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Motivation & Challenges 

• Bigger machines (e.g., TITAN, upcoming Exascale systems) 

– Environment targets coarse-grain, massively parallel executions 

• Relatively “heavy weight” tools for  program startup, execution, and shutdown 

• “Few” active program dispatch instances on service nodes 

• Growing use of large scale many-task computing: 

– Ensemble computing for Leadership class allocation 

– Genomics, bioinformatics, data analytics ...  

– Parameter sweep and optimizations (Industrial use) 

• Runtime environment (RTE) is a crucial software component 

– Not supportive of this kind of workload  

Can we provide user-level run-time environment 

to better support large scale loosely coupled workloads ? 
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Key Requirements 

• Minimal (no?) incremental impact on service nodes as 
number of executing instances scales up. 

• Low overhead for execution initiation, monitoring, and 
termination. 

• Efficient resource utilization 

– Number of cores/node will only increase 

• Current ALPS/aprun environment 

– Limits on number of concurrent aprun instances on service node 

– Relatively long startup/shutdown times per aprun invocation 

– Policy limits on node sharing. 
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Other tools  

• Serial Tasks: 

– Relatively easy - rely on system() calls from compute nodes 

– BigJob, Parallel  Command Processor (PCP) ..etc. 

– Cannot be extended to parallel tasks 

• Parallel Tasks 

– Integrated Plasma Simulator  
(IPS)  

– Still uses aprun/mpirun  
under the hood 

– Need different runtime to use 
anything else 
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Scalable RunTime Component 

Infrastructure – STCI 

• Goals 

– Scalable start-up and management of scientific simulations 

– Resilience/fault tolerance 

– Ease the study and development of new system tools and/or 
applications for HPC 

• Key characteristics 

– User space modular architecture 

– Provide reusable components 

• Lightweight front end tools  

– Task instantiation, monitoring, and termination 

– Better fit for handling many concurrent executing tasks. 
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STCI Architecture 

• Agents 

– Instantiate both the STCI infrastructure and 
applications/tools 

– Different “types” of agents 

• Frontend: user frontend running on user’s terminal 

• Controller: logical agent representing the job from 
a control point of view 

• Root agent: privileged agent for resource 
allocation; one per node; non-specific to a job 

• Session agent: local management of users’ job; 
one per user and per node 

• Tool agent: instantiation of an application or a tool 

• Topologies 

– Represent connections between agents 

– Examples: trees, meshes, binomial graphs 

Controller Agent 

Root Agent 

Session Agent 

Tool Agent 
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STCI Architecture (2) 

• Launcher 

– Deploy a job by creating the necessary agents across the HPC 
platform 

– Two challenges 

• Scalable deployment method: by default, a tree-based topology 

• Method to create the required agents 

– Example: fork, ssh, ALPS 

– On Cray: 

» Torque gives the list of target compute nodes 

» ALPS is used to create the RAs 

» then RAs create other agents 

• Event system 

– Support for asynchronous execution model 

– Various progress models available: implicit or explicit progress 
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Alternate Runtime for MPI tasks on 

Crays 

• Based on Open-MPI 

– Replace the default runtime (ORTE) 

– Benefit the RTE abstraction in Open-MPI 

• Out-of-band communications 

• Naming service 

– RTE mainly used for the deployment of MPI ranks 

• STCI communication substrates used during bootstrapping 

• Open-MPI high-performance communication substrates once 
bootstrapping completed 

• Front end tools for task management 

– stcistart, stciexec, stciwait,  
stcikill, stcistop 

 

OPAL 

STCI ORTE 

OMPI 

RTE 
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STCI For Many Task Computing 

• Original STCI supports a single startup-execute-shutdown 
cycle, for a single app invocation. 

• Explicit STCI shutdown command 

– Keep STCI agents alive after tasks complete 

• Add support for new frontend tools 
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STCI Many Task Overview 
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STCI Front End Commands 

• Execute within a single batch allocation  

• Targeting streamlined many-task management. 

• Minimize impact on service node resources. 

