
Toward Improved

Support for Loosely

Coupled Large

Scale Simulation

Workflows

Swen Boehm

Wael Elwasif

Thomas Naughton,

Geoffroy R. Vallee

2 CUG 2014

Motivation & Challenges

• Bigger machines (e.g., TITAN, upcoming Exascale systems)

– Environment targets coarse-grain, massively parallel executions

• Relatively “heavy weight” tools for program startup, execution, and shutdown

• “Few” active program dispatch instances on service nodes

• Growing use of large scale many-task computing:

– Ensemble computing for Leadership class allocation

– Genomics, bioinformatics, data analytics ...

– Parameter sweep and optimizations (Industrial use)

• Runtime environment (RTE) is a crucial software component

– Not supportive of this kind of workload

Can we provide user-level run-time environment

to better support large scale loosely coupled workloads ?

3 CUG 2014

Key Requirements

• Minimal (no?) incremental impact on service nodes as
number of executing instances scales up.

• Low overhead for execution initiation, monitoring, and
termination.

• Efficient resource utilization

– Number of cores/node will only increase

• Current ALPS/aprun environment

– Limits on number of concurrent aprun instances on service node

– Relatively long startup/shutdown times per aprun invocation

– Policy limits on node sharing.

4 CUG 2014

Other tools

• Serial Tasks:

– Relatively easy - rely on system() calls from compute nodes

– BigJob, Parallel Command Processor (PCP) ..etc.

– Cannot be extended to parallel tasks

• Parallel Tasks

– Integrated Plasma Simulator
(IPS)

– Still uses aprun/mpirun
under the hood

– Need different runtime to use
anything else

5 CUG 2014

Scalable RunTime Component

Infrastructure – STCI

• Goals

– Scalable start-up and management of scientific simulations

– Resilience/fault tolerance

– Ease the study and development of new system tools and/or
applications for HPC

• Key characteristics

– User space modular architecture

– Provide reusable components

• Lightweight front end tools

– Task instantiation, monitoring, and termination

– Better fit for handling many concurrent executing tasks.

6 CUG 2014

STCI Architecture

• Agents

– Instantiate both the STCI infrastructure and
applications/tools

– Different “types” of agents

• Frontend: user frontend running on user’s terminal

• Controller: logical agent representing the job from
a control point of view

• Root agent: privileged agent for resource
allocation; one per node; non-specific to a job

• Session agent: local management of users’ job;
one per user and per node

• Tool agent: instantiation of an application or a tool

• Topologies

– Represent connections between agents

– Examples: trees, meshes, binomial graphs

Controller Agent

Root Agent

Session Agent

Tool Agent

7 CUG 2014

STCI Architecture (2)

• Launcher

– Deploy a job by creating the necessary agents across the HPC
platform

– Two challenges

• Scalable deployment method: by default, a tree-based topology

• Method to create the required agents

– Example: fork, ssh, ALPS

– On Cray:

» Torque gives the list of target compute nodes

» ALPS is used to create the RAs

» then RAs create other agents

• Event system

– Support for asynchronous execution model

– Various progress models available: implicit or explicit progress

11 CUG 2014

Alternate Runtime for MPI tasks on

Crays

• Based on Open-MPI

– Replace the default runtime (ORTE)

– Benefit the RTE abstraction in Open-MPI

• Out-of-band communications

• Naming service

– RTE mainly used for the deployment of MPI ranks

• STCI communication substrates used during bootstrapping

• Open-MPI high-performance communication substrates once
bootstrapping completed

• Front end tools for task management

– stcistart, stciexec, stciwait,
stcikill, stcistop

OPAL

STCI ORTE

OMPI

RTE

12 CUG 2014

STCI For Many Task Computing

• Original STCI supports a single startup-execute-shutdown
cycle, for a single app invocation.

• Explicit STCI shutdown command

– Keep STCI agents alive after tasks complete

• Add support for new frontend tools

13 CUG 2014

STCI Many Task Overview

Compute Node

S

T T

Compute Node Compute Node Service Node

R

R R

C

F

Root Agent

Controller Agent

Front-end Agent F

C
R

Tool Agent

Session Agent S

T

S

T T

S

T T

Persistent

Management

infrastructure

Task 1

Task 2

stciexec

Frontend

Commands

stcistart,
stcistop

stciexec,
stciwait

14 CUG 2014

STCI Front End Commands

• Execute within a single batch allocation

• Targeting streamlined many-task management.

• Minimize impact on service node resources.

• Could be used directly, or as the backend for a smart
workflow management interface.

