
Extending the Capabilities of the Cray Programming Environment with
Clang-LLVM Framework Integration

Sadaf Alam, Benjamin Cumming and Ugo Varetto
Swiss National Supercomputing Centre (CSCS)

Lugano, Switzerland
alam,cumming,uvaretto@cscs.ch

Abstract— Recent developments in programming for multi-
core processors and accelerators using C++11, OpenCL and
Domain Specific Languages (DSL) have prompted us to look
into tools that offer compilers and both static and runtime
analysis toolchains to complement the Cray Programming
Environment capabilities. In this paper we report our
preliminary experiences from using the CLang-LLVM
framework on a hybrid Cray XC30 to perform tasks such as
generating NVIDIA PTX code from C++ and OpenCL in a
portable and flexible manner. Specifically we investigate how
to overcome some of the limitations currently imposed by the
standard tools such as the complete lack of C++11 support in
CUDA C and outdated 32 bit versions of OpenCL. We also
demonstrate how Clang-LLVM tools, for example, the static
analyzer can bring additional capabilities to the Cray
environment. Finally we describe how CLang-LLVM
integrates with the standard Cray Programming Environment
(PE), for instance, Cray MPI, perftools and libraries, and the
steps required to properly install such tools on various Cray
platforms.

Keywords-Programming Environment (PE); Cray XC30;
GPU; Clang; LLVM (key words); CUDA, OpenCL

I. INTRODUCTION
The Swiss National Supercomputing Centre (CSCS)

recently upgraded its Cray XC30 system Piz Daint to
accelerator-based nodes to give the fastest Top500 system in
Europe as of November 2013. Each node of the system has
an eight-core Intel Sandy Bridge processor with and an
Nvidia K20x GPU with 14 SMX units each with 192 cores.
At the same time, HPC application developers have been
actively targeting other technologies such as Intel MIC,
which could have over 60 cores. Mainstream CPU
technologies such as Intel Ivy Bridge could have up to 10
cores per socket. In short, the amount of concurrency and
parallelism has been increasing, and as a result portable
programming languages and interfaces targeting these
technologies are on the rise. In this paper, we augment the
Cray Programming Environment (PE) with a framework
called Clang-LLVM to develop portable parallel programs,
domain specific languages and libraries [1][5].

Currently there are some challenges to developing

portable applications in the Cray PE using OpenCL and
C++11:

• OpenCL is a programming language designed for
portable computing across different architectures,
including GPU and multi-core [7]. However, the
NVIDIA toolchain used in the Cray PE only
supports 32-bit OpenCL up to version 1.1, with no
plans to add support for 64-bit or more recent
OpenCL versions, for example, the current 2.0
version.

• C++11 includes extensions to C++ for parallel
programming, such as multi-threading and
synchronization primitives [4]. In the Cray PE, the
GNU Intel compiler toolchains provide
comprehensive C++11 language features, yet they
have not implemented many useful library features.
Furthermore, only the Cray C++ compiler can
generate GPU executables using OpenACC [6].

In order to address the above challenges, we target
LLVM, which is a collection of modular tools and
technologies that offer a framework for developing and
reusing front-ends and back-end interfaces for different
programming languages and target platforms. The Clang
project implements a front-end C and C++ compiler and
analyzer that use LLVM for code generation. Clang and
LLVM have features that make them very attractive for
developing tools that offer portable code generation:

• As of January 2014 the Clang front end has the only

complete C++11 language and library support.

• The Clang front-end has native support for OpenCL.

• LLVM has many back ends, including 64-bit
NVIDIA PTX and multi-core x86 processors (with
support for many other architectures not discussed
here).

• There are tools, for example, Clang static analyzer
for C++ applications, which can offer code
development capabilities that are currently
unavailable on the Cray platforms [2].

In the paper we provide details on using the features of

the Clang-LLVM toolchain listed above to compile C++11
and OpenCL code for different target architectures that have

LLVM backends. We will show how OpenCL and C++ code
can be compiled using Clang-LLVM, and how to use the
generated code in standard Cray PE toolchains, including
interoperability with Fortran and C/C++ and MPI. We also
outline the installation and usage of the Clang/LLVM
toolchain within Cray PE. For instance, we demonstrate how
existing Cray MPI library, performance tools (perftools) and
platform optimized libraries can be used by the Clang-
LLVM toolchain.

