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Abstract—High-performance computing (HPC) workloads
are increasingly leveraging loosely coupled large scale simula-
tions. Unfortunately, most large-scale HPC platforms, including
Cray/ALPS environments, are designed for the execution of
long-running jobs based on coarse-grained launch capabilities
(e.g., one MPI rank per core on all allocated compute nodes).
This assumption limits capability-class workload campaigns
that require large numbers of discrete or loosely coupled
simulations, and where time-to-solution is an untenable pacing
issue. This paper describes the challenges related to the
support of fine-grained launch capabilities that are necessary
for the execution of loosely coupled large scale simulations on
Cray/ALPS platforms. More precisely, we present the details
of an enhanced runtime system to support this use case, and
report on initial results from early testing on systems at Oak
Ridge National Laboratory.
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I. INTRODUCTION

A growing number of scientific applications rely on a
regime of loosely coupled large scale computational work-
loads for their underlying execution environment. Large
scale multi-dimensional parameter sweeps and optimization
studies typically involve the execution of a large number
of low to medium parallelism tasks, with little or no inter-
task communication or dependencies. This type of workload
has demanding aggregate computational and memory re-
quirements, rendering them as natural candidates for deploy-
ment on current leading high-performance computing (HPC)
platforms. Extreme scale computing ensembles comprised
of loosely coupled workloads have been recognized as
an appropriate way to utilize leadership class computing
resources managed by the U.S. Department of Energy [1].
This execution model has been successfully used in scientific
disciplines that range from subsurface modeling, image-
guided neurosurgery, climate data analysis, and many other
domains.

Deploying such workloads on existing large-scale HPC
systems can be inefficient, as the batch environment on such
systems is usually designed to support a different model
where a small number of application instances execute in the
context of an allocation; and the workload is tightly-coupled,
generating a large amount of communication. As a result,
the task instantiation and management interfaces offered in

many of these HPC systems do not readily support fine-
grained launch capabilities needed for efficient execution of
many-task computing workloads.

In this paper, we present recent work to build a runtime
environment and user-level task management infrastructure
to support the efficient execution of large scale loosely
coupled workloads on leading HPC platforms. The focus
of this work has been to provide additional support to
users on the Cray XK7 system at Oak Ridge National
Laboratory (ORNL), allowing for low-overhead instantiation
and management of loosely coupled computational tasks
within a single user’s batch system allocation. The imple-
mentation leverages the Cray/ALPS task launcher for the
base deployment, which is used to bootstrap the user specific
environment on the compute nodes within the given job
allocation. This approach alleviates the burden on the service
nodes that would result from servicing a large number
of (possibly concurrent) task instantiation requests, which
can manifest itself in resource contention or un-availability
on these shared nodes. The enhanced task management
environment also offers the ability to customize the launch
capabilities within a user’s job, e.g., by allowing for dynamic
node sharing between computational tasks that do not inter-
fere with each other, i.e., a memory bound task is co-located
with a central processing unit (CPU) bound task. This allows
for time-sharing of the nodes in a space-shared allocation
(i.e., within a user’s job allocation on the system).

The remainder of the document is organized as follow:
Section II presents related work and discusses the require-
ments needed to support loosely coupled workloads on
leadership computing platforms as well as an overview of the
Scalable runTime Component Infrastructure (STCI) [2] that
has been extended to prototype the proposed architecture. In
Section III, we describe the design of the proposed system
and Section IV gives implementation details. In Section V,
we presents preliminary evaluation results. Section VI con-
cludes.

II. BACKGROUND & RELATED WORK

In this section, we define terminology used throughout
the document. We then describe the requirements for the
execution of loosely coupled scientific simulations on lead-
ership computing platforms, as well as previous research. We



present STCI, which has been used to prototype the proposed
solution, focusing on relevant characteristics and capabilities
of importance the research presented in this paper. Finally,
we present an overview of the job management of Cray
systems.

