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Motivation (I) 
> cc hello.c -lOpenCL 
> aprun ./a.out 
Number of OpenCL GPU devices found = 1 
DEVICE_NAME = Tesla K20X 
DEVICE_VERSION = OpenCL 1.1 CUDA 
DEVICE_VENDOR = NVIDIA Corporation 
Hello, World! 
… 
CL_DEVICE_ADDRESS_BITS: 32 
CL_DEVICE_GLOBAL_MEM_SIZE: 1744371712 
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Vendor: Intel(R) Corporation 
Profile: FULL_PROFILE 
Version: OpenCL 1.2 LINUX 
Name: Intel(R) OpenCL 
… 
  Work item sizes: 1024 1024 1024 
  Max clock freq: 2600 MHz 
  Global memory: 33785212928 bytes 
  Local memory: 32768 bytes 

OpenCL accelerated application—HP2C project 



Motivation (II)—C++11 -> C++1y 
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Applications use cases: COSMO, MAQUIS, DCA++, … 



Limitations of the Current Cray PE 

•  OpenCL 

– Only CUDA SDK version (1.1) 
– CSCS installs CPU version  

•  C++1y 

– PrgEnv-cray —not up-to-date 
– PrgEnv-gnu —4.9 release made progress 
– PrgEnv-intel —gradual support 
– PrgEnv-pgi —not up-to-date 

•  Code development tools for OpenCL and C++1y 

– Non-existent—not sure of any roadmaps 
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Clang-LLVM Solution 
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Code Generation in Clang-LLVM 
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An LLVM Based Compiler Example (I) 
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OpenCL to IL à SPIR 
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http://www.khronos.org/faq/spir  



An Adaptive Environment 
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FOSDEM2012 talk by David Chisnel on  
"Implementing Domain Specific Languages with LLVM" 
 
http://cs.swan.ac.uk/~csdavec/FOSDEM12/DSLsWithLLVM.pdf  

A typical DSL implemetation 



OpenCL 1.2 Code Generation (I) 
Step # 1:  Conversion of OpenCL code to LLVM IR using the Clang 
compiler 
  
clang -Dcl_clang_storage_class_specifiers -isystem libclc/
generic/include -include clc/clc.h -target nvptx64-nvidia-cuda -
xcl kernel.cl -emit-llvm -S -o kernel.ll 
  
Step # 2: Optional 
  
llvm link libclc/built_libs/nvptx64   nvidiacl.bc kernel.ll o 
kernel.linked.bc   
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OpenCL 1.2 Code Generation (II) 
Step # 3: IR to PTX 
  
llc -mcpu=sm_35 kernel.ll -o kernel.ptx   
 
With the built-in functions: 
  
clang -target nvptx64-nvidia-cuda  kernel.linked.bc -S -o 
kernel.nvptx.s  
 
Step # 4: Write the driver code 
 
CC sample.cpp -o sample -O2 -g -I/opt/nvidia/cudatoolkit/
5.5.20-1.0501.7945.8.2/include -L /opt/nvidia/cudatoolkit/
5.5.20-1.0501.7945.8.2/lib64/ -lcudart 
  
> aprun ./sample 
Using CUDA Device [0]: Tesla K20X 
Device Compute Capability: 3.5 
Launching kernel … 
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Integration into the Cray PE  

•  Works with Cray MPI, perftools & libraries (examples in paper) 

•  Full automation tricky—hard coded paths not always discoverable 
by scripts 

– E.g. LD_LIBRARY_PATH include paths  

•  Binaries for compiler wrappers 

•  Must be straightforward for Cray to come up with PrgEnv-clang? 
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Other Opportunities—Developers tools 

•  ClangFormat – formatting tool for C & C++ (integrated in editors) 
  
•  ClangCheck – performs basic error and warning checks on code 

snippets. For example 

 > cat test.c void foo() { int a = 3 } 
$ clang-check test.c -- 
/scratch/santis/bcumming/test.c:1:23: error: expected ';' at end 
of declaration 
void foo() { int a = 3 }                      ^ 
 
•  ClangModernize –automatically converts C++ code to C++11, with 

support for features such as converting for loops to range-based 
loops and using the auto keyword. 
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Other Opportunities—Debug tools 

•  Clang Static Analyzer – find bugs without running the code 

•  $ scan-build make 
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int main(void) { 
    int *ptr = nullptr; 
    ptr[10]++; 
} 

test.cc:3:5: warning: Array access 
(from variable 'ptr') results in a null 
pointer dereference 
    ptr[10]++; 
        ^~~~~~~~~ 
1 warning generated. 
scan-build: 1 bugs found. 



Other Opportunities—Debug tools 
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Other Opportunities—Sanitizers 

•  AddressSanitizer—fast memory error detector (-fsanitize=address) 

– Out-of-bounds accesses to heap, stack and globals 
– Use-after-free 
– Use-after-return (to some extent) 
– Double-free, invalid free 
– Memory leaks (experimental) 

•  MemorySanitizer—detects uninitialized reads (-fsanitize=memory) 

•  ThreadSanitizer—detects race conditions (-fsanitize=thread) 
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RFE for Cray & collaboration opportunities with 
other sites 

•  PrgEnv-Clang, please! 

•  OpenACC to OpenCL SPIR via Intel  

•  After PrgEnv-Clang, solution for OpenCL on GPU, CPU & beyond … 
 
•  Domain specific languages using LLVM 

•  OpenCL tools for parallel computing 

•  DSL (e.g. poloyglot: http://www.exmatex.org/prog-models.html) 

•  Incremental development on Cray (Co-design summer school: 
http://codesign.lanl.gov/summer-school/) 

– Reduce development to deployment time on Cray systems 
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Thank you 
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