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Abstract— Recent developments in programming for multi-
core processors and accelerators using C++11, OpenCL and 
Domain Specific Languages (DSL) have prompted us to look 
into tools that offer compilers and both static and runtime 
analysis toolchains to complement the Cray Programming 
Environment capabilities. In this paper we report our 
preliminary experiences from using the CLang-LLVM 
framework on a hybrid Cray XC30 to perform tasks such as 
generating NVIDIA PTX code from C++ and OpenCL in a 
portable and flexible manner. Specifically we investigate how 
to overcome some of the limitations currently imposed by the 
standard tools such as the complete lack of C++11 support in 
CUDA C and outdated 32 bit versions of OpenCL. We also 
demonstrate how Clang-LLVM tools, for example, the static 
analyzer can bring additional capabilities to the Cray 
environment. Finally we describe how CLang-LLVM 
integrates with the standard Cray Programming Environment 
(PE), for instance, Cray MPI, perftools and libraries, and the 
steps required to properly install such tools on various Cray 
platforms.  

Keywords-Programming Environment (PE); Cray XC30; 
GPU; Clang; LLVM (key words); CUDA, OpenCL 

I.  INTRODUCTION 
The Swiss National Supercomputing Centre (CSCS) 

recently upgraded its Cray XC30 system Piz Daint to 
accelerator-based nodes to give the fastest Top500 system in 
Europe as of November 2013. Each node of the system has 
an eight-core Intel Sandy Bridge processor with and an 
Nvidia K20x GPU with 14 SMX units each with 192 cores. 
At the same time, HPC application developers have been 
actively targeting other technologies such as Intel MIC, 
which could have over 60 cores. Mainstream CPU 
technologies such as Intel Ivy Bridge could have up to 10 
cores per socket. In short, the amount of concurrency and 
parallelism has been increasing, and as a result portable 
programming languages and interfaces targeting these 
technologies are on the rise. In this paper, we augment the 
Cray Programming Environment (PE) with a framework 
called Clang-LLVM to develop portable parallel programs, 
domain specific languages and libraries [1][5]. 

 
Currently there are some challenges to developing 

portable applications in the Cray PE using OpenCL and 
C++11: 
 

• OpenCL is a programming language designed for 
portable computing across different architectures, 
including GPU and multi-core [7]. However, the 
NVIDIA toolchain used in the Cray PE only 
supports 32-bit OpenCL up to version 1.1, with no 
plans to add support for 64-bit or more recent 
OpenCL versions, for example, the current 2.0 
version. 
 

• C++11 includes extensions to C++ for parallel 
programming, such as multi-threading and 
synchronization primitives [4]. In the Cray PE, the 
GNU Intel compiler toolchains provide 
comprehensive C++11 language features, yet they 
have not implemented many useful library features. 
Furthermore, only the Cray C++ compiler can 
generate GPU executables using OpenACC [6]. 
 

In order to address the above challenges, we target 
LLVM, which is a collection of modular tools and 
technologies that offer a framework for developing and 
reusing front-ends and back-end interfaces for different 
programming languages and target platforms. The Clang 
project implements a front-end C and C++ compiler and 
analyzer that use LLVM for code generation. Clang and 
LLVM have features that make them very attractive for 
developing tools that offer portable code generation: 
 
• As of January 2014 the Clang front end has the only 

complete C++11 language and library support. 
 

• The Clang front-end has native support for OpenCL. 
 

• LLVM has many back ends, including 64-bit 
NVIDIA PTX and multi-core x86 processors (with 
support for many other architectures not discussed 
here). 
 

• There are tools, for example, Clang static analyzer 
for C++ applications, which can offer code 
development capabilities that are currently 
unavailable on the Cray platforms [2].   

 
In the paper we provide details on using the features of 

the Clang-LLVM toolchain listed above to compile C++11 
and OpenCL code for different target architectures that have 



LLVM backends. We will show how OpenCL and C++ code 
can be compiled using Clang-LLVM, and how to use the 
generated code in standard Cray PE toolchains, including 
interoperability with Fortran and C/C++ and MPI. We also 
outline the installation and usage of the Clang/LLVM 
toolchain within Cray PE.  For instance, we demonstrate how 
existing Cray MPI library, performance tools (perftools) and 
platform optimized libraries can be used by the Clang-
LLVM toolchain. 

 

 
Figure 1: Our target environment for extending the 
Cray PE framework.  A modular framework can accept 
different languages and language extensions for 
multicore and hybrid multicore programming.  
Portability to many platforms can be improved as 
vendors provide support for standard or commonly 
agreed Intermediate Representations (IR) or 
Intermediate Languages (IL). 