A. Terminology

For clarification, we first define the concept of job and task
that are used across this document. Since most HPC systems
are using a batch system, we defined a job as a sequence
of statements and data that represents a single unit of work
that will execute on available computing resources. A job
is instantiated via a single invocation of job submission
command (e.g., qsub), typically using a batch job script
to define the resources being requested, as well as the way
in which these resources will be utilized to perform the
set of operations that define the job. Since a job can be
a complex work-flow with dependencies, we call task every
execution unit composing a job. In the context of traditional
HPC systems, a task is, for example, a single invocation
of program dispatch command (e.g., mpirun or aprun)
within a batch job script.

B. Loosely Coupled Large Scale Simulation Work-flows for
High Performance Computing

Traditionally, an HPC application is realized via the
execution of a massively parallel workload that utilizes
a multitude of compute nodes, using a tightly coupled
inter-process communication pattern that relies on the high
bandwidth and low latency characteristics of modern HPC
platforms to achieve scalable performance. Furthermore, a
traditional HPC batch job involves the execution of one
task, or a small number of tasks, within a single batch
system allocation. Another model that is increasingly being
deployed to large scale HPC platforms is one where a single
HPC applications involves the execution of a large number
of tasks, which are typically loosely coupled, with little
or no inter-task communication. This computing regime is
typically referred to as Many-Task Computing (MTC) [3],
[4].

Running a large number of loosely coupled tasks is a
challenge for the software stacks in most HPC systems:
a task can be short lived, and the creation of many short
lived tasks can put excessive load on the service nodes,
where the tools for task launching, monitoring, and termi-
nation are typically executed. It is therefore a requirement
that to support large scale, many-task computing appli-
cations, the tools used to manage the lifecycle of such
tasks minimize, or totally eliminate, the per-task incremental
overhead (both in terms of wall clock time, and resource
utilization). This minimization goal is typically not the
highest priority for default task management infrastructure,
with its focus on few massively parallel tasks. Use of the
many-task computing paradigm is finding increasing use

in many disciplines that include biology, genomics, among
other scientific disciplines. A common mode for such use
involves the execution of a parameter sweep, in which the
same program is executed repeatedly with different input
parameters to explore a (typically large) parameter space
for regions of interest or special significance. The ability to
concurrently execute a large number of program instances on
leadership class computing platforms has made this approach
increasingly popular with scientists who rely on this mode of
study. However, the mis-match between the default program
execution model, and the light weight approach needed for
the efficient execution of massively concurrent programs has
slowed down the use of this technique on leadership class
computing platforms.

Several attempts have been made to enable the effi-
cient execution of parameter sweep applications on mod-
ern CRAYs and other HPC platforms. Eden [5] is a tool
developed to ease the execution of concurrent serial jobs,
by supporting interactions with PBS on a SGI Altix 1000.
Eden is composed of a set of shell scripts that automates
the generation of PBS job scripts, which get submitted to
the system job scheduler. Additionally, Eden manages the
standard output and the standard error, and collects timing
data. At the end of the job, this data is collected and put into
a summary file. The Parallel Command Processor (PCP) [6]
tool is another tool for the execution of serial jobs on the
Cray system. Originally developed by the Ohio Supercom-
puter Center (OSC) and ported by the National institute for
Computational Sciences (NICS), this tool processes a text
file containing a list of single-core commands that are then
farmed out to available compute-node cores, and executed
via a system() call. While this approach is adequate for
serial jobs, it does not support the need for small to medium
parallel tasks that are becoming more common in many-task
computing applications.

SAGA-BigJob [7] is another tool that targets efficient
execution of a large number of serial tasks on available com-
pute resources. While the tool targets primarily distributed
systems, it can also be used to manage serial task execution
on Crays [8]. Written in Python, the tool relies on the Python
subprocess module’s Popen class to launch the target serial
task on a compute node, and as such cannot be used to
handle parallel tasks since those can not be launched using
a system call from a task running on a compute node.

Another class of tools that can benefit from improved
efficiency in task dispatch are tools for loosely coupled
multi-phyisics simulations. One such tool, The Integrated
Plasma Simulator (IPS) [9] is a lightweight Python frame-
work for file-based, loosely coupled simulations. The IPS
relies on the existing program dispatch environment on target
platforms for task execution. The multi-level concurrency
support in the IPS [10] allows a single coupled simulation
running within the framework to make efficient use of
available computational resources. When coupled with the



DAKOTA optimization toolkit [11] and used in a parameter
sweep mode [12] the IPS can generate a massive number
of concurrent tasks, taxing resources on service nodes and
limiting the scalability of the overall application.

