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Abstract—Open MPI provides an implementation of the MPI
standard supporting native communication over a range of
high-performance network interfaces. Los Alamos National
Laboratory (LANL) and Oak Ridge National Laboratory
(ORNL) collaborated on creating a port for Cray XE and
XK systems. That work has continued and with the release
of version 1.8 Open MPI now conforms to MPI-2.2 and
MPI-3.0 on Cray XE, XK, and XC systems. The features
introduced with this work include dynamic process support
(MPI_Comm_spawn ()), important for implementing fault-
tolerant MPI systems; improved collective operations required
for scalability and performance of applications; and Aries
support to enable running Open MPI on Cray XC systems.
In this paper, we present an update on the design and
implementation of Open MPI for Cray systems and evaluate
the performance and scaling characteristics on both Gemini
and Aries networks.
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I. INTRODUCTION

Open MPI is a widely used open-source MPI implemen-
tation of the MPI-3.0 specification that is developed and
maintained by collaborators from academia, industry, and
national laboratories [1]]. It supports a wide variety of high-
performance network interfaces including InfiniBand, Cray
SeaStar, and Myrinet. Past work [2] introduced support for
uGNI, which provides support for both the Cray Gemini
and Aries networks. Open MPI aims to provide thread
safety and concurrency as well as network and process
fault tolerance. Additionally, Open MPI supports multiple
resource managers and can natively support both direct
launch (e.g. srun, aprun) and mpirun.

This paper details the modifications and extensions in
Open MPI to support Cray XE, XK, and XC systems. These
changes and extensions are already a part of Open MPI
and released in the 1.8 series. The vader and uGNI Byte
Transport Layer (BTL) components provide byte-level data
transfer support for intra- and inter-node communication,
respectively. The udreg Memory Pool (mpool) provides
support for caching memory registrations. The Application
Level Placement Scheduler (ALPS) (Resource Allocation
Subsytem (RAS)) and Process lifetime management (PLM),
Open Runtime (ORTE) components support launching via
mpirun. MPI-3 one-sided support is implement with plat-
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form independent components that provide optimizations
for shared-memory windows. Dynamic process support is
provided by ORTE and the uGNI BTL when processes are
launched via mpirun.

The rest of the paper is organized as follows. Section
provides a brief description of the Gemini and Aries Network
Interfaces and a high-level overview of Open MPI. Sections
and [[V] provide high-level overviews of the Open MPI
components that support Cray systems and outlines the
performance evaluation and presents some micro-benchmark
performance results. Section[[X]concludes with future work.

II. BACKGROUND
A. Gemini Network Interface

The Gemini System Interconnect is the network used by
the Cray XE and XK system families and is the successor to
the SeaStar* network interconnect found in XT systems. A
3D torus network is built from Gemini application-specific
integrated circuits (ASICs) that provide 2 network interface
controllers (NICs) and a 48-port router [3]. Two Opteron
nodes are connected to a Gemini that provides 10 torus
connections - 8 divided evenly between X and Z and 2 in Y.
Link bandwidths are 4.68 to 9.375 GB/s per direction [3]].

The Aries System Interconnect is the network used by the
Cray XC system family and is the successor to the Gemini
network interconnect. XC systems build a dragonfly network
from Aries ASICs that provide 4 NICs and a 48-port router.
More details about the Aries interconnect can be found in
[4].

The Generic Network Interface (GNI) [5] exposes low-
level, user-space communication services through uGNI,
which helps facilitate the effective utilization of the underly-
ing Gemini or Aries hardware. In particular, GNI exposes an
interface that provides two mechanisms for initiating remote
direct memory access (RDMA) transactions: Fast Memory
Access (FMA) and Block Transfer Engine (BTE).

FMA transactions come in several forms. Short message
(SMSG) and Shared Message Queue (MSGQ) are both
used to transfer point-to-point short messages, but differ
in memory resource requirements and performance charac-
teristics. In particular, SMSG provides the lowest latency
and the highest short messaging rates, but suffers from
higher memory requirements due to dedicated buffers, called



Mailboxes, which are allocated on a per-peer and per-
connection basis. MSGQ uses SMSG facilities for message
transfers, but shares the Mailbox information required for
an SMSG connection with all job instances located within
the same node [S)]. Sharing resources in this manner allows
MSGQ to scale in the number of nodes, rather than in the
number of peers, but does, however, come at the cost of
additional performance overhead [6].