 
In fact, this study provides us a proof of concept for 

supporting heterogeneous computing beyond OpenCL and 
C++11.  As shown in Figure 1, the setup with Clang-LLVM 
and Nvidia LLVM backend is quite extensible.  As new 
programming paradigms continue to develop for Clang-
LLVM and the LLVM backends from vendors such as Intel, 
Nvidia, AMD, ARM and potentially others, a flexible and 
extensible code development environment can improve 
portability of user applications.  For instance, Cray could 
potentially integrate the Clang compiler in its Programming 
Environment (PE) as done in the past for CCE, gnu, Intel and 
PGI compilers.   

 
The layout of the paper is as follows:  section II provides 

a brief description of key technologies that are presented in 
this paper.   Step-by-step instructions on installing and 
configuring Clang-LLVM on the hybrid Cray XC30 
platform is presented in section III.  Section IV describes 
examples of code generation for C++11 and OpenCL using 
the Clang-LLVM on the hybrid Cray XC30 platform. In 
section V, we discuss work in progress in exploiting Clang 
code development tools, which are currently not available on 
the Cray platforms.  Finally, a summary and future plans are 
provided in section VI. 

 

II. KEY TECHNOLOGIES 
 

Presently, there is a rich collection of code development 
technologies for parallel and hybrid platforms as multi-core 
processors with large cores counts and embedded systems 
with GPU devices have become mainstream.  In HPC, MPI 
and OpenMP are the focus of attention.  This trend has been 
changed for GPU based HPC systems, where attention is 
focused on CUDA.  As a result, the current Cray PE 
integrates a number of OpenMP compilers for C, C++ (not 
C++11) and Fortran with MPI support.  CUDA SDK is 
integrated in the Cray PE for systems with GPU devices 
(Cray XK7 and hybrid Cray XC30).   

 
Here we introduce technologies that have a potential for 

developing portable parallel applications on a range of 
systems.   

A. OpenCL 
 
OpenCL (Open Compute Language) is an API that has 

been introduced in 2008 for heterogeneous programming 
paradigm where a GPU or any other accelerator device can 
work cooperatively with a CPU.  One of the key ideas 
promoted for OpenCL was portability to different platforms.  
Computation is subdivided and expressed as concurrent 
tasks, which, according to the workload characteristics, can 
be then scheduled for GPU, accelerators and CPU resources.  
OpenCL codes can share resources with OpenGL, a standard 
for graphics, by allowing for the sharing of memory 
locations and data structures. 

 
The OpenCL development framework is made up of 

three main parts: 
 
1. Language specification defines how a kernel 

program is written, which can then be executed on 
the OpenCL enabled platforms.  The OpenCL 
programming language is based on the ISO C99 
specification with added extensions and restrictions. 
A new proposed specification targeted at supporting 
a subset of the C++11 language has recently been 
approved. 
 

2. The platform-layer API gives the developer access to 
software application routines that can query the 
system for the existence of OpenCL-supported 
devices. This layer also lets the developer use the 
concepts of device context and work-queue to select 
and initialize OpenCL devices, submit work to the 
devices, and enable data transfer to and from the 
devices. 

 
3. Runtime API: The OpenCL framework uses contexts 

to manage one or more OpenCL devices. The 
runtime API uses contexts for managing objects such 
as command queues, memory objects, and kernel 
objects, as well as for executing kernels on one or 
more devices specified in the context. 

 



Further details on the OpenCL architecture, execution 
and memory models can be found in [AMD OpenCL intro].  
OpenCL and CUDA have a number of similarities and some 
key differences. A tool called Swan can convert existing 
CUDA applications to OpenCL 
(http://www.multiscalelab.org/swan). 

 
At CSCS, one of the large-scale GPU-accelerated 

applications called BigDFT has been developed using 
OpenCL [12].  This code has been used in production on 
CSCS Cray XK7 and Cray XC30 platforms.  There are a 
number of development projects that are targeting OpenCL.  
Since Nvidia froze the support for OpenCL a couple of years 
ago and only supports the OpenCL 1.1 standard, CSCS is 
investigating alternate technologies to support users and 
users application development using OpenCL. 

 

B. OpenCL SPIR (Standard Portable Intermediate 
Representation) 
 
OpenCL SPIR is a portable binary distribution format for 

OpenCL programs, which is based on LLVM IR 
(Intermediate Representation) [8].  Figure 2 shows the flow 
of SPIR where a vendor can provide an SPIR 
implementation that could accept an SPIR input format.  
Vendors have freedom to implement the SPIR standard 
format on their target platforms. 

