
 Extending the Capabilities of the
Cray Programming Environment with
Clang-LLVM Framework Integration

Sadaf Alam, Ben Cumming and Ugo Varetto

CSCS

CUG 2014

Motivation (I)
> cc hello.c -lOpenCL
> aprun ./a.out
Number of OpenCL GPU devices found = 1
DEVICE_NAME = Tesla K20X
DEVICE_VERSION = OpenCL 1.1 CUDA
DEVICE_VENDOR = NVIDIA Corporation
Hello, World!
…
CL_DEVICE_ADDRESS_BITS: 32
CL_DEVICE_GLOBAL_MEM_SIZE: 1744371712

2

Vendor: Intel(R) Corporation
Profile: FULL_PROFILE
Version: OpenCL 1.2 LINUX
Name: Intel(R) OpenCL
…
 Work item sizes: 1024 1024 1024
 Max clock freq: 2600 MHz
 Global memory: 33785212928 bytes
 Local memory: 32768 bytes

OpenCL accelerated application—HP2C project

Motivation (II)—C++11 -> C++1y

3

Applications use cases: COSMO, MAQUIS, DCA++, …

Limitations of the Current Cray PE

•  OpenCL

– Only CUDA SDK version (1.1)
– CSCS installs CPU version

•  C++1y

– PrgEnv-cray —not up-to-date
– PrgEnv-gnu —4.9 release made progress
– PrgEnv-intel —gradual support
– PrgEnv-pgi —not up-to-date

•  Code development tools for OpenCL and C++1y

– Non-existent—not sure of any roadmaps

4

Clang-LLVM Solution

5

Code Generation in Clang-LLVM

6

!

An LLVM Based Compiler Example (I)

7

!

OpenCL to IL à SPIR

8

!

9

http://www.khronos.org/faq/spir

An Adaptive Environment

10

Language
Extension

IR IL

Modular
compiler
framework

Multicore

Heterogeneous
multicore

Hybrid

New target

11

FOSDEM2012 talk by David Chisnel on
"Implementing Domain Specific Languages with LLVM"

http://cs.swan.ac.uk/~csdavec/FOSDEM12/DSLsWithLLVM.pdf

A typical DSL implemetation

OpenCL 1.2 Code Generation (I)
Step # 1: Conversion of OpenCL code to LLVM IR using the Clang
compiler

clang -Dcl_clang_storage_class_specifiers -isystem libclc/
generic/include -include clc/clc.h -target nvptx64-nvidia-cuda -
xcl kernel.cl -emit-llvm -S -o kernel.ll

Step # 2: Optional

llvm link libclc/built_libs/nvptx64 nvidiacl.bc kernel.ll o
kernel.linked.bc

12

OpenCL 1.2 Code Generation (II)
Step # 3: IR to PTX

llc -mcpu=sm_35 kernel.ll -o kernel.ptx

With the built-in functions:

clang -target nvptx64-nvidia-cuda kernel.linked.bc -S -o
kernel.nvptx.s

Step # 4: Write the driver code

CC sample.cpp -o sample -O2 -g -I/opt/nvidia/cudatoolkit/
5.5.20-1.0501.7945.8.2/include -L /opt/nvidia/cudatoolkit/
5.5.20-1.0501.7945.8.2/lib64/ -lcudart

> aprun ./sample
Using CUDA Device [0]: Tesla K20X
Device Compute Capability: 3.5
Launching kernel …

 13

Integration into the Cray PE

•  Works with Cray MPI, perftools & libraries (examples in paper)

•  Full automation tricky—hard coded paths not always discoverable
by scripts

– E.g. LD_LIBRARY_PATH include paths

•  Binaries for compiler wrappers

•  Must be straightforward for Cray to come up with PrgEnv-clang?

14

Other Opportunities—Developers tools

•  ClangFormat – formatting tool for C & C++ (integrated in editors)

•  ClangCheck – performs basic error and warning checks on code

snippets. For example

 > cat test.c void foo() { int a = 3 }
$ clang-check test.c --
/scratch/santis/bcumming/test.c:1:23: error: expected ';' at end
of declaration
void foo() { int a = 3 } ^

•  ClangModernize –automatically converts C++ code to C++11, with

support for features such as converting for loops to range-based
loops and using the auto keyword.

15

Other Opportunities—Debug tools

•  Clang Static Analyzer – find bugs without running the code

•  $ scan-build make

16

int main(void) {
 int *ptr = nullptr;
 ptr[10]++;
}

test.cc:3:5: warning: Array access
(from variable 'ptr') results in a null
pointer dereference
 ptr[10]++;
 ^~~~~~~~~
1 warning generated.
scan-build: 1 bugs found.

Other Opportunities—Debug tools

17

!

Other Opportunities—Sanitizers

•  AddressSanitizer—fast memory error detector (-fsanitize=address)

– Out-of-bounds accesses to heap, stack and globals
– Use-after-free
– Use-after-return (to some extent)
– Double-free, invalid free
– Memory leaks (experimental)

•  MemorySanitizer—detects uninitialized reads (-fsanitize=memory)

•  ThreadSanitizer—detects race conditions (-fsanitize=thread)

18

RFE for Cray & collaboration opportunities with
other sites

•  PrgEnv-Clang, please!

•  OpenACC to OpenCL SPIR via Intel

•  After PrgEnv-Clang, solution for OpenCL on GPU, CPU & beyond …

•  Domain specific languages using LLVM

•  OpenCL tools for parallel computing

•  DSL (e.g. poloyglot: http://www.exmatex.org/prog-models.html)

•  Incremental development on Cray (Co-design summer school:
http://codesign.lanl.gov/summer-school/)

– Reduce development to deployment time on Cray systems

19

Thank you

20