Figure 1: Our target environment for extending the
Cray PE framework. A modular framework can accept
different languages and language extensions for
multicore and hybrid multicore programming.
Portability to many platforms can be improved as
vendors provide support for standard or commonly
agreed Intermediate Representations (IR) or
Intermediate Languages (IL).

In fact, this study provides us a proof of concept for

supporting heterogeneous computing beyond OpenCL and
C++11. As shown in Figure 1, the setup with Clang-LLVM
and Nvidia LLVM backend is quite extensible. As new
programming paradigms continue to develop for Clang-
LLVM and the LLVM backends from vendors such as Intel,
Nvidia, AMD, ARM and potentially others, a flexible and
extensible code development environment can improve
portability of user applications. For instance, Cray could
potentially integrate the Clang compiler in its Programming
Environment (PE) as done in the past for CCE, gnu, Intel and
PGI compilers.

The layout of the paper is as follows: section II provides

a brief description of key technologies that are presented in
this paper. Step-by-step instructions on installing and
configuring Clang-LLVM on the hybrid Cray XC30
platform is presented in section III. Section IV describes
examples of code generation for C++11 and OpenCL using
the Clang-LLVM on the hybrid Cray XC30 platform. In
section V, we discuss work in progress in exploiting Clang
code development tools, which are currently not available on
the Cray platforms. Finally, a summary and future plans are
provided in section VI.

II. KEY TECHNOLOGIES

Presently, there is a rich collection of code development
technologies for parallel and hybrid platforms as multi-core
processors with large cores counts and embedded systems
with GPU devices have become mainstream. In HPC, MPI
and OpenMP are the focus of attention. This trend has been
changed for GPU based HPC systems, where attention is
focused on CUDA. As a result, the current Cray PE
integrates a number of OpenMP compilers for C, C++ (not
C++11) and Fortran with MPI support. CUDA SDK is
integrated in the Cray PE for systems with GPU devices
(Cray XK7 and hybrid Cray XC30).

Here we introduce technologies that have a potential for

developing portable parallel applications on a range of
systems.

A. OpenCL

OpenCL (Open Compute Language) is an API that has

been introduced in 2008 for heterogeneous programming
paradigm where a GPU or any other accelerator device can
work cooperatively with a CPU. One of the key ideas
promoted for OpenCL was portability to different platforms.
Computation is subdivided and expressed as concurrent
tasks, which, according to the workload characteristics, can
be then scheduled for GPU, accelerators and CPU resources.
OpenCL codes can share resources with OpenGL, a standard
for graphics, by allowing for the sharing of memory
locations and data structures.

The OpenCL development framework is made up of

three main parts:

1. Language specification defines how a kernel

program is written, which can then be executed on
the OpenCL enabled platforms. The OpenCL
programming language is based on the ISO C99
specification with added extensions and restrictions.
A new proposed specification targeted at supporting
a subset of the C++11 language has recently been
approved.

2. The platform-layer API gives the developer access to
software application routines that can query the
system for the existence of OpenCL-supported
devices. This layer also lets the developer use the
concepts of device context and work-queue to select
and initialize OpenCL devices, submit work to the
devices, and enable data transfer to and from the
devices.

3. Runtime API: The OpenCL framework uses contexts

to manage one or more OpenCL devices. The
runtime API uses contexts for managing objects such
as command queues, memory objects, and kernel
objects, as well as for executing kernels on one or
more devices specified in the context.

Further details on the OpenCL architecture, execution
and memory models can be found in [AMD OpenCL intro].
OpenCL and CUDA have a number of similarities and some
key differences. A tool called Swan can convert existing
CUDA applications to OpenCL
(http://www.multiscalelab.org/swan).

At CSCS, one of the large-scale GPU-accelerated

applications called BigDFT has been developed using
OpenCL [12]. This code has been used in production on
CSCS Cray XK7 and Cray XC30 platforms. There are a
number of development projects that are targeting OpenCL.
Since Nvidia froze the support for OpenCL a couple of years
ago and only supports the OpenCL 1.1 standard, CSCS is
investigating alternate technologies to support users and
users application development using OpenCL.

B. OpenCL SPIR (Standard Portable Intermediate
Representation)

OpenCL SPIR is a portable binary distribution format for

OpenCL programs, which is based on LLVM IR
(Intermediate Representation) [8]. Figure 2 shows the flow
of SPIR where a vendor can provide an SPIR
implementation that could accept an SPIR input format.
Vendors have freedom to implement the SPIR standard
format on their target platforms.