15 CUG 2014

STCI commands : stcistart

• Syntax stcistart –N #NNODES
– #NNODES: Number of STCI managed nodes (e.g.
$PBS_NUM_NODES)

• Only call to aprun in a STCI session

• Start STCI agents to support tasks on #NNODES compute
nodes

• Returns: session id (sid) for use in future STCI commands

– Returned as stdout string

• Blocking command

– return after all STCI infrastructure agents have been initiated

16 CUG 2014

STCI commands : stciexec

• Syntax : stciexec –S sid –np #nprocs <prog> [args]

– sid : session id returned from stcistart.

– #nprocs : number of ranks in MPI task

• Start <prog> on #nprocs free cores,

• Fail if not enough free cores are available

• Non-blocking:

– Returns STCI task id - tid immediately upon successful launch.

– Task id returned as stdout

17 CUG 2014

STCI commands : stciwait

• Syntax : stciwait –S sid [-any] tid[,tid]*

– sid : session id returned from stcistart

– tid : task id returned from a prior call to stciexec

• Wait for one or more STCi tasks to finish

• Default: blocking wait for all tid’s to terminate

• -any causes return after one or more tasks finish

• Return immediately if all tasks have finished.

• Print list of taskid:retval on stdout

18 CUG 2014

Other STCI Commands

• stcikill –S sid tid

– Kill task tid started under session sid

• stcilist –S sid

– List status of all tasks for session sid

• stcistop –S sid

– Terminate session sid and all its remaining tasks

19 CUG 2014

(Very) Preliminary Results using STCI

• Tests run on Chester

– development Cray XK7 at ORNL

– 80 compute nodes * 16 cores/node

• Using a single core user task

– Support for user tasks with np > 1 currently in testing

• Three tests:

– Impact on service node

– Task initiation/shutdown overhead

– Node sharing between distinct MPI tasks

20 CUG 2014

Impact on service node memory

• 32 concurrent mpisleep
tasks, launched 10 sec
apart.

• Using background aprun
(red) and stcistart/stciwait
(blue)

• Sleep time chosen to have
all tasks concurrently active

21 CUG 2014

Task Initiation/Termination overhead

• 100 mpisleep 0 tasks
executed sequentially

• Repeated 10 times

• STCI time include
stcistart ,stcistop,
and 10 sec delay between
stcistart and 1st task

Average time for 10 runs

22 CUG 2014

End-to-End Execution time

• 100 mpisleep tasks uniformly
distributed in [1 - 4] sec.

• Repeated 12 times on 2
Chester nodes (16 cores/node)

• Total STCI time includes
stcistart, stcistop, and
10 sec delay.

• Node sharing among separate
MPI tasks

• Ongoing tests using n>1 MPI
tasks

Average time for 12 runs

23 CUG 2014

Task Output Management

• Controller logs output from tasks launched via ‘stciexec’

– STDOUT -> stci-stdout-sid-<SID>.log

– STDERR -> stci-stderr-sid-<SID>.log

• The individual task output can be extracted using a post-
processing script, pyramid-chopjob.pl

$./pyramid-chopjob.pl < stci-stdout-sid-31683.log
Created: /tmp/stdout-stcijob-1.log
Created: /tmp/stdout-stcijob-2.log
…
…
Created: /tmp/stdout-stcijob-14.log
$ cat stdout-stcijob-14.log
(0) My rank is: 0 sleeping 3 sec. (host=nid00078)

24 CUG 2014

$ head /tmp/stci-stdout-sid-31683.log
==14-start==
(0) My rank is: 0 sleeping 3 sec. (host=nid00078)
==14-end==
==28-start==
(0) My rank is: 0 sleeping 2 sec. (host=nid00079)
==28-end==
 ...

Combined output file from all tasks

Task

Identifiers

Output

Delimiters

25 CUG 2014

Conclusion

• STCI enables lightweight, fast task management
infrastructure for ALPS based Cray systems.

• Open MPI-based flexible runtime environment.

• Future work

– Complete support for n>1 MPI tasks

– User-controlled placement of tasks

– Fault tolerance and recovery

– Explore in-memory caching of binary image on compute nodes

– Integration with more sophisticated front-end tools (e.g. the IPS).

26 CUG 2014

Acknowledgment

• Individuals that contributed to the STCI project, including
Richard Graham, Wesley Bland, Joshua Hursey, Christos
Kartsaklis, Rainer Keller, Gregory Koenig, Pavel Shamis and
Chao Wang.

• This research used resources of the Oak Ridge Leadership Computing Facility at the
Oak Ridge National Laboratory, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This
document describes activities performed under contract number De-
AC0500OR22750 between the U.S. Department of Energy and Oak Ridge
Associated Universities. All opinions expressed in this report are the authors’ and do
not necessarily reflect policies and views of the U.S. Department of Energy or the
Oak Ridge Institute for Science and Education.

27 CUG 2014

Questions?

Wael Elwasif : elwasifwr@ornl.gov

Thank You

