
1	


First Experiences With Validating and 
Using The Cray Power Management 

Data Base Tool	


Gilles Fourestey, Ben Cumming, Ladina Gilly and 
Thomas C. Schulthess, CSCS	




HPC Performance Metric	

	

Classic HPC metric: Time To Solution (TTS)	

	

How do we minimize TTS? 	

	

For CPU-bound applications it means:	

	


 maximizing the flops count.	

	

HPL (top500) is a directed reflection of this fact.	




HPC Performance Metric	


	


	


	


	




HPC Performance Metric	


	


	


	


	


We need to not only consider:	

	


Time To Solution	

	

but also:	


	

Energy To Solution	


	

	


How do we measure Energy To Solution?	




External Power Meters	


	


	


	


	


Level 3 capable measurements at CSCS	




Power Management DataBase	

Integrated Power/Energy measurement for the nodes, GPUs, 
blades, racks, network and blowers stored by time or APID.	

	

-  PMDB: direct access to the database (node, blade and cabinet level, NOT in user space)	

-  RUR: Resource Utilization Reporting (node level, in user user space)	

-  PM counters: files on each node storing power/energy data (node level, in user space)	

	

PMDB example: 	


    APID   |   Joules   |         KWh	
---------+------------+----------------------	
 2134412 | 2928139984 | 813.3722177777777778	
	

Aries chips and blowers power consumption are missing.	

	

Real power (node-level) = (Joules/TTS + (# nodes)/4*Aries + Blowers)/0.95	

Real power (cab-level)   = (Joules/TTS + Blowers)/0.95	

	

0.95:  AC/DC conversion rate  Aries: 100W (static) Blowers: 4440~5300W	

	




Resource Utilization Report	


	


	


	


RUR is the simplest way to get energy consumed by a job.	

	

In /scratch/daint/RUR/rur-<date> (in Joules):	

	

uid: 21553, apid: 2380700, jobid: 289724, cmdname: ./hpcg energy ['energy_used', 
11240718]	

	


- Per APID/jobID: so full job, not parts of the code	

- Node energy, i.e CPU + GPU + RAM, no network, no 
blowers: the node-level PMDB formula applies!	




PM Counters	

Sysfs files on each nodes that are updated approximately 

every 0.1 seconds with power and energy for the node 
and the accelerator.	


	


Polling those files will trigger an interrupt in the system so 
don’t poll too often.	


Can be used to measure energy/power consumption for 
regions of a code.	




PM Counters	

int get_acc_{energy,power}(){	


    int value;	


    char buff[16];	


    FILE *fid;	


	


    fid =  fopen("/sys/cray/pm_counters/accel_{energy,power}", "r");	


    fscanf(fid, "%d %s", &value, buff);	


    fclose(fid);	


    return value;	


 }	


int get_{energy,power}(){	


    int value;	


    char buff[16];	


    FILE *fid;	


	


    fid =  fopen("/sys/cray/pm_counters/{energy,power}", "r");	


    fscanf(fid, "%d %s", &value, buff);	


    fclose(fid);	


    return value;	


}	


Example: 	

	

$> aprun -n 1 ./energy.sh 	

62 W	

33404642 J	

33404707 J	


energy.sh:	

	

#!/bin/bash	

cat /sys/cray/pm_counters/power	

cat /sys/cray/pm_counters/energy	

sleep 1	

cat /sys/cray/pm_counters/energy	




PM Counters	


-------------- Idle Power	


idle node_power = 60 W	


idle acc_power  = 20 W	


-------------- Data Transfer Power	


xfer rate       = 5.692945 GB/s (0.883399 s.)	


xfer node_power = 113 W	


xfer acc_power  = 52 W	


PMDB:  113 W	


xfer nvml_power = 46 W	


	


-------------- DGEMM Power	


kernel perf        = 1167.82 Gflops (5.786003 s.)	


kernel node_power  = 268 W, (1549 J)	


kernel acc_power   = 210 W, (1215 J)	


Kernel node_energy = 1545 J	


Kernel acc_energy  = 1211 J	


PMDB: 267W	


kernel nvml_power  = 190 W, (1099 J)	


	


Cublas DGEMM, 15000x15000x15000	




Idle power consumption, in kW (Clogin at Chippewa Falls, 3 racks):	

	


Real Life Applications	


C0 (cab-PMDB)	
 C1 (cab-PMDB)	
 C2 (cab-PMDB)	
 Sum 	
 Corrected	
 Ext. PM	


16.333	
 16.043	
 16.452	
 48.829	
 65.420	
 66.067	


Blowers at rest, in kW (Piz Daint at CSCS, 17 blowers):	

	


PMDB	
 Corrected	
 Full System	
 Ext. PM	


4440	
 4673.7	
 79.452	
 79.448	




-  Dynamic Cluster Approximation (DCA) models of high-temperature superconductors	

	

-  Continuous time quantum Monte-Carlo solver with delayed updates which allows to use an efficient 

algorithm based on BLAS level 3 operations (CPU + GPU)	


-  Each test has a different Temperature (from high temperature to below Tc) and time to solution	


DCA+	


#0	
 #1	
 #2	
 #3	
 #4	
 #5	
 #6	
 #7	


TTS (s)	
 3787	
 2725 	
 922	
 605	
 329	
 182	
 75 	
 23	


Cab PMDB (kW)	
 58.5  	
 57.2	
 55.9	
 53.6 	
 53.2 	
 49.3 	
 46.8 	
 43.0 	


External PM (kW)	
 58.6  	
 57.1 	
 53.9 	
 52.9 	
 52.2 	
 47.0 	
 42.7	
 30.5 	


Comparison is very good for large jobs	

	

Small jobs: the external power meter had a 0.1Hz smapling frequency,  e.g for test #7 we only had 4 
samples.	