BTE is best suited for large, asynchronous message trans-
fers. Once the transfer is initiated, up to 4 GB of data
can be transfered by the Gemini hardware without CPU
involvement [3]].

Detailed descriptions surrounding the usage and design of
GNI can be found in [5] and [6].

B. Open MPI

Open MPT’s design and implementation revolves around
the concept of a modular component architecture (MCA)
[7]. Within Open MPI, functionality is provided by self-
contained software modules with well-defined interfaces.
The communication infrastructure that we chose to leverage
in this port comprises three major frameworks: the point-
to-point management layer (PML), the BTL management
layer (BML) and, the BTL. The PML layer provides MPI
semantics, the BML layer is responsible for multiplexing
MPI messages, and the BTL layer is responsible for trans-
ferring data between communication endpoints. More details
regarding Open MPI’s architecture can be found in [1].

C. Related Work

The uGNI BTL’s design is very similar to that of
MPICH2’s uGNI network module, which also provides MPI
support for Cray XE, XK, and XC systems. The module uses
an eager protocol for small and medium message transfers
and a rendezvous protocol for large message transfers [6].
For message sizes greater than the SMSG message limit,
MPICH?2 uses the BTE PUT and GET protocols. Open MPI,
however, can make use of FMA PUT, which does not require
memory registration, and BTE PUT, which does not have
a 4-byte alignment restriction imposed by Gemini for data
buffers, for message sizes greater than the SMSG message
limit. Open MPI also supports packing additional data with
the in an RDMA request to handle some of the alignment
restrictions of the BTE get operation. In addition, unlike
MPICH2’s uGNI network module, the uGNI BTL is an
open-source implementation that leverages uGNI to support
the Gemini and Aries Network Interfaces.

III. ENHANCED SHARED-MEMORY BTL

This section describes the changes and extensions to vader
BTL. First, we provide an overview of XPMEM, and then
briefly describe the design and implementation of vader.

A. XPMEM

XPMEM is a Linux kernel module and user-level
library that enables a process to map the memory
of another process into its virtual address space [8].
XPMEM exposes a small application programming in-
terface (API) that comprises 7 routines: xpmem_version,
xpmem_make, xpmem_remove, xpmem_get, xpmem_release,
xpmem_attach, and xpmem_detach. XPMEM setup is a
three-phase process that requires process A to export a
region of its virtual address space, via xpmem_make, to
a cooperating process B. The cooperating process then
attaches to the exported region by calling xpmem_get and
then xpmem_attach. Once this process is complete, A’s
exported memory region is directly accessible to B. That is,
B can perform single-copy transfers within that region via
direct loads and stores, thus avoiding costs related to more
traditional copy-in/copy-out (CICO) schemes that require
data associated with a transfer to be copied twice — a copy
into a shared memory region by the sender and a copy
out of the shared memory region by the receiver. Attached
regions are permitted to contain “holes,” that is, virtual
memory regions that are not allocated. A segmentation fault
will occur if a process mapping a region tries to access
unallocated memory in that region.

B. Shared-Memory BTL — vader

vader is the default shared-memory BTL component
within Open MPI. It provides mechanisms and protocols
for intra-node data transport. vaders design and implemen-
tation is heavily influenced by the single-copy, RDMA-like
capabilities provided by XPMEM. The first version of this
component was introduced in [9)]. The need for a higher
bandwidth, lower latency, and more portable BTL for intra-
node communication on XE/XK systems was the impetus
behind the implementation of this kernel-assisted shared-
memory BTL.

To improve performance, we modified both SEND and
RDMA protocols. Small message (< 256 bytes) latencies
are improved through the use of lock-free, per-peer receive
queues. For larger, contiguous messages using either the
SEND or RDMA protocol, only the pointer to the user buffer
is passed to the receiving process. The receiving process
uses XPMEM to map the necessary pages into its memory
space, and the data is given directly to the receiving PML.
Copy-in-copy out semantics are used only for sending non-
contiguous data. The SEND protocol was patterned after
the Nemesis protocol [10] used by MPICH. Besides these
protocol changes, the data structures were made more cache-
friendly, and the critical path was optimized by identifying
and eliminating the unnecessary instructions.

To increase portability, protocols based on Linuxs Cross
Memory Attach (CMA) were introduced. This enables ap-
plications using Open MPI on systems without XPMEM to
take advantage of vader’s optimizations.