 

 
Figure 2: With the introduction of OpenCL SPIR, 
vendors and kernel developers can share OpenCL 
implementation in alternate formats [figure courtesy of 
Khronos group]. 

 
SPIR has been designed to address the following: 
 
1. Sharing of kernels in non-string formats 
2. On the fly compilation and code generation overhead 
3. Flexibility for just in time format for efficient 

compilation on target platforms 
 
PGI has recently released their OpenACC compiler for 

the AMD Radeon devices that exploits the SPIR interface, 
which in turn targets AMD Radeon LLVM backend.  Note 
that PGI OpenACC compiler for the Nvidia GPU devices 
generate low-level C and CUDA codes. 

Other technologies that are similar to SPIR are HSAIL 
and LLVM IL.  The goals are similar, i.e. to attempt to come 
up with an intermediate, platform independent specification 
that multiple targets could use.  Currently SPIR can be 
considered as a subset of LLVM IL.  Heterogeneous System 
Architecture (HSA) is a standardization effort that is lead by 
AMD and other vendors to standardize HAS [3].  The HSA 
design allows multiple hardware solutions to be exposed to 
software through a common standard low-level interface 
layer, called HSA Intermediate Language (HSAIL). HSAIL 
provides a single target for low-level software and tools.  
AMD has recently released an APU called Berlin, which will 
be based on the HSA standard. 

 

C. C++11 
 
One of the major changes to the C++11 standard is 

multithreading support.  Prior to C++11, this was only 
available via OpenMP and pthreads programming 
paradigms.  The multithreading support in C++11 comes 
with an implementation of thread class, supporting classes 
and templates, and a memory and execution model.  
Supporting functions for memory consistency, for example, 
mutex, locks, atomics, etc. are available.  Clang reached the 
full C++11 compliance before other compilers, therefore, 
early development work for C++11 was done with Clang 3.x 
and LLVM. 

 
An example of a simple C++11 program: 
 
#include <iostream> 
#include <thread> 
 
using namespace std; 
 
void func(int x) { 
    cout << "Inside thread " << x << endl; 
} 
 
int main() { 
    thread th(&func, 100); 
    th.join(); 
    cout << "Outside thread" << endl; 
    return 0; 

  } 
 

D. Nvidia LLVM and libnvvm 
 

Starting from CUDA 4.1, NVIDIA based its CUDA 
C/C++ compiler on LLVM as well and recently contributed 
their NVPTX back-end to the LLVM open-source 
community [9]. The goal is to support language extensions 
for GPUs as well as additional targets for CUDA language.  
Nvidia compile SDK contains the following: 

 

• An optimizing compiler library (libnvvm.so, 
nvvm.dll/nvvm.lib, libnvvm.dylib) and its header 
file nvvm.h are provided for compiler developers 



who want to generate PTX from a program written 
in NVVM IR, which is a compiler internal 
representation based on LLVM [10]. 

• A set of libraries, libdevice.*.bc, that implement 
the common math functions for devices in the 
LLVM bitcode format. 

• A set of samples that illustrate the use of the 
compiler SDK. 

• Documents for the Compiler SDK (including the 
specification for LLVM IR, an API document for 
libnvvm, and an API document for libdevice), can 
be found under the doc sub-directory, or online.  

• The optimizing compiler libraries, the libdevice 
libraries and samples can be found under the nvvm 
sub-directory, seen after the CUDA Toolkit Install. 

 
Figure 3 shows the layout of the Nvidia compiler 

toolchain that could enable multiple language targets on  
GPU devices.  NVCC compilation can be mapped on the 
toolcain.  A CUDA application uses CUDA C/C++ “Front 
End”, which is then fed into an LLVM based high level 
optimizer and PTX generator called CICC.  PTX is the 
virtual instruction set for the Nvidia GPU devices.  NVVM 
IR is a compiler IR (internal representation) based on the 
LLVM IR. The NVVM IR is designed to represent GPU 
compute kernels (for example, CUDA kernels). High-level 
language front-ends, like the CUDA C compiler front-end, 
can generate NVVM IR. The NVVM compiler (which is 
based on LLVM) generates PTX code from NVVM IR.  
libdevice.bc is a set of libraries that implement the common 
math functions for devices in the LLVM bitcode format. 

 

 
Figure 3:  Control flow of Nvidia compiler SDK.  CUDA 
C and C++ compilers are part of the Front End. NVVM 
IR is a compiler internal representation based on LLVM 
IR.  Additional transformation and tuning steps are 
performed where LLVM specific technologies are used, 
for example. libDevice.bc, which is LLVM bitcode 
implementation of tuned math libraries.  PTX 
instruction set is then finally converted into the machine 
executable instruction by the target device driver.  