Figure 2: With the introduction of OpenCL SPIR,
vendors and kernel developers can share OpenCL
implementation in alternate formats [figure courtesy of
Khronos group].

SPIR has been designed to address the following:

1. Sharing of kernels in non-string formats
2. On the fly compilation and code generation overhead
3. Flexibility for just in time format for efficient

compilation on target platforms

PGI has recently released their OpenACC compiler for

the AMD Radeon devices that exploits the SPIR interface,
which in turn targets AMD Radeon LLVM backend. Note
that PGI OpenACC compiler for the Nvidia GPU devices
generate low-level C and CUDA codes.

Other technologies that are similar to SPIR are HSAIL
and LLVM IL. The goals are similar, i.e. to attempt to come
up with an intermediate, platform independent specification
that multiple targets could use. Currently SPIR can be
considered as a subset of LLVM IL. Heterogeneous System
Architecture (HSA) is a standardization effort that is lead by
AMD and other vendors to standardize HAS [3]. The HSA
design allows multiple hardware solutions to be exposed to
software through a common standard low-level interface
layer, called HSA Intermediate Language (HSAIL). HSAIL
provides a single target for low-level software and tools.
AMD has recently released an APU called Berlin, which will
be based on the HSA standard.

C. C++11

One of the major changes to the C++11 standard is

multithreading support. Prior to C++11, this was only
available via OpenMP and pthreads programming
paradigms. The multithreading support in C++11 comes
with an implementation of thread class, supporting classes
and templates, and a memory and execution model.
Supporting functions for memory consistency, for example,
mutex, locks, atomics, etc. are available. Clang reached the
full C++11 compliance before other compilers, therefore,
early development work for C++11 was done with Clang 3.x
and LLVM.

An example of a simple C++11 program:

#include <iostream>
#include <thread>

using namespace std;

void func(int x) {
 cout << "Inside thread " << x << endl;
}

int main() {
 thread th(&func, 100);
 th.join();
 cout << "Outside thread" << endl;
 return 0;

 }

D. Nvidia LLVM and libnvvm

Starting from CUDA 4.1, NVIDIA based its CUDA
C/C++ compiler on LLVM as well and recently contributed
their NVPTX back-end to the LLVM open-source
community [9]. The goal is to support language extensions
for GPUs as well as additional targets for CUDA language.
Nvidia compile SDK contains the following:

• An optimizing compiler library (libnvvm.so,
nvvm.dll/nvvm.lib, libnvvm.dylib) and its header
file nvvm.h are provided for compiler developers

who want to generate PTX from a program written
in NVVM IR, which is a compiler internal
representation based on LLVM [10].

• A set of libraries, libdevice.*.bc, that implement
the common math functions for devices in the
LLVM bitcode format.

• A set of samples that illustrate the use of the
compiler SDK.

• Documents for the Compiler SDK (including the
specification for LLVM IR, an API document for
libnvvm, and an API document for libdevice), can
be found under the doc sub-directory, or online.

• The optimizing compiler libraries, the libdevice
libraries and samples can be found under the nvvm
sub-directory, seen after the CUDA Toolkit Install.

Figure 3 shows the layout of the Nvidia compiler

toolchain that could enable multiple language targets on
GPU devices. NVCC compilation can be mapped on the
toolcain. A CUDA application uses CUDA C/C++ “Front
End”, which is then fed into an LLVM based high level
optimizer and PTX generator called CICC. PTX is the
virtual instruction set for the Nvidia GPU devices. NVVM
IR is a compiler IR (internal representation) based on the
LLVM IR. The NVVM IR is designed to represent GPU
compute kernels (for example, CUDA kernels). High-level
language front-ends, like the CUDA C compiler front-end,
can generate NVVM IR. The NVVM compiler (which is
based on LLVM) generates PTX code from NVVM IR.
libdevice.bc is a set of libraries that implement the common
math functions for devices in the LLVM bitcode format.

Figure 3: Control flow of Nvidia compiler SDK. CUDA
C and C++ compilers are part of the Front End. NVVM
IR is a compiler internal representation based on LLVM
IR. Additional transformation and tuning steps are
performed where LLVM specific technologies are used,
for example. libDevice.bc, which is LLVM bitcode
implementation of tuned math libraries. PTX
instruction set is then finally converted into the machine
executable instruction by the target device driver.