IV. uGNI BTL

The uGNI BTL provides inter-node communication
through the BTL Send(), Put(), and Get() functions. This
functionality is provided using three protocols: short mes-
sage, eager get, and long message. A high-level overview of
these protocols is provided in the following subsections.

A. Initialization and Connection Setup

The default behavior of the ugni BTL is to retreive
endpoint information from the modex and bind uGNI end-
points and allocate reserved receive buffers (SMSG mailbox
resources) on an on-demand basis. We choose this approach
so that the memory overhead and modex characteristics
would be representative of the communication characteristics
of the application. This approach, however, comes at the
cost of some additional overhead when first communicating
with a peer. Due to limitations in registration resources,
Mailboxes are allocated in 2 MiB blocks up to the maximum
size needed. For large scale jobs the mailbox allocation size
is adjusted to consume no more than 12.5% of available
registration resources when fully connected.

B. Short Message Protocol

The short message protocol handles calls to BTL
Send() with messages smaller than the SMSG send
limit, which is configurable at invocation time by the
btl_ugni_smsg_send_limit MCA parameter. This param-
eter is set to autoselect (0) by default, which sets the
SMSG limit based on the number of MPI tasks. The default
SMSG limits have been updated to improve the balance be-
tween memory usage and messaging performance at medium
scales. A table of the uGNI BTL’s current SMSG limits can
be found in Table [l

Short messages that fall between the SMSG send limit
and the eager limit specified by the btl_ugni_eager_limit
MCA parameter use an eager get protocol. This protocol is
described in detail in [2] and [9].

Number of MPI Tasks | Default SMSG Limit
[2,512) 8192
[512,1024) 2048
[1024,8192) 1024
[8192,16384) 512
16384+ 256
Table I

C. Long Message Protocol

The Gemini hardware imposes a 8 byte alignment and size
restriction on get operations that use the BTE. To improve
the performance of the uGNI BTL we added support for Get
operations between similarly-aligned buffers. This is done
by passing the extra bytes as part of the RDMA protocol
exchange in the obl Point-to-point Messaging Layer (PML).
More detail on the long message protocols can be found in

[9] and details about the obI PML can be found in [11] and
[12].

V. UDREG MPoOOL - MEMORY REGISTRATION

To reduce the overhead associated with memory registra-
tion, the ugni BTL makes use of the new UDREG memory
registration pool. This registration pool stores a cache of un-
used registrations in a least recently used (LRU) list. Cached
registrations can either be reused for future transactions or
released when resources are exhausted. The UDREG mpool
provides multiple improvements over the RDMA mpool.
Unlike the RDMA mpool, which uses ptmalloc2 to get
memory deallocation notifications, the UDREG mpool uses
the ureg library available on XE, XK, and XC systems. It
also provides support for allocating huge page resources
for SMSG mailboxes. By default, Open MPI will use 2
MiB huge pages for SMSG mailboxes but it is configurable
using the btl_ugni_smsg_page_size MCA parameter. To
avoid deadlock due to resource starvation, we chose to
limit the maximum number of registrations a process can
hold in its LRU to a fraction of available registrations. By
default the limit is based on the number of active MPI
processes on a compute node, but is configurable using the
btl_ugni_max_mem_reg MCA parameter.

VI. ADDITIONAL FEATURES

Open MPI introduced many new features throughout the
1.7 feature release series that are available in Open MPI 1.8.
These features include support for dynamic creation of pro-
cesses using MPI_Comm_spawn () and MPI-3 one-sided
support. Dynamic process support is currently supported by
the Open RunTime Environment (ORTE) and requires the
use of Open MPI’s mpirun job launcher. Inter-node MPI-3
one-sided support is currently provided by the rdma One-
Sided Communication (OSC) component which emulates
one-sided operations using two-sided communication.

VII. EVALUATION

This section describes the test beds used for the evaluation
of Open MPI on Cray systems. It then presents some
point-to-point performance results for the vader and ugni
BTLs and the point-to-point and shared memory one-sided
components.

A. System Description

To evaluate the performance of the uGNI BTL, we used
Cielo and Edison.

Cielo is a Cray XE6 located at LANL. The system has
322 service nodes and 8,894 compute nodes totaling 142,304
CPU cores. Each compute node has two 2.4 Ghz AMD
Opteron Magny-Cours CPUs and 32 GiB memory. It uses
the Gemini network interface for network communication.