III. INSTALLATION AND INTEGRATION OF CLANG-LLVM 

A. Overview of Clang-LLVM  
 
LLVM is a modular and reusable compiler framework 

and toolchain. It used as an infrastructure to implement a 
broad variety of statically and runtime compiled languages, 
including the languages supported by GCC, Java, .NET, 
Python, Ruby, Scheme, Haskell, Julia, and many others. In 
the GPU computing domain, it has been used for the 
OpenCL programming language and runtime.  

 
Clang is a compiler front-end for a number of languages 

and it uses LLVM backend.  It has been has been now part of 
standard LLVM release since version 2.6.  Clang supports a 
number of languages and language extensions.  This includes 
C, C++ and OpenCL.  Another benefit of Clang are built-in 
and extended toolchains.  For example, Clang static analyzer 
can be used for C and C++.   

 
The modularity of the LLVM compiler framework is 

achieved with a classical three-phase design as shown in 
figure 4.  A front-end compiles a source language into the 
LLVM Intermediate Representation (IR). In the second 
phase, multiple analysis and optimization passes operate on 
this intermediate representation in order to improve the code. 
Finally, target specific back-ends transform the intermediate 
representation to another programming language, to 
assembler code or to machine code for a specific 
architecture. LLVM IR is a strongly typed low-level 
instruction set, designed for type, control and data flow 
analysis, and various code optimization and code 
restructuring transformations. 

 
Note that the entire toolchain shown in Figure 4 is not 

part of LLVM.  For instance, Nvidia develops CUDA C and 
C++ compilers.  Likewise, Nvidia contributes nvptx backend 
to LLVM.  Hence the CUDA compiler design fits into the 
classical, three-phase LLVM compiler based model, i.e. a 
front-end, an optimizer and a backend.  Figure 3 also 
highlights this three-phases in the CUDA SDK.   

 
Similarly, other compilers and processors’ vendors, for 

example, AMD, contribute frontend, backend as well as IR.  
This three-phase design could be used to mix-and-match 
frontend, optimizers and backends from multiple vendors.  
For example, as mentioned in the previous section, for 
OpenACC directives based language, PGI develops a 
frontend.  It then generates an intermediate form called 
OpenCL SPIR.  AMD, the GPU vendor of the Radeon 
devices, provides a backend for OpenCL SPIR.  Note that 
PGI OpenACC compilers for Nvidia GPU devices use a 
different implementation because there is no OpenCL SPIR 
available from Nvidia.  In short, the three-phase design 
offers a great deal of flexibility for vendors, compiler and 
tools developers and end users. 



! 
Figure 4: A high level view of the LLVM toolchain in a hybrid CPU and GPU environment.  Multiple language 
targets can utilize the LLVM modular framework and multiple backend codes can be generated for increased 
portability on a variety of target platforms and devices [figure courtesy of https://www.quantalea.net/] 

 
 
Code generation process with Clang-LLVM is shown in 

Figure 5.  The frontend processes the input files, for instance, 
Clang frontend can process different input formats.  Front 
end can parse, diagnose and validate input code.  An 
Abstract Syntax Tree (AST) is then generated.  This may be 
optional.  Clang supports multiple source-to-source 
transformations.  Different tools can be written to parse the 
Clang AST.  AST to LLVM IR may comprise several steps 
as well.  From an optimized IR, backend code generator then 
produces machine code for different targets. 

 

B. Installation instructions 
 
For this paper, Clang-LLVM version 3.4 was installed on 

a hybrid Cray XC30 platform called Piz Daint, which has an 
8-core Intel Xeon CPU and an Nvidia Tesla K20X GPU 
based compute nodes.  Compute nodes have CLE 5.1UP02 
and 8.2 was the default programming environment.  Step-by-
step build instructions are as follows: 

 
Clang-LLVM build instructions are available at: 
http://clang.llvm.org/get_started.html 
 
====================== 
get the sources 
====================== 
# download llvm 
wget http://llvm.org/releases/3.4/llvm-
3.4.src.tar.gz 
tar -xzvf llvm-3.4.src.tar.gz 
 
# download clang 
cd llvm-3.4/tools/ 
wget http://llvm.org/releases/3.4/clang-
3.4.src.tar.gz 
tar -xzvf clang-3.4.src.tar.gz 
mv clang-3.4 clang 
 
# download clang extra tools 
cd clang/tools 
wget http://llvm.org/releases/3.4/clang-tools-

extra-3.4.src.tar.gz 
tar -xzvf clang-tools-extra-3.4.src.tar.gz 
mv clang-tools-extra-3.4 clang-tools-extra 
 
