, and Fabrizio
Petrini, A performance and scalability analysis of
the BlueGene/L architecture, SC ’04: Proceedings of
the 2004 ACM/IEEE conference on
Supercomputing (Washington, DC, USA), IEEE
Computer Society, 2004, p. 41.

[21] Sadaf R. Alam, Jeffery A. Kuehn, Richard F.
Barrett, Jeff M. Larkin, Mark R. Fahey, Ramanan
Sankaran, and Patrick H. Worley, Cray XT4: an
early evaluation for petascale scientific simulation,
nov. 2007, pp. 1–12.

[22] S. Alam, R. Barrett, M. Bast, M. R. Fahey, J.
Kuehn, C. McCurdy, J. Rogers, P. Roth, R.
Sankaran, J. S. Vetter, P. Worley, and W. Yu, Early
evaluation of IBM BlueGene/P, SC ’08:
Proceedings of the 2008 ACM/IEEE conference on
Supercomputing (Piscataway, NJ, USA), IEEE
Press, 2008, pp. 1–12

[23] Kevin J. Barker, Kei Davis, Adolfy Hoisie, Darren
J. Kerbyson, Mike Lang, Scott Pakin, and Jose C.
Sancho, Entering the petaflop era: the architecture
and performance of Roadrunner, SC ’08:
Proceedings of the 2008 ACM/IEEE conference on
Supercomputing (Piscataway, NJ, USA), IEEE
Press, 2008, pp. 1–11.

[24] Kerbyson, D.K.; Barker, K.J. "Analyzing the
Performance Bottlenecks of the POWER7-IH
Network", Cluster Computing (CLUSTER), 2011
IEEE International Conference on, On page(s): 244
- 252

[25] Abhinav Bhatele and V. Laxmikant Kale. An
evaluative study on the effect of contention on
message latencies in large supercomputers, IPDPS
’09: Proceedings of the 2009 IEEE International
Symposium on Parallel & Distributed Processing
(Washington, DC, USA), IEEE Computer Society,
2009, pp. 1–8

[26] Settlemyer, B. W., Hodson, S. W., Kuehn, J. A., &
Poole, S. W. (2010, September). Confidence:
Analyzing performance with empirical probabilities.
In Cluster Computing Workshops and Posters
(CLUSTER WORKSHOPS), 2010 IEEE
International Conference on (pp. 1-8). IEEE.

The submitted manuscript has been authored by a contractor of the U.S. Government under Contract No. DE-AC05-00OR22725.
Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the	 published form of this
contribution, or allow others to do so, for U.S. Government purposes.