Edison is a Cray XC30 located at the National Energy
Research Scientific Computing Center (NERSC). It has
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Figure 1: Log-log plots showing shared-memory latency and bi-directional bandwidth for Open MPI and the Native MPI on
both XE6 and XC30. Results reported by OSU’s MPI micro-benchmark suite. Latency measured with osu_latency and multi
latency measured with osu_multi_lat. Bandwidth measured by osu_bibw and multi bandwidth measure with osu_mbw_mr.

5,576 compute nodes, each containing two 2.4 Ghz Intel
Ivy Bridge CPUs and 64 GiB of memory. Edison uses the
Aries network interface for network communication.

A general overview of the system software used for all
tests is as follows. Cielo: CLE 4.1.40, XPMEM 0.1-2.04,
uGNI 4.0-1.0401, udreg 2.3.2-1.0401, and gcc 4.7.2. Edi-
son: CLE 5.1.29, XPMEM 0.1-2.0501, uGNI 5.0-1.0501,
udreg 2.3.2-1.0501, and gcc 4.8.2. On both systems we
used Open MPI 1.9 pre-release (development trunk) r31308
and Cray MPICH 6.3.0. All binaries were statically built
and were run in a single allocation to minimize timing
differences due to node placement. The default uGNI and
vader BTL parameters will used for all tests. In addition all
tests were run on live systems with active user jobs.

B. Benchmarks

Point-to-point latency: We used the osu_latency and
osu_multi_lat micro-benchmarks from the OSU bench-
mark suite [13] to evaluate the latency characteristics of both
vader and ugni. osu_latency measures message transfer
latency by exchanging a ping-pong message between a
pair of MPI processes and reports the average, one-way

latency of a message transfer. osu_multi_lat measures the
one-way latency of message transfers between a pair of
MPI processes, while multiple pairs of MPI processes are
exchanging ping-pong messages.

Point-to-point bandwidth: To evaluate the bandwidth
characteristics of both the vader and ugni BTLs, we used
the osu_bibw and osu_mbw_mr benchmarks from the
OSU benchmark suite. osu_bibw measures the maximum
aggregate bandwidth achieved by a pair of MPI processes.
The processes here send a fixed number of messages and
wait for the reply. The reported results are an average of
multiple iterations of this exchange. osu_mbw_mr measures
the maximum aggregate bandwidth achieved by a pair of
MPI processes while multiple pairs of MPI processes in the
network are doing a similar message exchange.

One-sided performance: To evaluate the performance of
the MPI-3 one-sided code, we used the osu_get_latency,
osu_get_bw, osu_put_latency, and osu_put_bw bench-
marks from the OSU benchmarking suite. osu_get_latency
amd osu_put_latency measure the one-sided latency of
a pair of processes when using the MPI_Get () and
MPI_Put () calls. osu_get_bw, and osu_put_bw mea-
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Figure 2: Log-log plots showing uGNI latency and bi-directional bandwidth for Open MPI and the Native MPI on both XE6
and XC30. Results reported by OSU’s MPI micro-benchmark suite. Latency measured with osu_latency and multi latency
measured with osu_multi_lat. Bandwidth measured by osu_bibw and multi bandwidth measure with osu_mbw_mr.

sure the aggregate one-sided bandwidth between a pair
of MPI processes. All four tests can be configured to
use MPI_Win_create () or MPI_Win_allocate () to
create the shared memory window. The tests can also be
configured to use any of the MPI-2 or MPI-3 synchro-
nization functions. For these tests we chose to run with
the default mode which uses MPI_Win_allocate () and
MPI_Win_flush{().

C. vader BTL - Point-to-Point Performance Characteristics

Intra-node Performance: Figures - show the
intra-node latency and bandwidth characteristics of both
Open MPI (vader) and the native MPI (Cray MPT). For
this experiment, all MPI processes were configured to be on
the same compute node with each process pinned to a single
CPU core. For the 2 process tests the two processes were
mapped to the same CPU socket.