# download compiler rt 
cd ../../../projects/ 
wget http://llvm.org/releases/3.4/compiler-rt-
3.4.src.tar.gz 
tar -xzvf compiler-rt-3.4.src.tar.gz 
mv compiler-rt-3.4 compiler-rt 
 
# fix for SUSE header files 
# fixes a compiler error 
vim ./compiler-
rt/lib/sanitizer_common/sanitizer_platform_limits
_posix.cc 
-------------------------------------------------
--------------- 
... add the following wrapper around the sys/vt.h 
header 
 
#define new CSCSNEWFIX 
#include <sys/vt.h> 
#undef new 
-------------------------------------------------
--------------- 
 
# back to root path 
cd ../.. 
 
====================== 
debug version 
====================== 
 
module swap PrgEnv-cray PrgEnv-gnu 
export CC=`which gcc` 
export CXX=`which g++` 
 
mkdir build_debug 
cd build_debug 
 
../llvm/ configure --prefix=<installation path> -
-enable-cxx11 --with-gcc-
toolchain=/opt/gcc/4.8.2/snos  
make -j 8 
 



! 
Figure 5:  Code generation process with Clang-LLVM.   

 
Build instructions for clang++ STL library, which is fully 

C++11 compliant and includes all the C++1y features 
approved so far: 

 
> module load PrgEnv-gnu 
 
> echo | g++ -Wp,-v -x c++ - -fsyntax-only 
 
> wget http://llvm.org/releases/3.4/libcxx-
3.4.src.tar.gz 
 
# uncompress then create a build directory (e.g. 
libcxx-build) outside of the LLVM source tree 
 
> cd <path to libcxx-build> 
 
# Add clang to path and build with cmake 
 
>export 
PATH=<llvm path>/llvm-3.4/bin:$PATH 
 
>module load cmake 
 
>CC=clang CXX=clang++ cmake 
<install-path> -G "Unix 
Makefiles" -DLIBCXX_CXX_ABI=libstdc++ 
-
DLIBCXX_LIBSUPCXX_INCLUDE_PATHS="/opt/gcc/4.8.2/s
nos/include/g++;/opt/gcc/4.8.2/snos/include/g++/x
86_64-suse-linux" 
-DCMAKE_BUILD_TYPE=Debug 
-DCMAKE_INSTALL_PREFIX=<install path> 
 
>make -j 8 

  
>make install 

 

C. Integration into Cray environment 
 
On Piz Daint, four compilers are available as part of the 

Programming Environment (PE).  These include the Cray 
compiler (CCE), GNU, Intel and PGI.  These compilers are 
available with MPI compiler wrappers, cc for mpicc, CC for 

mpicxx and ftn for mpif90.  In addition to the MPI library, 
Cray tools called perftools and numerical libraries have been 
prebuilt for these compiler wrappers. 

 
In this study, we attempt to use the MPI with the Clang 

compiler.  Since the Clang-LLVM is built with the gnu 
compiler, we tried using the GNU MPI libraries.  

 
> clang hello_mpi.c -I 
 /opt/cray/mpt/6.1.1/gni/mpich2-gnu/48/include -
L/opt/cray/mpt/6.1.1/gni/mpich2-gnu/48/lib  -
lmpich_gnu_48 
 
> aprun -n 2 ./a.out  

Hello world from process 1 of 2 
Hello world from process 0 of 2 

Application 52141 resources: utime ~0s, stime ~0s, 
Rss ~3980, inblocks ~100, outblocks ~23 
 

 
We also tried experimenting with the perftools-lite.  With 

the default compile options, the code was not instrumented 
as expected.  However, with the compile options shown 
below, perftool-lite output for the MPI message was 
generated. 

 
> clang mt.c -I /opt/cray/mpt/6.1.1/gni/mpich2-

gnu/48/include -L/opt/cray/mpt/6.1.1/gni/mpich2-
gnu/48/lib  -lmpich_gnu_48  -
I/opt/cray/perftools/6.1.4/include -DCRAYPAT -g -O1 
-B /opt/cray/perftools/6.1.4/libexec64 -
L/opt/cray/perftools/6.1.4/lib64 

WARNING: CrayPat is saving object files from a 
temporary directory into directory 
'/users/alam/.craypat/a.out/28946' 

INFO: creating the CrayPat-instrumented 
executable 'a.out' (sample_profile) ...OK 

WARNING: Can not locate shared object file 
'librca.so.0' 

WARNING: Can not locate shared object file 
'librca.so.0' 