C. Scalable runTime Component Infrastructure – STCI

In this section, we present the relevant details of STCI,
highlighting the existing features and justifying the proposed
extensions. STCI is developed as part of ongoing system
software and resilience research at ORNL [2] and was
initially designed to support parallel applications based on
a message passing paradigm. As such, the message passing
interface (MPI) is currently the only supported execution
model.

The STCI runtime infrastructure is based on three main
concepts: (i) sessions, (ii) jobs and (iii) tasks. A session
represents all the resources allocated to a given user and a
user’s job is executed in the context of a session.

Fortunately, for genericity and portability purposes, STCI
has been designed based on the Modular Component Ar-
chitecture (MCA) (from the Open MPI [13] project). MCA
provides an interface to define frameworks, components and
modules which can be loaded at run time, which allows for a
high level of modularity and easy extensibility. The current
STCI implementation provides modular building blocks that
implement various system services. These building blocks
can be composed to form new runtimes for HPC.

The different modules required for the implementation of
new system services are loaded at run time. The instantiation
of all the required services, in addition to some required
STCI-specific services (e.g., out-of-band communication ser-
vices), is done in the context of agents that are connected to
each other for the creation of a distributed runtime system.
STCI is based on two types of agents: infrastructure agents
and user agents. Infrastructure agents ensure that all services
can be bootstrapped and terminated so that a user’s agents
can be deployed and run successfully. The infrastructure
agents are: (i) Front-end (FE); (ii) Controller (CTRL); (iii)
Root Agent (RA); and (iv) Session Agent (SA). The FE
generally runs on the login, management node or on the end-
user’s computer. It is the end-user’s interface to the STCI
runtime environment. Since the FE is only the user interface
with the STCI infrastructure, a CTRL is deployed for each
user, tracking running jobs and ensuring, on behalf of the
user, that the scientific applications are correctly deployed
and terminated on compute nodes. CTRLs are usually ex-
ecuted on the head/login or service node. As such, the FE
usually starts and interacts with the CTRL for any given job.
Since STCI has been designed to support long-running large-
scale scientific simulations, it allows the user to disconnect
from the HPC platform during the application execution;
the FE attaching to and detaching from the CTRL. Like FE
and CTRL, RAs and SAs are part of the STCI management
infrastructure. The RAs are responsible for the resource

management on the compute nodes. They typically abstract
the resource allocation protection mechanism specific to
the target HPC platform (i.e., some resources may require
privileged access for allocation but still need to be isolated
from a user’s application for security reasons). Additionally,
since RAs are by design privileged agents, they may be part
of the bootstrapping and responsible for starting additional
infrastructure agents, as well as user agents. Finally, Tool
agents (TA) instantiate the user’s executable such as an
MPI application. For that, the STCI infrastructure creates
an execution context on allocated compute nodes and ensure
access to required system services. TAs are accompanied on
each node by one SA.

While STCI provides different agents for most HPC
platforms, this approach also allows for new agent types
to be developed to easily extend the system. For instance, a
Cray specific RA has been developed to accommodate the
specificities of Cray systems in terms of resource manage-
ment (only the ALPS software, presented in Section II-D
can be used for bootstrapping of any process on compute
nodes).

STCI relies heavily on topologies. The topologies describe
how the different agents are connected, how messages
should be routed and how processes should be mapped
to available resources. Figure 1 shows an example of a
topology containing a FE, the CTRL, three RAs and SAs
and six TAs. To deploy all the agents required for the

Figure 1: Default layout of the different STCI agents re-
quired for the execution of a job

execution of a job 1, STCI maps the different agents in a
topology onto available resources. Based on this deployment
topology, STCI’s launcher actually creates the different
agents across the different compute nodes allocated to the
job. The launcher abstracts the system configuration of the

1STCI internally tracks each set of remote agent launches with a distinct
identifier called a Job Identifier (JobID). This “STCI job” should not be
confused with the batch queue system “job”.