Figures [T(a)] and [I(b)| show the latency of Open MPI and
the native MPI when processes are participating in a ping-
pong message exchange while message sizes are increased.
On XE6 with the 2 process configuration, the reported 1
byte message latency for Open MPI is 0.42 ps and the

native MPI is 0.53 ps . On XC30 these latencies are (.23
us and 0.28 ps respectively. At 1 kB, Open MPI’s message
latency is 1.46 ps and 0.65 ps which is 2% and 22%
worse than the native MPI’s latency. At a 4 MB message
size, Open MPI’s message latency is 1.029 ms and 0.338
ms compared to the native MPI’s latency of 0.992 ps and
0.319 ms . Running osu_multi_lat with a rank for every
core (16 process on XE6, 24 on XC30) Open MPI’s message
latency is 0.60 pus and 0.46 ps which is 20% and 35%
better than the native MPI’s 0.75 us and 0.70 us . For a 4
MiB message multi latency message exchange Open MPI’s
latency is 2.535 ms and 2.286 ms , which is similar to the
native MPI’s performance.

Figures and [I(d)] show the bandwidth of Open
MPI and the native MPI reported by osu_bibw and
osu_mbw_mr. At 2 processes, Open MPI achieves a max-
imum bidirectional bandwidth of 15 GB/sec and 33 GB/sec
at 128 kiB. The native MPI achieves 13 GB/s at 32 kiB and
31 GB/sec at 128 kiB. Running osu_mbw_mr with one
process per core Open MPI achieves a maximum bandwidth
of 62.4 GB/sec at 64 kiB and 156 GB/sec at 64k compared
to the native MPI’s 62.4 GB/sec at 32 kiB and 184 GB/sec




at 128 kiB.

D. uGNI BTL - Point-to-Point Performance Characteristics

Inter-node Performance: Figure |2 shows the inter-node
latency and bandwidth characteristics of both Open MPI
and the native MPI. For this experiment, each process is
configured to talk to a process on another node. In the 2
process test all processes were placed on nodes connected
to the same Gemini or Aries ASIC. The 64 and 96 process
tests were run to test the total bandwidth between two pairs
of nodes.

Figures [2(a)] and 2(b)] show the latency characteristics of
Open MPI and the native MPI when processes are participat-
ing in a ping-pong message exchange while message sizes
are increased. At 2 processes the 1 byte message latency
Open Open MPI is 1.19 ps and 1.24 pus compared to the
native MPI’s 1.27 ps and 1.35 pus . At 1 kiB, the Open
MPI message latency is 2.01 us and 1.66 ps which is 9%
worse and 3% better than the native MPI. At 4 MiBs, Open
MPTI’s latency is 843 pus and 472 ps which is 1.5% and
2.3% better than the native MPI. At 64 processes on XE6
the 1 bye, 1 kiB, and 4 MiB message latencies are 3.16 us ,
16.41 ps , and 7.84 ms compared to the native MPI's 2.75

s, 15.43 us , and 7.84 ms . With 96 processes on XC30
the latencies are 2.88 ps, 3.88 us , and 8.11 ms for Open
MPI and 2.01 ps , 4.04 pus , and 8.02 ms for the native
MPI.

Figures and show the bandwidth characteristics
of processes participating in a message exchange while
message sizes are increased. On XE6 with 2 processes, Open
MPI and the native MPI achieve a maximum bandwidth of
9.0 GB/s and 8.6 GB/s, respectively, at a 4 MB message
size. With 64 processes, Open MPI achieves a maximum
bandwidth of 9.5 GB/s at 32 kiB and the native MPI reaches
a maximum bandwidth of 7.4 GB/s at 128 kiB. On XC30
the maximum bandwidth for Open MPI with 2 and 96
processes are 14.5 GB/sec and 14.8 GB/sec at 1 MiB. The
maximum bandwidth for the native MPI is 14.5 GB/sec and
14.6 GB/sec at 1 MiB respectively.

E. One-sided Performance Characteristics

One-sided Performance: Figures and [6] show the
latency and bandwidth of both Open MPI and the native MPI
when using the MPI_Get () and MPI_Put () one-sided
functions. These tests were run both with shared memory
and over the Gemini or Aries networks. For the shared
memory case both processes were bound to the same socket.
For the uGNI tests, the two processes were bound to core
0 on socket 0 of nodes sharing the same ASIC. This layout
was chosen to keep the processes close to the NIC.

Figures [3] and [] show the one-sided characteristics for
both Open MPI and the native MPI when both processes
are on the same node. In this configuration Open MPI
can take advantage of the process locality and use shared
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Figure 3: Log-log plots showing one-sided shared-memory
latency of Open MPI and the Native MPI on both
XE6 and XC30. Results reported by OSU’s MPI micro-
benchmark suite. Latency measured with osu_get_latency
and osu_put_latency.

memory optimizations for all one-sided operations. This
gives Open MPI a clear advantage over the native MPI when
all processes are on the same node. The performance of
Open MPI when this optimization is not possible will be
similar to that of the native MPIL.

