
1	

First Experiences With Validating and
Using The Cray Power Management

Data Base Tool	

Gilles Fourestey, Ben Cumming, Ladina Gilly and
Thomas C. Schulthess, CSCS	

HPC Performance Metric	

	

Classic HPC metric: Time To Solution (TTS)	

	

How do we minimize TTS? 	

	

For CPU-bound applications it means:	

	

 maximizing the flops count.	

	

HPL (top500) is a directed reflection of this fact.	

HPC Performance Metric	

	

	

	

	

HPC Performance Metric	

	

	

	

	

We need to not only consider:	

	

Time To Solution	

	

but also:	

	

Energy To Solution	

	

	

How do we measure Energy To Solution?	

External Power Meters	

	

	

	

	

Level 3 capable measurements at CSCS	

Power Management DataBase	

Integrated Power/Energy measurement for the nodes, GPUs,
blades, racks, network and blowers stored by time or APID.	

	

-  PMDB: direct access to the database (node, blade and cabinet level, NOT in user space)	

-  RUR: Resource Utilization Reporting (node level, in user user space)	

-  PM counters: files on each node storing power/energy data (node level, in user space)	

	

PMDB example: 	

 APID | Joules | KWh	
---------+------------+----------------------	
 2134412 | 2928139984 | 813.3722177777777778	
	

Aries chips and blowers power consumption are missing.	

	

Real power (node-level) = (Joules/TTS + (# nodes)/4*Aries + Blowers)/0.95	

Real power (cab-level) = (Joules/TTS + Blowers)/0.95	

	

0.95: AC/DC conversion rate Aries: 100W (static) Blowers: 4440~5300W	

	

Resource Utilization Report	

	

	

	

RUR is the simplest way to get energy consumed by a job.	

	

In /scratch/daint/RUR/rur-<date> (in Joules):	

	

uid: 21553, apid: 2380700, jobid: 289724, cmdname: ./hpcg energy ['energy_used',
11240718]	

	

- Per APID/jobID: so full job, not parts of the code	

- Node energy, i.e CPU + GPU + RAM, no network, no
blowers: the node-level PMDB formula applies!	

PM Counters	

Sysfs files on each nodes that are updated approximately

every 0.1 seconds with power and energy for the node
and the accelerator.	

	

Polling those files will trigger an interrupt in the system so
don’t poll too often.	

Can be used to measure energy/power consumption for
regions of a code.	

PM Counters	

int get_acc_{energy,power}(){	

 int value;	

 char buff[16];	

 FILE *fid;	

	

 fid = fopen("/sys/cray/pm_counters/accel_{energy,power}", "r");	

 fscanf(fid, "%d %s", &value, buff);	

 fclose(fid);	

 return value;	

 }	

int get_{energy,power}(){	

 int value;	

 char buff[16];	

 FILE *fid;	

	

 fid = fopen("/sys/cray/pm_counters/{energy,power}", "r");	

 fscanf(fid, "%d %s", &value, buff);	

 fclose(fid);	

 return value;	

}	

Example: 	

	

$> aprun -n 1 ./energy.sh 	

62 W	

33404642 J	

33404707 J	

energy.sh:	

	

#!/bin/bash	

cat /sys/cray/pm_counters/power	

cat /sys/cray/pm_counters/energy	

sleep 1	

cat /sys/cray/pm_counters/energy	

PM Counters	

-------------- Idle Power	

idle node_power = 60 W	

idle acc_power = 20 W	

-------------- Data Transfer Power	

xfer rate = 5.692945 GB/s (0.883399 s.)	

xfer node_power = 113 W	

xfer acc_power = 52 W	

PMDB: 113 W	

xfer nvml_power = 46 W	

	

-------------- DGEMM Power	

kernel perf = 1167.82 Gflops (5.786003 s.)	

kernel node_power = 268 W, (1549 J)	

kernel acc_power = 210 W, (1215 J)	

Kernel node_energy = 1545 J	

Kernel acc_energy = 1211 J	

PMDB: 267W	

kernel nvml_power = 190 W, (1099 J)	

	

Cublas DGEMM, 15000x15000x15000	

Idle power consumption, in kW (Clogin at Chippewa Falls, 3 racks):	

	

Real Life Applications	

C0 (cab-PMDB)	

 C1 (cab-PMDB)	

 C2 (cab-PMDB)	

 Sum 	

 Corrected	

 Ext. PM	

16.333	

 16.043	

 16.452	

 48.829	

 65.420	

 66.067	

Blowers at rest, in kW (Piz Daint at CSCS, 17 blowers):	

	

PMDB	

 Corrected	

 Full System	

 Ext. PM	

4440	

 4673.7	

 79.452	

 79.448	

-  Dynamic Cluster Approximation (DCA) models of high-temperature superconductors	

	

-  Continuous time quantum Monte-Carlo solver with delayed updates which allows to use an efficient

algorithm based on BLAS level 3 operations (CPU + GPU)	

-  Each test has a different Temperature (from high temperature to below Tc) and time to solution	

DCA+	

#0	

 #1	

 #2	

 #3	

 #4	

 #5	

 #6	

 #7	

TTS (s)	

 3787	

 2725 	

 922	

 605	

 329	

 182	

 75 	

 23	

Cab PMDB (kW)	

 58.5 	

 57.2	

 55.9	

 53.6 	

 53.2 	

 49.3 	

 46.8 	

 43.0 	

External PM (kW)	

 58.6 	

 57.1 	

 53.9 	

 52.9 	

 52.2 	

 47.0 	

 42.7	

 30.5 	

Comparison is very good for large jobs	

	

Small jobs: the external power meter had a 0.1Hz smapling frequency, e.g for test #7 we only had 4
samples.	