HPC platform, e.g., forking a process (local process launch),
implicitly uses ssh on clusters where nodes are directly
accessible via ssh, or uses ALPS on Cray systems.

D. Job Management on Cray Systems

The Cray ALPS (Application Level Placement Scheduler)
system provides remote launch functionality for running exe-
cutables on compute nodes in the system. The ALPS system
also performs placement and reservation management as
well as resource management at the node level to ensure
cleanup between user jobs. A more detailed description of
ALPS and its use for management and monitoring of Cray
compute resources is available in [14]. A set of utilities,
running on service/login nodes, can be used to query about
ALPS status and placement information (apstat) and to
launch task on the remote nodes (aprun). All remote
executables must be launched using aprun, which assigns
a unique ALPS identifier (apID) for tracking this execution
instance within the system. At the compute node level, there
are ALPS interfaces that can be used to acquire global
context about the ALPS execution instance, which can be
used to efficiently initialize node local functionality, e.g.,
STCI RA Identifiers.

III. DESIGN

The execution of loosely coupled large scale simulation
workflows requires an execution model that is different from
the one traditionally supported on leadership computing plat-
forms as well as STCI, i.e., the execution of message passing
applications (referred to as the MPI execution model in this
document). First, the runtime must support the execution
of many tasks within a job, whereas the MPI execution
model typically requires execution of a few tasks within a
job. Because the runtime must start/finalize more tasks, it is
necessary to deploy a “persistent” runtime infrastructure so
the many tasks composing a job can be efficiently deployed
and terminated. As a result, this also requires a two-level
resource management model for which the first level assigns
resources to a job, and the second level to a task within a job
(e.g., a task may require less nodes than the pool of nodes
allocated to the associated job). Furthermore, based on the
user’s requirements and the tasks to execute, the runtime
may have to co-locate different tasks on the same compute
nodes, whereas the MPI execution model typically assumes
that only one task can be mapped to a given compute node.
Finally, because many tasks are executed instead of a few
for the MPI execution model, the runtime must provide a set
of tools that allows users to query the state of their overall
job (set of launched tasks), as well as any task within a
job (particular task). Figure 2 gives an example of how
STCI agents are deployed on HPC platforms when a loosely
coupled large scale simulation is executed.

These capabilities were not supported by the version of
STCI that was strictly focused on the MPI execution model.

Figure 2: Example of a mapping of the agents required for
the execution of a loosely coupled simulation workflow

To accommodate this loosely coupled execution model,
STCI required a set of extensions that can be summarized
as follows:

1) Persistent runtime infrastructure.
2) Two-level resource management for user jobs.
3) The ability to map multiple tasks on the same node

(co-location).
4) Tools to query for specific job/tasks statuses.
To illustrate the difference between the two execution

models, Figure 3 and Figure 4, respectively presents the
pseudo-code of the MPI execution model and the loosely
coupled large scale simulation execution model. For sim-
plification, we assume that for the MPI execution model, a
job is always composed of a single task; whereas a job is
composed of many tasks for the loosely coupled model. As

1. Deploy job FE
2. Deploy CTRL
3. Deploy RAs
4. Deploy SAs
5. Deploy TAs
6. Wait for the job to end (TA termination − application driven)
7. Termination of SAs
8. Termination of RAs
9. Termination of CTRL
10. Termination of job FE

Figure 3: Pseudo-code for the MPI execution model

illustrated in Figure 4, the execution model associated with
loosely coupled large scale simulations is quite different in
nature: several types of FEs are required (job management
versus task management), and some agents (i.e., CTRL and
RAs) need to be persistent in order to share them between
different tasks.