 
> aprun -n 2 -N 1 ./a.out  



CrayPat/X:  Version 6.1.4 Revision 12502  
03/10/14 10:11:17 

pat[WARNING][0]: HW performance counter 
multiplexing enabled 

Hello world from process 0 of 2 
Hello world from process 1 of 2 
 
################################################                                                               

# 
#            CrayPat-lite Performance Statistics                

# 
################################################ 
 
CrayPat/X:  Version 6.1.4 Revision 12502 (xf 

12277)  03/10/14 10:11:17 
Experiment:                  lite  

lite/sample_profile 
Number of PEs (MPI ranks):      2 
Numbers of PEs per Node:        1  PE on each of  

2  Nodes 
Numbers of Threads per PE:      1 
Number of Cores per Socket:     8 
 
… 
 
Wall Clock Time: 0.128458 secs 
High Memory:        34.93 MBytes 
I/O Write Rate:      1.24 MBytes/Sec 

 
These examples demonstrate that it is feasible to 

integrate existing Cray tools together with Clang.  We used -
craype-verbose flag to gather Cray wrapper options.  
Likewise, we were able to do integration of the numerical 
libraries, for example, MKL.  We plan on experimenting 
with libsci and libsci_acc (GPU accelerated version) in the 
future.   

 
clang -o dgemm-example dgemm-example.c -DMKL_ILP64 
-I $(MNKLROOT)/include/  -Wl,--start-group 
$(MKLROOT)/lib/intel64/libmkl_intel_ilp64.a 
$(MKLROOT)/lib/intel64/libmkl_core.a 
$(MKLROOT)/lib/intel64/libmkl_sequential.a -Wl,--
end-group -lpthread -lm   

 
In short, if Cray were to integrate Clang-LLVM in their 

PE, most of the existing tools and libraries would be readily 
functional. 
 

IV. CODE GENENERATION FOR OPENCL AND C++11 
 
The study is primarily motivated by the need to support 

the latest OpenCL standard and extensions for 64 bit 
architectures, which is currently not supported by the Nvidia 
SDK.  A further goal was to understand the feasibility of 
using C++11 features such as multi-threading. In the 
following subsections, we demonstrate how Clang-LLVM  
can be used to address both tasks. 

 

A. OpenCL to PTX Conversion and Execution on GPU 
 
In addition to Clang-LLVM (including nvptx support) we 

use a library called libclc that contains built-in functions for 
the PTX targets.  Detailed instructions are available from 

http://stackoverflow.com/questions/8795114/how-to-use-
clang-to-compile-opencl-to-ptx-code.   

 
Step # 1:  Conversion of OpenCL code to LLVM IR 

using the Clang compiler 
 
clang -Dcl_clang_storage_class_specifiers -

isystem libclc/generic/include -include clc/clc.h -
target nvptx64-nvidia-cuda -xcl kernel.cl -emit-
llvm -S -o kernel.ll 

 
Step # 2:  It is optional if no built-in functions or 

OpenCL kernel API calls are in the code.  In case of built-in 
functions, we need to link the code to the libclc 

 
llvm 
link libclc/built_libs/nvptx64 
 
nvidiacl.bc kernel.ll  
o kernel.linked.bc 

 
Step # 3:  from the LLVM IR, the .ll file, we can use llc 

to generate ptx.  Details for generating PTX from LLVM IR 
are available at http://llvm.org/docs/NVPTXUsage.html.  
Additional information on how to link with optimized match 
functions that are available in Nvidia libDevice.bc are 
available at this link. 

 
llc -mcpu=sm_35 kernel.ll -o kernel.ptx 

 
With the built-in functions, Clang compiler can be used 

to generate the PTX assembly: 
 

clang -target nvptx64-nvidia-cuda  
kernel.linked.bc -S -o kernel.nvptx.s 

 
Once we have the PTX code, the next step is to execute 

it.  Like OpenCL code execution, we can use the CUDA 
driver API for just in time (JIT) compilation.  In order to do 
this, users have to write some code to initialize the device, 
pass parameters as needed by the kernel, etc.   A complete, 
simple example is available at 
http://llvm.org/docs/NVPTXUsage.html  

 
Once the driver code is available with necessary device 

and kernel initialization, the code can be compiled as any 
other C or C++ code using any C or C++ compiler that is 
available as part of the Cray PE.  We can also use clang C 
and C++ compiler.  CUDA include and runtime library paths 
must be specified on the compile line. 

 
CC sample.cpp -o sample -O2 -g -
I/opt/nvidia/cudatoolkit/5.5.20-
1.0501.7945.8.2/include -L 
/opt/nvidia/cudatoolkit/5.5.20-
1.0501.7945.8.2/lib64/ -lcudart 
 
> aprun ./sample 
Using CUDA Device [0]: Tesla K20X 
Device Compute Capability: 3.5 
Launching kernel 
Results: 
0 + 0 = 0 
1 + 2 = 3 



… 
 

B. C++11 code generation and execution on CPU 
 
When building C++(11) code clang does not find the 

default headers so you have to pass them on the command 
line. 