III. INSTALLATION AND INTEGRATION OF CLANG-LLVM

A. Overview of Clang-LLVM

LLVM is a modular and reusable compiler framework

and toolchain. It used as an infrastructure to implement a
broad variety of statically and runtime compiled languages,
including the languages supported by GCC, Java, .NET,
Python, Ruby, Scheme, Haskell, Julia, and many others. In
the GPU computing domain, it has been used for the
OpenCL programming language and runtime.

Clang is a compiler front-end for a number of languages

and it uses LLVM backend. It has been has been now part of
standard LLVM release since version 2.6. Clang supports a
number of languages and language extensions. This includes
C, C++ and OpenCL. Another benefit of Clang are built-in
and extended toolchains. For example, Clang static analyzer
can be used for C and C++.

The modularity of the LLVM compiler framework is

achieved with a classical three-phase design as shown in
figure 4. A front-end compiles a source language into the
LLVM Intermediate Representation (IR). In the second
phase, multiple analysis and optimization passes operate on
this intermediate representation in order to improve the code.
Finally, target specific back-ends transform the intermediate
representation to another programming language, to
assembler code or to machine code for a specific
architecture. LLVM IR is a strongly typed low-level
instruction set, designed for type, control and data flow
analysis, and various code optimization and code
restructuring transformations.

Note that the entire toolchain shown in Figure 4 is not

part of LLVM. For instance, Nvidia develops CUDA C and
C++ compilers. Likewise, Nvidia contributes nvptx backend
to LLVM. Hence the CUDA compiler design fits into the
classical, three-phase LLVM compiler based model, i.e. a
front-end, an optimizer and a backend. Figure 3 also
highlights this three-phases in the CUDA SDK.

Similarly, other compilers and processors’ vendors, for

example, AMD, contribute frontend, backend as well as IR.
This three-phase design could be used to mix-and-match
frontend, optimizers and backends from multiple vendors.
For example, as mentioned in the previous section, for
OpenACC directives based language, PGI develops a
frontend. It then generates an intermediate form called
OpenCL SPIR. AMD, the GPU vendor of the Radeon
devices, provides a backend for OpenCL SPIR. Note that
PGI OpenACC compilers for Nvidia GPU devices use a
different implementation because there is no OpenCL SPIR
available from Nvidia. In short, the three-phase design
offers a great deal of flexibility for vendors, compiler and
tools developers and end users.

!
Figure 4: A high level view of the LLVM toolchain in a hybrid CPU and GPU environment. Multiple language
targets can utilize the LLVM modular framework and multiple backend codes can be generated for increased
portability on a variety of target platforms and devices [figure courtesy of https://www.quantalea.net/]

Code generation process with Clang-LLVM is shown in

Figure 5. The frontend processes the input files, for instance,
Clang frontend can process different input formats. Front
end can parse, diagnose and validate input code. An
Abstract Syntax Tree (AST) is then generated. This may be
optional. Clang supports multiple source-to-source
transformations. Different tools can be written to parse the
Clang AST. AST to LLVM IR may comprise several steps
as well. From an optimized IR, backend code generator then
produces machine code for different targets.

B. Installation instructions

For this paper, Clang-LLVM version 3.4 was installed on

a hybrid Cray XC30 platform called Piz Daint, which has an
8-core Intel Xeon CPU and an Nvidia Tesla K20X GPU
based compute nodes. Compute nodes have CLE 5.1UP02
and 8.2 was the default programming environment. Step-by-
step build instructions are as follows:

Clang-LLVM build instructions are available at:
http://clang.llvm.org/get_started.html

======================
get the sources
======================
download llvm
wget http://llvm.org/releases/3.4/llvm-
3.4.src.tar.gz
tar -xzvf llvm-3.4.src.tar.gz

download clang
cd llvm-3.4/tools/
wget http://llvm.org/releases/3.4/clang-
3.4.src.tar.gz
tar -xzvf clang-3.4.src.tar.gz
mv clang-3.4 clang

download clang extra tools
cd clang/tools
wget http://llvm.org/releases/3.4/clang-tools-

extra-3.4.src.tar.gz
tar -xzvf clang-tools-extra-3.4.src.tar.gz
mv clang-tools-extra-3.4 clang-tools-extra

download compiler rt
cd ../../../projects/
wget http://llvm.org/releases/3.4/compiler-rt-
3.4.src.tar.gz
tar -xzvf compiler-rt-3.4.src.tar.gz
mv compiler-rt-3.4 compiler-rt

fix for SUSE header files
fixes a compiler error
vim ./compiler-
rt/lib/sanitizer_common/sanitizer_platform_limits
_posix.cc

... add the following wrapper around the sys/vt.h
header

#define new CSCSNEWFIX
#include <sys/vt.h>
#undef new

back to root path
cd ../..