To add the capability to control the task’s processes on
compute nodes, STCI needs to place infrastructure agents
onto the available resources. These infrastructure agents



1. Initiate job
1−A. Deploy job FE
1−B. Deploy CTRL
1−C. Deploy RAs

2. for i in {i..<number of tasks>} ; do
2−A. Deploy task FE
2−B. Connect to CTRL
2−C. Deploy SAs through existing RAs
2−D. Deploy TAs
2−E. Wait for the task to end (TA termination − application driven)
2−F. Termination of SAs
2−G. Termination of task FE

3. Wait for all tasks to terminate
4. Terminate job

4−A. Deploy FE (that will orchestrate the overall job termination
4−B. Termination of RAs
4−C. Termination of CTRL
4−D. Termination of job FE

Figure 4: Pseudo-code for the loosely coupled large scale
simulation execution model

need to be available throughout the entire lifetime of the
resource allocation. Since STCI already provides a set of
infrastructure agents (RAs and SAs) and the capability to
interact with the native process management system (i.e.,
ALPS), it seems natural to add the functionality to the
existing design. It is sufficient to have a single persistent
agent on a compute node. The RA is already part of the
process management and will be part of the persistent
management infrastructure (e.g., see Figure 5).

Figure 5: Mapping of the infrastructure agents

With a persistent infrastructure in place STCI can use the
existing launcher framework to instantiate new SAs and TAs
on the available resources. This opens up the possibility to
implement very flexible mapping policies and the ability to
give the user better control over the placement of a single
task or processes within a task. For example, the user could
decide to over-subscribe and run several collaborative tasks
on the same physical node, i.e., selectively co-locate tasks.

Since a task has no active FE, STCI needs to provide
a way to monitor its progress. Since the CTRL is available
throughout the entire job allocation (the CTRL is a persistent
agent), the CTRL has the responsibility of keeping track of
task states. A task can have multiple states: a) launching,
b) running, c) finished, d) failed and e) canceled. A separate

FE can query for task status.
To keep track of the states of a task, the infrastructure

agents specific to that task have to report the state changes
to the CTRL. For example, the CTRL hands off a task to
the launcher, changing its state to launched. The launcher
sends launch requests to the persistent RAs that are part of
this particulars task’s mapping. After the RAs have started
the SAs and TAs of the task and all participating agents
are locally reported as running, a message is sent to the
CTRL by the corresponding SA. When the CTRL received
the messages for all SAs, the task can be globally assumed
as running. A similar mechanism is used to monitor the
shutdown of tasks

IV. IMPLEMENTATION

This section gives details about the runtime support for
the execution of loosely coupled large scale computational
work-loads, as well as changes that were made to the ex-
isting runtime system to accommodate the proposed design,
i.e., adding the loosely coupled execution model to STCI.

To support the proposed design a set of new FEs were
developed, which can be divided into three categories:
a) starting and stopping the persistent runtime services
for a given job, b) starting and stopping tasks (end-user
applications), and c) querying for the status of jobs and tasks.

The stcistart command is executed on the service
node to start up the CTRL related to the job. The CTRL
starts the RAs on the compute nodes allocated to the job;
the RAs then connect back to the CTRL. The CTRL and
the RAs form the “control task”. After the control task is
established stcistart returns a unique identifier (ID) to
the user. That unique ID can be used by users for querying
the job’s status. Moreover, this unique ID is assigned to
the session associated to the job. Ultimately, the ID and the
session allow users to control and monitor the execution
of jobs. We will present later in this section how a similar
capability is available for tasks, giving to users a unique and
unified method for the control and monitoring of both jobs
and tasks within a job.

The stcistop command is used to shut down the
control task. After the execution of stcistop the runtime
environment is shut down, i.e., all agents are terminated and
all allocated resource are freed.

The stciexec command is used to start tasks within a
job, connecting to the CTRL specific to the job. Once the
connection to the CTRL is established, the task information
is transferred to the CTRL, which starts the various SAs and
TAs on the requested/available nodes. The TAs are the end-
user executable to run on the remote resources, e.g., MPI
application. As with the stcistart command, a unique
ID is returned to the user to enable control (e.g., kill the
task) and monitoring (i.e., query the task’s status).

The stcikill command is used to terminate the given
task within a given job. The stcilist command connects



to the CTRL to query a list of the currently running jobs
and tasks that are associated with a particular session. The
command can also be used to lookup a specific job and
query all the tasks contained in the job.

The stciwait command provides support for selec-
tively waiting for the termination of tasks within the job. For
that, the user can specify a list of IDs; the stciwait then
waits until all the tasks associated with these IDs terminate.
Users may also specify the “any” flag, in which case, the
command blocks until any of the listed tasks in the job
terminate.