 
Step # 1: retrieve the list of standard g++ include search 

paths: 
 

> echo | g++ -Wp,-v -x c++ - -fsyntax-only 
 
/opt/gcc/4.8.2/snos/include/g++ 
/opt/gcc/4.8.2/snos/include/g++/x86_64-suse-linux 
/opt/gcc/4.8.2/snos/include/g++/backward 
/opt/gcc/4.8.2/snos/lib/gcc/x86_64-suse-
linux/4.8.2/include 
/usr/local/include 
/opt/gcc/4.8.2/snos/include 
/opt/gcc/4.8.2/snos/lib/gcc/x86_64-suse-
linux/4.8.2/include-fixed 
/usr/include 

 
Step # 2: add the include files to an environment variable 

e,g, $CRAY_CLANG_INCLUDE_PATH in a text file like 
this: 

 
>export CRAY_CLANG_INCLUDE_PATH ="-
I/opt/gcc/4.8.2/snos/include/g++..." 

 
Step # 3:  
 

> source set-clang-include-paths 
 
Step # 4:  compile (-pthread is required when including 

<thread>) 
 

> clang++ $CRAY_CLANG_INCLUDE_PATH -std=c++11 -
stdlib=libstdc++ -pthread test.cc -o test.out 

 
//test.cc 
 
 
#include <iostream> 
#include <thread> 
 
static const int num_threads = 10; 
 
//This function will be called from a thread 
 
void call_from_thread(int tid) { 
    std::cout << "Launched by thread " << tid << 
std::endl; 
} 
 
int main() { 
    std::thread t[num_threads]; 
 
    //Launch a group of threads 
    for (int i = 0; i < num_threads; ++i) { 
        t[i] = std::thread(call_from_thread, i); 
    } 
 

    std::cout << "Launched from the main\n"; 
 
    //Join the threads with the main thread 
    for (int i = 0; i < num_threads; ++i) { 
        t[i].join(); 
    } 
 
    return 0; 
} 
 

C. C++11 code generation and execution on CPU 
 
In this case, we use clang++ with libc++. 

 
> clang++ -I 
<libc++ install path>/include/c++/v1 
-L <libc++ install path>/lib 
-std=c++11 -stdlib=libc++ -pthread test.cc -o 
test.out 

 
In order to run your executable you have to have the 

libc++ library in the linker path: 
 

> export 
LD_LIBRARY_PATH=<libc++ install 
path>/lib:$LD_LIBRARY_PATH 

 
If you put libc++.so in a place reachable from the 

compute nodes you should be able to run through aprun 
without problems, although the best solution would be to 
install it on the compute nodes themselves 

 

V. TOOLS IN CLANG-LLVM 
 

The Clang project uses a library-based architecture, with 
the different components of the front end maintained in 
separate libraries. When combined with the clear coding 
style of the Clang/LLVM project, these libraries are of ideal 
use and extended by tool developers. Tools based on these 
libraries can be divided into two categories: tools for 
developing C/C++ code (e.g. refactoring tools, code 
browsers and code completion), and testing/debugging tools 
(e.g. static analysis, memory leak/corruption testing). 

 
Here we will look at some of these tools, though not all 

of them. We note that the memory and thread sanitizers have 
also recently become available in the GNU tool chain (as of 
version 4.8). However, there appears to be many more such 
tools being developed with Clang, most likely due to the ease 
of developing such tools using the Clang and LLVM 
libraries. As these libraries mature, we expect to see a very 
strong Clang-based tool ecosystem develop. 

 

A. Developer tools 
Because of the complexity of the C++ language, even 

tools that perform relatively "simple" tasks like reformatting 
require that the C++ code be parsed to perform accurately. 
More complicated tasks such as code refactoring, code 



completion and highlighting potential errors while typing 
require compilation. 
 

Here we give a quick overview of some of the tools that 
make developers lives easier on Cray systems, giving access 
to features that are normally associated with complex IDEs. 
Each of these tools can be used as the basis for adding such 
features to text editors, so that, for example, the Vim editor 
has wrappers for each tool. 

 
ClangFormat is a set of tools for formatting C and C++ 

code. It can be used as a standalone command line tool, or 
integrated into editors (both vim and emacs require adding 
two lines to editor configuration files to integrate the tool). 