Figures [5 and [6] show the one-sided characteristics for
both Open MPI and the native MPI when the processes are
on different nodes. The latency of a 1 byte with Open MPI
is 3.05 us on XE6 and 2.86 us on XC30 compared to the
native MPI’s 2.51 ps and 2.62 ps is 21% and 9% slower.
The latency of a 1 byte get with Open MPI is 4.36 s and
4.34 ps which is 61% and 65% slower than the native
MPI. The differences in the performance characteristics of
two implementations are consistent until the message size
reaches 8 kib. With message sizes ranging from 8 kib to
4 MiB Open MPI is between 7% and 95% faster than the
native MPI on XEG6 and has similar performance to the native
MPI on XC30.

VIII. ANALYSIS

As reported in [2], the point-to-point performance charac-
teristics of both implementations are very similar. Open MPI
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Figure 4: Log-log plots showing one-sided shared-memory
bandwidth for Open MPI and the Native MPI on both
XE6 and XC30. Results reported by OSU’s MPI micro-
benchmark suite. Bandwidth measured with osu_get_bw and
osu_put_bw.

has improved on the intra-node latency for small messages
and is now 18 — 22% better that the native MPI for 1-32
byte messages on both XE and XK systems. For messages
between 64 bytes and 64 kiB the latency of the native
MPI is up to 280% better than Open MPIL In this range
Open MPI’s bandwidth is generally better than the native
MPI’s. The difference between the implementations in this
range could be due to vader’s use of of a single copy eager
send protocol over a rendezvous protocol or buffered eager
protocol. The protocol used for this message range can be
changed by reducing the btl_vader_eager_limit from the
default of 64kiB. After 64 kiB both implementations have
similar characteristics.

The inter-node communication latency of Open MPI with
1 byte messages is 6.7% better than the native MPI on XE6
and 8.9% better on XC30. For 1 kiB messages Open MPI’s
latency is worse that the native MPI’s latency by 9% on XE6
but 3% better on XC30. For 4 MiB messages the latency of
Open MPI is 1.5-2.3% better than the native MPI. Overall
the performance of point-to-point inter-node communication
with Open MPI is similar to the native MPL

Open MPI’s on-node one-sided performance is gener-

Figure 5: Log-log plots showing one-sided uGNI latency of
Open MPI and the Native MPI on both XE6 and XC30.
Results reported by OSU’s MPI micro-benchmark suite.

ally better than the native MPI implementation for both
MPI_Put () and MPI_Get (). For small inter-node mes-
sages, Open MPI is 61-65% slower than the native MPI
for MPI_Get () and 9-21% slower for MPI_Put (). The
small-message latency in Open MPI is worse due to the
current one-sided support which emulates small inter-node
one-sided operations using buffered two-sided operations.
The latency of large-message Gets are similar in both
implementations, but lower latency is seen for Puts and
higher bandwidth is seen for both Put and Get.

IX. CONCLUSION AND FUTURE WORK

The micro-benchmark results demonstrate that Open
MPTI’s implementation of its point-to-point communications
for the Gemini and Aries network interfaces exhibit good
performance characteristics. Point-to-point intra-node and
inter-node latency characteristics are similar to the vendor’s
implementation. The intra-node bandwidth and latency, how-
ever, are better than the vendor MPI at many message size.
The intra-node one-sided characteristics are better than the
vendor MPI implementation for all message sizes.

In the future, we plan to investigate improvements in
the scalability of both the MPI implementation and the
ORTE process launcher. Improvements will be targeted at
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Figure 6: Log-log plots showing one-sided uGNI bandwidth
of Open MPI and the Native MPI on both XE6 and XC30.
Results reported by OSU’s MPI micro-benchmark suite.

both launch time and memory usage. Additionally, we plan
to investigate improving the implementation of the one-
sided code to directly use the atomic and RDMA operations
supported by the Gemini and Aries hardware.