The CTRL is responsible for launching processes on the
compute nodes and gathering the output of the applications.
To establish a persistent RA network, the task startup was
separated into two distinct phases. During the first phase,
STCI’s capabilities are used to deploy the RAs, by inter-
acting with the native Cray/ALPS task launcher (aprun).
After the persistent management layer is started, the CTRL
is waiting for a FE to connect in order to either submit
a new job, query for status information or shut down the
persistent infrastructure. In response to the request to launch
a new task, the second phase of the task startup is performed
during which SAs and TAs are deployed. This is done
using the process management capabilities provided by STCI
(stciexec).

In order to support co-location of applications, we had
to modify the STCI policy for task and job mapping on
allocated resources. As presented in the previous section,
STCI assumed a one-to-one relationship between the job
mapping and task mapping, meaning that the same set of
resources is used and that no persistent infrastructure needs
to be mapped on available resources. The mapping algorithm
used in the second phase was adjusted to support co-locating
tasks By adjusting the mapping algorithms used during
the second phase, it is possible to co-locate tasks (taking
full benefit of the modularity of the STCI architecture):
the mapping algorithm no longer assumes exclusive use
of a given compute node by a single task but places all
the tasks on available compute nodes based on the user’s
requirements, potentially sharing compute nodes between
tasks within the same job.

Previously the task shutdown sequence was tailored for
supporting the MPI execution model; no persistent infras-
tructure was required, all agents implicitly finalized as
soon as the tasks composing the job (which were executed
concurrently) terminated. For the loosely coupled execution
model case, the persistent infrastructure can only terminate
upon explicit notification from the user, via the stcistop
command. This policy difference has been implemented by
extending the STCI launcher and through the implementa-
tion of new agents specific to the support for the execution
of loosely coupled simulations.

V. EXPERIMENTS

To evaluate the proposed runtime we conducted a set of
experiments to assess the performance of the enhanced ver-
sion of STCI and compare it to the performance of running
the tests solely with the native process launcher ALPS. All
experiments where run on a Cray XK6 (Table III), Chester,
system at the Oak Ridge Leadership Computing Facility. The
system configuration for the CHESTER machine is detailed
in Table III. This is a 80 node Cray XK6 development
platform with a Gemini interconnect.

All tests used a MPI application, mpisleep, that accepts
as argument the time to delay (Nsleep) using the standard C
library sleep() function. The program does the following:
initializes the MPI library, prints MPI rank, hostname and
sleep time, sleeps for Nsleep seconds, and then finalizes MPI
and exits.

Experiment-I “throughput”: The first experiment eval-
uates the throughput of the enhanced version of STCI. The
experiment measures the time it takes to run 100 iterations
of mpisleep with no wait time, i.e., Nsleep = 0, and
was repeated 10 times. Figure 6 shows the average time
for the ALPS (794.03s, σ = 1.8773) and STCI (43.92s,
σ = 1.4847) experiments to execute the 100 mpisleep
0 tasks. The ALPS case loops over calling mpisleep 0,
measuring time before and after the loop. In the STCI case,
time begins before the stcistart and time ends after the
stcistop, which includes all the stciexec launches for
the 100 mpisleep 0 followed by a stciwait to block
until each task completes. Note, the STCI tests also include a
10 second delay between stcistart and the stciexec
loop to ensure the control infrastructure is up and ready.
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Figure 6: Throughput test with 1 node and 100 tasks, each
task using a sleep time of zero (0) seconds. Times shown in
seconds, and STCI includes addition 10 second sleep after
stcistart.

Experiment-II “end2end”: The second experiment
compares STCI with the native application launcher, i.e.,
ALPS. For this, we measure the run time for an application
using both ALPS and the enhanced version of STCI. In
contrast to the throughput experiment a random distribution
of wait times (Nsleep) is used to for the 100 tasks, with STCI



Experiment-I: “throughput” Experiment-II: “end2end” Experiment-III: “memcost”

Application mpisleep mpisleep mpisleep

Nsleep 0 sec. Random > 0 sec. 420 sec.