	




-  COSMO is an atmospheric simulation code	

-  Used for both weather forecasting and climate modeling���
	


-  Fully ported run on both multi-core and GPUs.	

-  Currently production climate simulations are run on GPUs on Piz Daint.	

-  Ideal for comparing both time to solution and energy to solution on different 

architectures. ���
	


-  We use COSMO-2 to compare Cray systems (XE6, XK7, XC30 & hybrid XC30) 	

-  COSMO-2 is 2-km model of the Alps currently used for daily weather forecasting 

by MeteoSwiss.	

-  Use ensemble configuration with 9 nodes per member	


-  enough ensemble members to fill an entire cabinet of each system	

-  10 members on XE6 and XK7 systems	

-  20-21 members on XC30 and hybrid XC30 systems	


COSMO Application	




-  First we validated the PMDB measurements on XC30 with an external 
power meter	

-  External meter measured entire system: 3 cabinets + 3 blowers	

-  PMDB cabinet level measurements for each cabinet	


-  We add 3*4440 W (unadjusted) for blowers	

-  62 ensemble members fill 3 cabinets on system and we perform simultaneous 

external and PMDB measurement	


COSMO Validation	


PMDB 
(kWh)	


external meter 
(kWh)	


estimated 
efficiency	


Run 1	
 53.63	
 56.45	
 95.0%	


Run 2	
 53.47 	
 56.27	
 95.0%	


-  Results are consistent between runs : 0.3% difference between run 1 and run 2	

-  The estimated efficiency of 95% for AC-DC conversion is valid for COSMO	




-  Fill a cabinet on each test system with ensemble members	

-  Include blowers on XC30 (XE6 and XK7 systems have integrated blowers)	

-  New systems improve time and energy to solution (XE6 vs XC30 and XK7 vs hybrid XC30)	

-  GPU has better time to solution and energy to solution than CPU implementation	

-  Energy to solution improvements are bigger than time to solution	


-  Measuring energy and power was much easier with PMDB	


COSMO Comparison	


System	
 Rosa	
 Todi	
 Daint	
 Clogin	


Type	
 XE6	
 XK7	
 XC30	
 Hybrid XC30	


Ensemble members	
 10	
 10	
 20	
 21	


Time to solution (s)	
 3683	
 2579	
 2083	
 1539	


Mean cabinet power (kW)	
 40.22	
 62.07	
 28.27	
 41.6	


Energy to solution (kWh)	
 41.14	
 44.47	
 16.34	
 17.77	


Energy per member (kWh)	
 4.11	
 2.22	
 1.64	
 0.85	


TTS scaling	
 1.0	
 1.4	
 1.8	
 2.4	


ETS scaling	
 1.0	
 1.9	
 2.5	
 4.8	




Green500: maximize energy efficiency (Gflops/W)	

	

-  Maximize Gflops	

-  Minimize power consumption	

	

Energy efficiency per component:	

-  CPU energy efficiency is ~1.28 Gflops/W	

-  GPU energy efficiency is ~5.95 Gflops/W	

	

We have to maximize GPU work, minimize CPU	

	

HPL parameters tuning for green500:	

-  GPU/CPU split (between 90 and 100%)	

-  CPU throttling (16 p-states)	

	


Green500	


2	


2.1	


2.2	


2.3	


2.4	


2.5	


2.6	


2.7	


2.8	


1	


0.99	


0.98	


0.97	


0.96	


0.95	


CPU freq.	
 RUR	
 PMDB (node)	
 PMDB (cab)	
 Facility	


1.9	
 1526	
 1536	
 1600	
 1635	




Green500	


1
7

Most energy efficient Petaflop system:	

-  1.753 MW	

-  3’185 Mflops/W	


Top500 was:	

-  2.3 MW	

-  2’69 Mflops/W	




Thanks To:	

-  Cray for assistance in Chippewa Falls, in particular 

Steve Martin and Ron Rongstad. 	


-  Nina Suvanphim (Cray) at CSCS for her assistance.	


-  Tiziano Belotti, Rolando Summermatter and Luca 
Bacchetta from the Facility Management Group at 
CSCS. 	


-  Massimiliano Fatica (nVidia) for the hybrid HPL code.	


	




Thank You!	


Questions?...	


	

gilles.fourestey@cscs.ch	




HPC Performance Metric	


Memory-bandwidth bound	
 Vector performance bound	


O(1) Poor Flops Perf. 	
 O(log(N))	
 O(N) High Flops Perf. 	


Stencil	
 FFT 	
 Blas 3, HPL	

SpMv,	

Blas 1 & 2	


•  Long stride memory access	

•  Little reuse of accessed memory	

•  Flops < DRAM access	


•  Unit-stride memory access	

•  Reuse of accessed memory	

•  Flops > DRAM accesses	


Classic HPC metric: Time To Solution (TTS)	

	

How do we minimize TTS? More flops.	

	


Arithmetic Intensity AI := flop/DRAM accesses	