	

-  COSMO is an atmospheric simulation code	

-  Used for both weather forecasting and climate modeling���
	

-  Fully ported run on both multi-core and GPUs.	

-  Currently production climate simulations are run on GPUs on Piz Daint.	

-  Ideal for comparing both time to solution and energy to solution on different

architectures. ���
	

-  We use COSMO-2 to compare Cray systems (XE6, XK7, XC30 & hybrid XC30) 	

-  COSMO-2 is 2-km model of the Alps currently used for daily weather forecasting

by MeteoSwiss.	

-  Use ensemble configuration with 9 nodes per member	

-  enough ensemble members to fill an entire cabinet of each system	

-  10 members on XE6 and XK7 systems	

-  20-21 members on XC30 and hybrid XC30 systems	

COSMO Application	

-  First we validated the PMDB measurements on XC30 with an external
power meter	

-  External meter measured entire system: 3 cabinets + 3 blowers	

-  PMDB cabinet level measurements for each cabinet	

-  We add 3*4440 W (unadjusted) for blowers	

-  62 ensemble members fill 3 cabinets on system and we perform simultaneous

external and PMDB measurement	

COSMO Validation	

PMDB
(kWh)	

external meter
(kWh)	

estimated
efficiency	

Run 1	

 53.63	

 56.45	

 95.0%	

Run 2	

 53.47 	

 56.27	

 95.0%	

-  Results are consistent between runs : 0.3% difference between run 1 and run 2	

-  The estimated efficiency of 95% for AC-DC conversion is valid for COSMO	

-  Fill a cabinet on each test system with ensemble members	

-  Include blowers on XC30 (XE6 and XK7 systems have integrated blowers)	

-  New systems improve time and energy to solution (XE6 vs XC30 and XK7 vs hybrid XC30)	

-  GPU has better time to solution and energy to solution than CPU implementation	

-  Energy to solution improvements are bigger than time to solution	

-  Measuring energy and power was much easier with PMDB	

COSMO Comparison	

System	

 Rosa	

 Todi	

 Daint	

 Clogin	

Type	

 XE6	

 XK7	

 XC30	

 Hybrid XC30	

Ensemble members	

 10	

 10	

 20	

 21	

Time to solution (s)	

 3683	

 2579	

 2083	

 1539	

Mean cabinet power (kW)	

 40.22	

 62.07	

 28.27	

 41.6	

Energy to solution (kWh)	

 41.14	

 44.47	

 16.34	

 17.77	

Energy per member (kWh)	

 4.11	

 2.22	

 1.64	

 0.85	

TTS scaling	

 1.0	

 1.4	

 1.8	

 2.4	

ETS scaling	

 1.0	

 1.9	

 2.5	

 4.8	

Green500: maximize energy efficiency (Gflops/W)	

	

-  Maximize Gflops	

-  Minimize power consumption	

	

Energy efficiency per component:	

-  CPU energy efficiency is ~1.28 Gflops/W	

-  GPU energy efficiency is ~5.95 Gflops/W	

	

We have to maximize GPU work, minimize CPU	

	

HPL parameters tuning for green500:	

-  GPU/CPU split (between 90 and 100%)	

-  CPU throttling (16 p-states)	

	

Green500	

2	

2.1	

2.2	

2.3	

2.4	

2.5	

2.6	

2.7	

2.8	

1	

0.99	

0.98	

0.97	

0.96	

0.95	

CPU freq.	

 RUR	

 PMDB (node)	

 PMDB (cab)	

 Facility	

1.9	

 1526	

 1536	

 1600	

 1635	

Green500	

1
7

Most energy efficient Petaflop system:	

-  1.753 MW	

-  3’185 Mflops/W	

Top500 was:	

-  2.3 MW	

-  2’69 Mflops/W	

Thanks To:	

-  Cray for assistance in Chippewa Falls, in particular

Steve Martin and Ron Rongstad. 	

-  Nina Suvanphim (Cray) at CSCS for her assistance.	

-  Tiziano Belotti, Rolando Summermatter and Luca
Bacchetta from the Facility Management Group at
CSCS. 	

-  Massimiliano Fatica (nVidia) for the hybrid HPL code.	

	

Thank You!	

Questions?...	

	

gilles.fourestey@cscs.ch	

HPC Performance Metric	

Memory-bandwidth bound	

 Vector performance bound	

O(1) Poor Flops Perf. 	

 O(log(N))	

 O(N) High Flops Perf. 	

Stencil	

 FFT 	

 Blas 3, HPL	

SpMv,	

Blas 1 & 2	

•  Long stride memory access	

•  Little reuse of accessed memory	

•  Flops < DRAM access	

•  Unit-stride memory access	

•  Reuse of accessed memory	

•  Flops > DRAM accesses	

Classic HPC metric: Time To Solution (TTS)	

	

How do we minimize TTS? More flops.	

	

Arithmetic Intensity AI := flop/DRAM accesses	