Niterations 100 100 100

Nruns 10 12 15

Table I: Summary of experiment parameters.

co-locating tasks. A series of sleep times was generated
using a uniform distribution and both ALPS and STCI tests
were run using this series for Nsleep. Figure 7 shows the
results for running 100 tasks on 2 nodes with STCI and
ALPS. Note, the STCI tests also include a 10 second delay
between stcistart and the stciexec loop to ensure
the control infrastructure is up and ready.

34.82 

500.38 

0.00 

100.00 

200.00 

300.00 

400.00 

500.00 

600.00 

STCI ALPS 

Ti
m

e 
(s

ec
on

ds
) 

CHESTER - end2end time 

Figure 7: End-to-end test with 2 nodes and 100 tasks, each
task taking sleep time from a uniform distribution of value.
Times shown in seconds, and STCI includes addition 10
second sleep after stcistart.

Experiment-III “memcost”: The last experiment looks
at the overhead and resource consumption on the login node.
A series of tasks are run using both environments (STCI and
ALPS) with the memory consumption measured on the login
node over the course of the experiment. The login node has
16 Gb of total memory.

Figure 8 shows the memory utilization when running 32
mpisleep commands concurrently. The data was gathered
using vmstat -s and graphs the value of global “used
memory” for the system over the duration of the test runs.
The times are normalized in order to show a side-by-side
comparison of the memory utilization. A total of 20 runs
were performed; 5 runs with the highest Std.Dev for total
system used memory were removed from both the ALPS
and STCI data sets. The graph in Figure 8 shows the 15
remaining runs. The graph shows the average for each step
in the execution to illustrate system memory usage over the
duration of the experiment.

The mpisleep executable was run with a sleep argument

sufficiently long (420 seconds) to allow for startup of all
tasks and to gather memory usage with all tasks still running.
A brief sleep was placed between each command to spread
the load out over time to avoid excessive load on the login
node. In order to run 32 (distinct) tasks concurrently, we
used 32 nodes in the ALPS case and 2 nodes in the STCI
case. There are 16 cores per node so this places 1 task on
each core of the 2 nodes for the STCI case. In the ALPS
case, due to each task being a distinct aprun invocation,
the tasks are spread over 32 nodes. This spread is due to
ALPS resource policies, which were discussed previously
in Section II.

The increased memory usage in the ALPS case is due to
the fact that the 32 concurrent aprun commands are run
as background tasks to avoid blocking within a script. In
contrast, the STCI case requires the initial stcistart to
launch the CTRL and persistent RAs on the compute nodes.
Then each stciexec invocation sends the task launch
request to the CTRL, disconnects and terminates. The reuse
of a persistent CTRL process with frontend requests result
in the relatively flat memory usage shown in the graph for
the STCI tests.
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Figure 8: Used memory on login node when running se-
ries of concurrent tasks via ALPS (aprun) and STCI
(stciexec).

Another distinction worth noting is that the stciwait
command provides the ability to wait on “any” active task
to complete in order to break the blocking wait command
(as presented in Section IV). This allows for performing
additional tasks at intermediate stages, e.g., starting new



STCI ALPS
Num. runs 12 12
Minimum 25.59 494.67
Maximum 49.28 505.04

Mean 34.8225 500.3841
Median 33.405 501.02
Variance 77.5982 9.3344
Std.Dev. 8.8089 3.0552

Table II: The “end2end” statistics over 12 runs using 2 nodes and 100 tasks per run. Note, the STCI tests include a 10
second delay after the stcistart to ensure Controller is ready.

tasks. This is achieved without having to force the FE
(stciwait) to poll, instead the CTRL is able to register
an event and notify the FE when the job is complete.

# Get Baseline
log meminfo
NSEC=420

for i in {1..32} ; do
log meminfo
aprun −n 1 mpisleep $NSEC
log meminfo

done
# Wait on all to finish

log meminfo
wait
log meminfo

Figure 9: Pseudo-code for the “memcost” experiment using
ALPS (aprun).

VI. CONCLUSIONS AND FUTURE WORK

Because of their complexity and scale, leadership HPC
systems, such as the Cray systems at ORNL, enforce strict
usage constraints to users in terms of job and resource man-
agement. These constraints greatly limit the options available
to users regarding the execution of their applications, which
ultimately also limits the design and implementation of these
applications.