======================
debug version
======================

module swap PrgEnv-cray PrgEnv-gnu
export CC=`which gcc`
export CXX=`which g++`

mkdir build_debug
cd build_debug

../llvm/ configure --prefix=<installation path> -
-enable-cxx11 --with-gcc-
toolchain=/opt/gcc/4.8.2/snos
make -j 8

!
Figure 5: Code generation process with Clang-LLVM.

Build instructions for clang++ STL library, which is fully

C++11 compliant and includes all the C++1y features
approved so far:

> module load PrgEnv-gnu

> echo | g++ -Wp,-v -x c++ - -fsyntax-only

> wget http://llvm.org/releases/3.4/libcxx-
3.4.src.tar.gz

uncompress then create a build directory (e.g.
libcxx-build) outside of the LLVM source tree

> cd <path to libcxx-build>

Add clang to path and build with cmake

>export
PATH=<llvm path>/llvm-3.4/bin:$PATH

>module load cmake

>CC=clang CXX=clang++ cmake
<install-path> -G "Unix
Makefiles" -DLIBCXX_CXX_ABI=libstdc++
-
DLIBCXX_LIBSUPCXX_INCLUDE_PATHS="/opt/gcc/4.8.2/s
nos/include/g++;/opt/gcc/4.8.2/snos/include/g++/x
86_64-suse-linux"
-DCMAKE_BUILD_TYPE=Debug
-DCMAKE_INSTALL_PREFIX=<install path>

>make -j 8

>make install

C. Integration into Cray environment

On Piz Daint, four compilers are available as part of the

Programming Environment (PE). These include the Cray
compiler (CCE), GNU, Intel and PGI. These compilers are
available with MPI compiler wrappers, cc for mpicc, CC for

mpicxx and ftn for mpif90. In addition to the MPI library,
Cray tools called perftools and numerical libraries have been
prebuilt for these compiler wrappers.

In this study, we attempt to use the MPI with the Clang

compiler. Since the Clang-LLVM is built with the gnu
compiler, we tried using the GNU MPI libraries.

> clang hello_mpi.c -I
 /opt/cray/mpt/6.1.1/gni/mpich2-gnu/48/include -
L/opt/cray/mpt/6.1.1/gni/mpich2-gnu/48/lib -
lmpich_gnu_48

> aprun -n 2 ./a.out

Hello world from process 1 of 2
Hello world from process 0 of 2

Application 52141 resources: utime ~0s, stime ~0s,
Rss ~3980, inblocks ~100, outblocks ~23

We also tried experimenting with the perftools-lite. With

the default compile options, the code was not instrumented
as expected. However, with the compile options shown
below, perftool-lite output for the MPI message was
generated.

> clang mt.c -I /opt/cray/mpt/6.1.1/gni/mpich2-

gnu/48/include -L/opt/cray/mpt/6.1.1/gni/mpich2-
gnu/48/lib -lmpich_gnu_48 -
I/opt/cray/perftools/6.1.4/include -DCRAYPAT -g -O1
-B /opt/cray/perftools/6.1.4/libexec64 -
L/opt/cray/perftools/6.1.4/lib64

WARNING: CrayPat is saving object files from a
temporary directory into directory
'/users/alam/.craypat/a.out/28946'

INFO: creating the CrayPat-instrumented
executable 'a.out' (sample_profile) ...OK

WARNING: Can not locate shared object file
'librca.so.0'

WARNING: Can not locate shared object file
'librca.so.0'

> aprun -n 2 -N 1 ./a.out

CrayPat/X: Version 6.1.4 Revision 12502
03/10/14 10:11:17

pat[WARNING][0]: HW performance counter
multiplexing enabled

Hello world from process 0 of 2
Hello world from process 1 of 2

CrayPat-lite Performance Statistics

CrayPat/X: Version 6.1.4 Revision 12502 (xf

12277) 03/10/14 10:11:17
Experiment: lite

lite/sample_profile
Number of PEs (MPI ranks): 2
Numbers of PEs per Node: 1 PE on each of

2 Nodes
Numbers of Threads per PE: 1
Number of Cores per Socket: 8

…

Wall Clock Time: 0.128458 secs
High Memory: 34.93 MBytes
I/O Write Rate: 1.24 MBytes/Sec