• Could be used directly, or as the backend for a smart 
workflow management interface. 
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STCI commands : stcistart 

• Syntax stcistart –N #NNODES 
– #NNODES: Number of STCI  managed nodes (e.g. 
$PBS_NUM_NODES) 

• Only call to aprun in a STCI session 

• Start STCI agents to support tasks on #NNODES compute 
nodes 

• Returns: session id  (sid) for use in future STCI commands 

– Returned as stdout string 

• Blocking command 

– return after all STCI infrastructure agents have been initiated 
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STCI commands : stciexec 

• Syntax : stciexec –S sid –np #nprocs <prog> [args] 

– sid : session id returned from stcistart. 

– #nprocs : number of ranks in MPI task 

• Start <prog> on #nprocs free cores, 

• Fail if not enough free cores are available 

• Non-blocking: 

– Returns STCI task id  - tid immediately upon successful launch. 

– Task id returned as stdout 



17 CUG 2014 

STCI commands : stciwait 

• Syntax : stciwait –S sid [-any] tid[,tid]* 

– sid : session id returned from stcistart 

– tid : task id returned from a prior call to stciexec 

• Wait for one or more STCi tasks to finish 

• Default: blocking wait for all tid’s to terminate 

• -any causes return after one or more tasks finish 

• Return immediately if all tasks have finished. 

• Print list of taskid:retval on stdout 
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Other STCI Commands   

• stcikill –S sid tid 

– Kill task tid started under session sid 

• stcilist –S sid 

– List status of all tasks for session sid 

• stcistop –S sid 

– Terminate session sid and all its remaining tasks 
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(Very) Preliminary Results using STCI  

• Tests run on Chester 

– development Cray XK7 at ORNL 

– 80 compute nodes * 16 cores/node 

• Using a single core user task 

– Support for user tasks with np > 1 currently in testing 

• Three tests: 

– Impact on service node 

– Task initiation/shutdown overhead 

– Node sharing  between distinct MPI tasks 
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Impact on service node memory 

• 32 concurrent mpisleep 
tasks, launched 10 sec 
apart. 

• Using background aprun 
(red) and stcistart/stciwait 
(blue) 

• Sleep time chosen to have 
all tasks concurrently active 
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Task Initiation/Termination overhead 

• 100 mpisleep 0 tasks 
executed sequentially 

• Repeated 10 times 

• STCI time include 
stcistart ,stcistop, 
and 10 sec delay between 
stcistart and 1st task   

Average time for 10 runs 
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End-to-End Execution time 

• 100 mpisleep tasks uniformly 
distributed in [1 - 4] sec. 

•  Repeated 12 times on 2 
Chester nodes (16 cores/node) 

• Total STCI time includes 
stcistart, stcistop, and  
10 sec delay. 

• Node sharing among separate 
MPI tasks 

• Ongoing tests using n>1 MPI 
tasks 

Average time for 12 runs 
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Task Output Management 

• Controller logs output from tasks launched via ‘stciexec’ 

– STDOUT -> stci-stdout-sid-<SID>.log 

– STDERR -> stci-stderr-sid-<SID>.log 

• The individual task output can be extracted using a post-
processing script, pyramid-chopjob.pl 

$ ./pyramid-chopjob.pl  < stci-stdout-sid-31683.log 
Created: /tmp/stdout-stcijob-1.log 
Created: /tmp/stdout-stcijob-2.log 
… 
… 
Created: /tmp/stdout-stcijob-14.log 
$ cat stdout-stcijob-14.log 
( 0) My rank is: 0  sleeping 3 sec. (host=nid00078) 
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$ head  /tmp/stci-stdout-sid-31683.log  
==14-start== 
(    0) My rank is: 0  sleeping 3 sec. (host=nid00078) 
==14-end== 
==28-start== 
(    0) My rank is: 0  sleeping 2 sec. (host=nid00079) 
==28-end== 
  ... 

Combined output file from all tasks 

Task  

Identifiers 

Output  

Delimiters 
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Conclusion 

• STCI enables lightweight, fast task management 
infrastructure for ALPS based Cray systems. 

• Open MPI-based flexible runtime environment. 

• Future work 

– Complete support for n>1 MPI tasks 

– User-controlled placement of tasks 

– Fault tolerance and recovery 

– Explore in-memory caching of binary image on compute nodes  

– Integration with more sophisticated front-end tools (e.g. the IPS). 
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Questions? 

Wael Elwasif : elwasifwr@ornl.gov 

Thank You 