 
ClangCheck is a small tool that can be used to perform 

basic error and warning checks on code snippets. For 
example 
 
> cat test.c 
void foo() { int a = 3 } 
$ clang-check test.c -- 
/scratch/santis/bcumming/test.c:1:23: error: 
expected ';' at end of declaration 
void foo() { int a = 3 } 
                      ^ 

 

ClangModernize is a tool for automatically converting 
C++ code to C++11, with support for features such as 
converting for loops to range-based loops and using the auto 
keyword. 
 

B. Other Development Tools 
 

The Clang toolchain makes it possible to provide tools 
such as code completion and refactoring, which are 
normally only found in large editors like Visual Studio, to 
text editors like vim and emacs. These tools are very 
important for programmer productivity, and while it is 
possible to use full-featured IDEs such as Netbeans and 
Eclipse, these are heavy and slow, and can be difficult to 
configure for working remotely on servers. 
 

An example of such a project is YouCompleteMe 
(github.com/Valloric/YouCompleteMe), a plugin 
for Vim that performs code completion while typing. For C 
and C++ code it compiles the project in the background, 
along with the AST for all other relevant files in the project. 
With this information in memory, it can perform context-
sensitive name lookup, accurately jump to the definition of 
types, variables and functions. 
 

The default version of Vim (7.2) currently installed on 
Cray systems is not recent enough, requiring that Vim be 
compiled from source with Python support. 
 
 

C. Testing and Debugging Tools 
 

The Clang toolchain also has a set of tools, some of 
which are standalone tools, and others which are enabled via 
compiler flags, that facilitate proactive testing and 
debugging during the development process. 
 

1) Clang Static Analyzer 
 

The Clang Static Analyzer performs analysis of C/C++ 
code at compile time to automatically find bugs without 
running the code. It is compiled automatically when Clang is 
built, though it is not installed with "make install", which 
requires an additional step of copying the static analyzer into 
the clang bin path. 

 
The static analyzer is simple to use from the command 

line. It provides the scan-build utility, and can by used with a 
make file as follows: 
 
$ scan-build make 

 
The scan-build utility over rides the CXX and CC 

environment variables to first compile each file (either clang 
or gcc), then executes a static analyzer to test the code. With 
this process, at the end of compilation the compilation will 
have been performed as usual, and a report will be generated 
with the results of the static analysis. 

 
As an example, take the following buggy code, which 

produces a segmentation fault by dereferencing a NULL 
pointer 
 
int main(void) { 
    int *ptr = nullptr; 
    ptr[10]++; 
} 

 
Running the scan-build on a simple makefile for this 

code produces the following message in the terminal 
window: 
 
test.cc:3:5: warning: Array access (from variable 
'ptr') results in a null pointer dereference 
    ptr[10]++; 
        ^~~~~~~~~ 
1 warning generated. 
scan-build: 1 bugs found. 

 
Along with a HTML report, for a more detailed overview 

of the analysis that can be viewed in a web browser, shown 
in Figure 6. 
 
 



! 
Figure 6: Sample output from the Clang static analyzer viewed in a web browser. 
 
 

2) Sanitizers 
 
The Clang compilers implement a set of "sanitizers", 

which are runtime tools for detecting memory and threading 
issues. The AddressSanitizer and MemorySanitizer 
features detect memory bugs, including but not limited to, 
out of bounds access, use after free, uninitialized reads and 
double free. The ThreadSanitizer detects common 
threading errors, such as race conditions. The sanitizers use 
compiler instrumentation, activated using compiler flags 
(e.g. -fsanitize=memory for MemorySanitizer), and custom 
runtime libraries that require linking with Clang instead of 
ld. 

 

VI. SUMMARY AND FUTURE DIRECTIONS 
 
In this report, we demonstrated extensibility to the Cray 

PE with the Clang-LLVM compiler framework for 
compiling OpenCL and C++11 applications.  Our 
experiments show that Clang can be integrated into the Cray 
PE like any other compiler.  This would be beneficial for 
advanced C++ developers, OpenCL users and other 
emerging languages and technologies that are widely 
supported by Clang-LLVM. Also, this framework offers 
additional tools for C++ analysis, currently not available on 
Cray systems.  In short, Cray PE can significantly benefit 
from Clang-LLVM integration to the existing PE.  Several 
Domain Specific Languages (DSLs) are implemented using 
LLVM.  Details on how LLVM is currently used for 
developing a compiler framework for DSLs are available in 
[11].  DSL or Domain Specific Embedded Languages 
(DESL) could offer high-level abstractions that could 
potentially improve code developer productivity by offering 
code and performance portability across multiple targets.  
We plan on investigating emerging languages for 
heterogeneous computing using the LLVM framework.  We 
also plan on exploring options for offering OpenCL 
compilation environment to the end users.  
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