The proposed work addresses a gap between user needs
and characteristics of HPC systems. Our main contributions
in this paper can be summarized as follows:

• The proposed runtime system enables efficient exe-
cution of large scale loosely coupled workloads on
leadership HPC systems, mainly by decreasing the job
start-up time.

• The proposed architecture extends the execution model
of leadership HPC systems, by (i) enabling better
control over job placement and execution (enhanced
task management environment); (ii) enabling finer grain
interactions with the system software for the manage-
ment of many loosely coupled workloads (enhanced
system commands to launch, wait and terminate user
jobs); (iii) extending the execution model of leadership

# Get Baseline
log meminfo

# Start CTRL and RAs
log meminfo
stcistart −N $PBS NUM NODES
log meminfo

# Get SesionID
SID=‘stcilist -T‘
NSEC=420

for i in {1..32} ; do
log meminfo
stciexec −S $SID −np 1 mpisleep $NSEC
log meminfo

done

while [ count($live jobs) > 0 ] ; do
live jobs=get job string()

log meminfo
stciwait −S $SID −−any −j $live jobs
log meminfo

done

# Stop CTRL and RAs
log meminfo
stcistop −S $SID
log meminfo

Figure 10: Pseudo-code for the “memcost” experiment using
STCI (stciexec).

HPC system by supporting time-sharing of compute
nodes in a space-shared allocation,

• We evaluated the prototype’s support for service node
resource overheads and time to completion of synthetic
workloads running on leadership platforms at ORNL.
The experiments showed the prototype offers better
memory efficiency and lower time to solution for the
synthetics applications tested.

Current operating system and runtime research for exas-
cale systems includes the concept of an enclave [15]. An
enclave is used to abstract the environment required for
the execution of scientific applications in order to provide
control over application resilience, energy consumption, as
well as increased scalability. This concept will drastically
change the execution model of exascale systems since a



Component Description
System login nodes / 1 CPUs / 6 cores / 16 GB memory

80 compute nodes / 1 CPUs / 16 cores
2640 GB memory / 80 GPUs

Login nodes 1 CPUs / 6 cores / 16 GB memory
Login CPU AMD Opteron(tm) Processor 23 (D0) / 6 cores / 2200 Mhz

Compute node 1 CPUs / 16 cores / 33 GB memory
Compute CPU AMD Opteron(tm) Processor 6274 / 16 cores / 2200 Mhz
Compute GPU Nvidia Tesla K20X

Network 10 Gbps Ethernet
Cray Gemini 3-D Torus 20 GB/s

OS Cray Linux Environment (CLE) (XTOS Ver 4.2.34)
(2.6.32.59-0.7.1 1.0402.7496-cray gem c x86 64)

Table III: System configuration for the Cray XK6 CHESTER platform.

job is executed using multiple enclaves; enclaves that are
instantiated within a user’s allocation. Because STCI has
been extended to offer capabilities for the implementation
of persistent system service (e.g., persistent RAs), STCI is a
candidate runtime environment for the implementation and
support of enclaves.

Furthermore, the proposed solution addresses some of
the major limiting factors for the design, implementation
and execution of scientific simulations that are not typical
message passing applications. By extending the execution
models, scientists have the opportunity to extend and/or
modify their application focusing on the science instead
of the constraints imposed by leadership HPC systems.
Therefore, this work could enable the execution of scientific
applications that were not good candidates so far because of
conflicting constraints between an application’s design and
execution.

Moreover, the proposed runtime infrastructure, thanks
to persistent services, enables the efficient execution of
scientific workloads. This infrastructure could be further
extended to improve application start-up by making the
runtime infrastructure aware of the HPC parallel file system
for better I/O throughput.

Finally, the proposed prototype being based on STCI, it
would be possible to benefit from the STCI’s fault tolerance
capabilities that have been developed in the context of MPI
applications at large scale. For example, STCI provides fault
detection, notification and recovery mechanisms that could
be leveraged in the context of loosely coupled applications
by ensuring that even if compute nodes fail, the other
running tasks are minimally impacted.
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