These examples demonstrate that it is feasible to

integrate existing Cray tools together with Clang. We used -
craype-verbose flag to gather Cray wrapper options.
Likewise, we were able to do integration of the numerical
libraries, for example, MKL. We plan on experimenting
with libsci and libsci_acc (GPU accelerated version) in the
future.

clang -o dgemm-example dgemm-example.c -DMKL_ILP64
-I $(MNKLROOT)/include/ -Wl,--start-group
$(MKLROOT)/lib/intel64/libmkl_intel_ilp64.a
$(MKLROOT)/lib/intel64/libmkl_core.a
$(MKLROOT)/lib/intel64/libmkl_sequential.a -Wl,--
end-group -lpthread -lm

In short, if Cray were to integrate Clang-LLVM in their

PE, most of the existing tools and libraries would be readily
functional.

IV. CODE GENENERATION FOR OPENCL AND C++11

The study is primarily motivated by the need to support

the latest OpenCL standard and extensions for 64 bit
architectures, which is currently not supported by the Nvidia
SDK. A further goal was to understand the feasibility of
using C++11 features such as multi-threading. In the
following subsections, we demonstrate how Clang-LLVM
can be used to address both tasks.

A. OpenCL to PTX Conversion and Execution on GPU

In addition to Clang-LLVM (including nvptx support) we

use a library called libclc that contains built-in functions for
the PTX targets. Detailed instructions are available from

http://stackoverflow.com/questions/8795114/how-to-use-
clang-to-compile-opencl-to-ptx-code.

Step # 1: Conversion of OpenCL code to LLVM IR

using the Clang compiler

clang -Dcl_clang_storage_class_specifiers -

isystem libclc/generic/include -include clc/clc.h -
target nvptx64-nvidia-cuda -xcl kernel.cl -emit-
llvm -S -o kernel.ll

Step # 2: It is optional if no built-in functions or

OpenCL kernel API calls are in the code. In case of built-in
functions, we need to link the code to the libclc

llvm
link libclc/built_libs/nvptx64

nvidiacl.bc kernel.ll
o kernel.linked.bc

Step # 3: from the LLVM IR, the .ll file, we can use llc

to generate ptx. Details for generating PTX from LLVM IR
are available at http://llvm.org/docs/NVPTXUsage.html.
Additional information on how to link with optimized match
functions that are available in Nvidia libDevice.bc are
available at this link.

llc -mcpu=sm_35 kernel.ll -o kernel.ptx

With the built-in functions, Clang compiler can be used

to generate the PTX assembly:

clang -target nvptx64-nvidia-cuda
kernel.linked.bc -S -o kernel.nvptx.s

Once we have the PTX code, the next step is to execute

it. Like OpenCL code execution, we can use the CUDA
driver API for just in time (JIT) compilation. In order to do
this, users have to write some code to initialize the device,
pass parameters as needed by the kernel, etc. A complete,
simple example is available at
http://llvm.org/docs/NVPTXUsage.html

Once the driver code is available with necessary device

and kernel initialization, the code can be compiled as any
other C or C++ code using any C or C++ compiler that is
available as part of the Cray PE. We can also use clang C
and C++ compiler. CUDA include and runtime library paths
must be specified on the compile line.

CC sample.cpp -o sample -O2 -g -
I/opt/nvidia/cudatoolkit/5.5.20-
1.0501.7945.8.2/include -L
/opt/nvidia/cudatoolkit/5.5.20-
1.0501.7945.8.2/lib64/ -lcudart

> aprun ./sample
Using CUDA Device [0]: Tesla K20X
Device Compute Capability: 3.5
Launching kernel
Results:
0 + 0 = 0
1 + 2 = 3

…

B. C++11 code generation and execution on CPU

When building C++(11) code clang does not find the

default headers so you have to pass them on the command
line.

Step # 1: retrieve the list of standard g++ include search

paths:

> echo | g++ -Wp,-v -x c++ - -fsyntax-only

/opt/gcc/4.8.2/snos/include/g++
/opt/gcc/4.8.2/snos/include/g++/x86_64-suse-linux
/opt/gcc/4.8.2/snos/include/g++/backward
/opt/gcc/4.8.2/snos/lib/gcc/x86_64-suse-
linux/4.8.2/include
/usr/local/include
/opt/gcc/4.8.2/snos/include
/opt/gcc/4.8.2/snos/lib/gcc/x86_64-suse-
linux/4.8.2/include-fixed
/usr/include

Step # 2: add the include files to an environment variable

e,g, $CRAY_CLANG_INCLUDE_PATH in a text file like
this:

>export CRAY_CLANG_INCLUDE_PATH ="-
I/opt/gcc/4.8.2/snos/include/g++..."