ACKNOWLEDGMENT

The authors would like to thank Alliance for Computing
at Extreme Scale (ACES) management and staff for their
support. Work supported by the Advanced Simulation and
Computing program of the U.S. Department of Energy’s
NNSA. Los Alamos National Laboratory is operated by Los
Alamos National Security, LLC for the NNSA. The authors
would also like to thank the Center for Computational Sci-
ences at Oak Ridge National Laboratory, which is supported
by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-000R22725. Additionally, the
authors would like the thank National Energy Research
Scientific Computing Center (NERSC) for use of their
Edison system. LA-UR-14-22496

REFERENCES

[1] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Don-
garra, J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett,
A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham,
and T. S. Woodall, “Open MPI: Goals, concept, and design

(2]

(3]

(4]

[5]

(6]

(71

(8]

9]

[10]

(1]

[12]

[13]

of a next generation MPI implementation,” in Proceedings,
11th European PVM/MPI Users’ Group Meeting, Budapest,
Hungary, September 2004, pp. 97-104.

M. G. Venkata, R. L. Graham, N. T. Hjelm, and S. K.
Gutierrez, “Open mpi for cray xe/xk systems,” 2012.

R. Alverson, D. Roweth, and L. Kaplan, “The gemini system
interconnect,” in High Performance Interconnects (HOTI),
2010 IEEE 18th Annual Symposium on, Aug. 2010, pp. 83
-87.

Cray Inc., “Cray xc series network,” in Cray
Marketing Document, vol. WP-AriesO1-1112, 2012. [On-
line]. Available: |http://www.cray.com/Assets/PDF/products/
xc/Cray XC30Networking.pdf]

——, “Using the gni and dmapp apis,” in Cray Software
Document, vol. S-2446-4002, Dec. 2011. [Online]. Available:
http://docs.cray.com/books/S-2446-4002/S-2446-4002.pdf

H. Pritchard, I. Gorodetsky, and D. Buntinas, “A ugni-
based mpich?2 nemesis network module for the -cray
xe,” in Proceedings of the 18th European MPI Users’
Group conference on Recent advances in the message
passing interface, ser. EuroMPI’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 110-119. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2042476.2042490

J. M. Squyres and A. Lumsdaine, “The component architec-
ture of open MPI: Enabling third-party collective algorithms,”
in Proceedings, 18th ACM International Conference on Su-
percomputing, Workshop on Component Models and Systems

for Grid Applications, V. Getov and T. Kielmann, Eds. St.

Malo, France: Springer, July 2004, pp. 167-185.

(2011) XPMEM, cross-process memory mapping. [Online].
Available: http://code.google.com/p/xpmem/

S. Gutierrez, N. Hjelm, M. Venkata, and R. Graham, “Per-
formance evaluation of open mpi on cray xe/xk systems,”
in High-Performance Interconnects (HOTI), 2012 IEEE 20th
Annual Symposium on, Aug 2012, pp. 40-47.

D. Buntinas, G. Mercier, and W. Gropp, “Design and eval-
uation of nemesis, a scalable, low-latency, message-passing
communication subsystem,” in International Symposium on
Cluster Computing and the Grid, 2006, pp. 530-540.

G. M. Shipman, T. S. Woodall, R. L. Graham, A. B. Maccabe,
and P. G. Bridges, “Infiniband scalability in open mpi,” in
Proceedings of IEEE Parallel and Distributed Processing
Symposium, April 2006.

“High performance RDMA protocols in HPC,” in Proceed-
ings, 13th European PVM/MPI Users’ Group Meeting, ser.
Lecture Notes in Computer Science. Bonn, Germany:
Springer-Verlag, September 2006.

OSU micro-benchmarks. [Online]. Available: http://mvapich.
cse.ohio-state.edu/benchmarks/


http://www.cray.com/Assets/PDF/products/xc/CrayXC30Networking.pdf
http://www.cray.com/Assets/PDF/products/xc/CrayXC30Networking.pdf
http://docs.cray.com/books/S-2446-4002/S-2446-4002.pdf
http://dl.acm.org/citation.cfm?id=2042476.2042490
http://code.google.com/p/xpmem/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/

	Introduction
	Background
	 Gemini Network Interface
	 Open MPI
	Related Work

	Enhanced Shared-Memory BTL
	XPMEM
	Shared-Memory BTL – vader

	uGNI BTL
	Initialization and Connection Setup
	Short Message Protocol
	Long Message Protocol

	UDREG MPool - Memory Registration
	Additional Features
	Evaluation
	System Description
	Benchmarks
	vader BTL - Point-to-Point Performance Characteristics
	uGNI BTL - Point-to-Point Performance Characteristics
	One-sided Performance Characteristics

	Analysis
	Conclusion and Future Work
	References