Step # 3:

> source set-clang-include-paths

Step # 4: compile (-pthread is required when including

<thread>)

> clang++ $CRAY_CLANG_INCLUDE_PATH -std=c++11 -
stdlib=libstdc++ -pthread test.cc -o test.out

//test.cc

#include <iostream>
#include <thread>

static const int num_threads = 10;

//This function will be called from a thread

void call_from_thread(int tid) {
 std::cout << "Launched by thread " << tid <<
std::endl;
}

int main() {
 std::thread t[num_threads];

 //Launch a group of threads
 for (int i = 0; i < num_threads; ++i) {
 t[i] = std::thread(call_from_thread, i);
 }

 std::cout << "Launched from the main\n";

 //Join the threads with the main thread
 for (int i = 0; i < num_threads; ++i) {
 t[i].join();
 }

 return 0;
}

C. C++11 code generation and execution on CPU

In this case, we use clang++ with libc++.

> clang++ -I
<libc++ install path>/include/c++/v1
-L <libc++ install path>/lib
-std=c++11 -stdlib=libc++ -pthread test.cc -o
test.out

In order to run your executable you have to have the

libc++ library in the linker path:

> export
LD_LIBRARY_PATH=<libc++ install
path>/lib:$LD_LIBRARY_PATH

If you put libc++.so in a place reachable from the

compute nodes you should be able to run through aprun
without problems, although the best solution would be to
install it on the compute nodes themselves

V. TOOLS IN CLANG-LLVM

The Clang project uses a library-based architecture, with
the different components of the front end maintained in
separate libraries. When combined with the clear coding
style of the Clang/LLVM project, these libraries are of ideal
use and extended by tool developers. Tools based on these
libraries can be divided into two categories: tools for
developing C/C++ code (e.g. refactoring tools, code
browsers and code completion), and testing/debugging tools
(e.g. static analysis, memory leak/corruption testing).

Here we will look at some of these tools, though not all

of them. We note that the memory and thread sanitizers have
also recently become available in the GNU tool chain (as of
version 4.8). However, there appears to be many more such
tools being developed with Clang, most likely due to the ease
of developing such tools using the Clang and LLVM
libraries. As these libraries mature, we expect to see a very
strong Clang-based tool ecosystem develop.

A. Developer tools
Because of the complexity of the C++ language, even

tools that perform relatively "simple" tasks like reformatting
require that the C++ code be parsed to perform accurately.
More complicated tasks such as code refactoring, code

completion and highlighting potential errors while typing
require compilation.

Here we give a quick overview of some of the tools that
make developers lives easier on Cray systems, giving access
to features that are normally associated with complex IDEs.
Each of these tools can be used as the basis for adding such
features to text editors, so that, for example, the Vim editor
has wrappers for each tool.

ClangFormat is a set of tools for formatting C and C++

code. It can be used as a standalone command line tool, or
integrated into editors (both vim and emacs require adding
two lines to editor configuration files to integrate the tool).

ClangCheck is a small tool that can be used to perform

basic error and warning checks on code snippets. For
example

> cat test.c
void foo() { int a = 3 }
$ clang-check test.c --
/scratch/santis/bcumming/test.c:1:23: error:
expected ';' at end of declaration
void foo() { int a = 3 }
 ^

ClangModernize is a tool for automatically converting
C++ code to C++11, with support for features such as
converting for loops to range-based loops and using the auto
keyword.

B. Other Development Tools

The Clang toolchain makes it possible to provide tools
such as code completion and refactoring, which are
normally only found in large editors like Visual Studio, to
text editors like vim and emacs. These tools are very
important for programmer productivity, and while it is
possible to use full-featured IDEs such as Netbeans and
Eclipse, these are heavy and slow, and can be difficult to
configure for working remotely on servers.

An example of such a project is YouCompleteMe
(github.com/Valloric/YouCompleteMe), a plugin
for Vim that performs code completion while typing. For C
and C++ code it compiles the project in the background,
along with the AST for all other relevant files in the project.
With this information in memory, it can perform context-
sensitive name lookup, accurately jump to the definition of
types, variables and functions.

The default version of Vim (7.2) currently installed on
Cray systems is not recent enough, requiring that Vim be
compiled from source with Python support.

C. Testing and Debugging Tools

The Clang toolchain also has a set of tools, some of
which are standalone tools, and others which are enabled via
compiler flags, that facilitate proactive testing and
debugging during the development process.

1) Clang Static Analyzer

The Clang Static Analyzer performs analysis of C/C++
code at compile time to automatically find bugs without
running the code. It is compiled automatically when Clang is
built, though it is not installed with "make install", which
requires an additional step of copying the static analyzer into
the clang bin path.

The static analyzer is simple to use from the command

line. It provides the scan-build utility, and can by used with a
make file as follows:

$ scan-build make

The scan-build utility over rides the CXX and CC

environment variables to first compile each file (either clang
or gcc), then executes a static analyzer to test the code. With
this process, at the end of compilation the compilation will
have been performed as usual, and a report will be generated
with the results of the static analysis.

As an example, take the following buggy code, which

produces a segmentation fault by dereferencing a NULL
pointer

int main(void) {
 int *ptr = nullptr;
 ptr[10]++;
}

Running the scan-build on a simple makefile for this

code produces the following message in the terminal
window:

test.cc:3:5: warning: Array access (from variable
'ptr') results in a null pointer dereference
 ptr[10]++;
 ^~~~~~~~~
1 warning generated.
scan-build: 1 bugs found.

Along with a HTML report, for a more detailed overview

of the analysis that can be viewed in a web browser, shown
in Figure 6.

!
Figure 6: Sample output from the Clang static analyzer viewed in a web browser.

2) Sanitizers

The Clang compilers implement a set of "sanitizers",

which are runtime tools for detecting memory and threading
issues. The AddressSanitizer and MemorySanitizer
features detect memory bugs, including but not limited to,
out of bounds access, use after free, uninitialized reads and
double free. The ThreadSanitizer detects common
threading errors, such as race conditions. The sanitizers use
compiler instrumentation, activated using compiler flags
(e.g. -fsanitize=memory for MemorySanitizer), and custom
runtime libraries that require linking with Clang instead of
ld.

VI. SUMMARY AND FUTURE DIRECTIONS

In this report, we demonstrated extensibility to the Cray

PE with the Clang-LLVM compiler framework for
compiling OpenCL and C++11 applications. Our
experiments show that Clang can be integrated into the Cray
PE like any other compiler. This would be beneficial for
advanced C++ developers, OpenCL users and other
emerging languages and technologies that are widely
supported by Clang-LLVM. Also, this framework offers
additional tools for C++ analysis, currently not available on
Cray systems. In short, Cray PE can significantly benefit
from Clang-LLVM integration to the existing PE. Several
Domain Specific Languages (DSLs) are implemented using
LLVM. Details on how LLVM is currently used for
developing a compiler framework for DSLs are available in
[11]. DSL or Domain Specific Embedded Languages
(DESL) could offer high-level abstractions that could
potentially improve code developer productivity by offering
code and performance portability across multiple targets.
We plan on investigating emerging languages for
heterogeneous computing using the LLVM framework. We
also plan on exploring options for offering OpenCL
compilation environment to the end users.

REFERENCES

[1] Clang—a C language family frontend for LLVM:

http://clang.llvm.org/
[2] Clang static analyzer: http://clang-analyzer.llvm.org/
[3] HSA (Heterogenous System Architecture) foundation and tools:

http://www.hsafoundation.com/hsa-developer-tools/
[4] JTC1/SC22/WG21–The C++ Standards Committee:

http://www.open-std.org/jtc1/sc22/wg21/
[5] The LLVM Compiler Infrastructure: http://llvm.org/
[6] OpenACC—directives for accelerators: http://www.openacc-

standard.org/
[7] OpenCL: The open standard for parallel programming of

heterogenous systems: https://www.khronos.org/opencl/
[8] SPIR: The Standard Portable Intermediate Representation for Device

Programs: http://www.khronos.org/spir
[9] User guide for NVPTX backend:

http://llvm.org/docs/NVPTXUsage.html
[10] Building compilers with libNVVM: presentation at GTC 2013.

Available from: http://on-
demand.gputechconf.com/gtc/2013/presentations/S3185-Building-
GPU-Compilers-libNVVM.pdf

[11] Implemeting Domain-Specific Languages with LLVM:
https://archive.fosdem.org/2012/schedule/event/400/99_DSLsWithLL
VM.pdf

[12] Wen-mei W. Hwu. GPU Computing Gems Emerald Edition (1st ed.).
Morgan Kaufmann Publishers USA, 2011.

