
Debugging scalable hybrid and accelerated applications on the Cray® XC30™ and
CS300™ with TotalView®

Chris Gottbrath
Rogue Wave Software

Boulder, CO
Chris.Gottbrath@roguewave.com

Abstract — TotalView provides users with a powerful way to
analyze and understand their codes, and is a key tool in
developing, tuning, scaling, and troubleshooting HPC
applications on the Cray XC30 Supercomputer and the CS300
Cluster Supercomputer Series. As a source code debugger,
TotalView provides users with complete control over program
execution and a view into their program at the source code and
variable level. TotalView works with most any HPC
application written either in C/C++ or Fortran, regardless of
how it achieves parallelism (MPI, MPI+OpenMP,
MPI+CUDA™, and both native and symmetric mode
debugging with the current generation of Intel® Xeon Phi™
coprocessor) and gives users a complete view of the program to
be debugged through a single graphical debugger interface.
TotalView uses a scalable tree-based architecture and can scale
up to hundreds of thousands of processes. This talk will
introduce new users to TotalView's capabilities and give
experienced users an update on recent developments including
the new MRnet communication tree. The talk will also
highlight memory debugging with MemoryScape (which is now
available for the Xeon Phi), deterministic reverse debugging
with ReplayEngine, and scripting with TVScript.

Keywords—Debugging, Xeon Phi, CUDA, Hybrid

I. INTRODUCTION
This paper accompanies the talk given at CUG 2014, and

provides a status update on the TotalView debugger for the
Cray XC30 supercomputer and CS300 cluster supercomputer
architectures. It expands on material presented at CUG 2013.

The particular focus of this paper is on two topics. First,
recent advances in TotalView which are relevant to Cray
users: updated support for CUDA, expanded support for the
Xeon Phi, memory debugging on the Xeon Phi, and
improved ReplayEngine support for the Cray. Second, the
progress being made to achieve high performance and
responsiveness for interactive debugging at scale on the
Cray.

II. DEBUGGING ON THE CRAY XC AND CS300 WITH
TOTALVIEW

TotalView provides a powerful and intuitive graphical
source code debugging environment for a variety of different
supercomputing architectures including the Cray XT™, XE™,

and XC™. TotalView gives users control over and visibility
into program execution. 1

TotalView provides users control over the program
through a single debugger interface. Process and thread
control features allow users to easily synchronize all the
threads and to exert nuanced control over large parallel jobs.
The debugger also provides exceptional capabilities for
controlling thread execution. Breakpoints can be set with
thread width so users can more easily work with thread
parallelism constructs, such as OpenMP parallel for loops.

TotalView features the ability to attach to an arbitrary
subset of a parallel job and change that subset on the fly.
TotalView gracefully handles multiple program, multiple
data (MPMD) parallel jobs – with automatically generated
groups that span the entire job, and other groups that operate
only on the subsets that share executable images.

Variables and complex data structures can be examined
and navigated with an intuitive variable display, data
visualization, and exploration capability. This display
capability makes type casting, working with pointers, and
nested aggregate data types extremely easy and
straightforward.

Since many scientific codes feature very important array-
type data, TotalView provides a powerful array display.
Arrays can be sliced and displayed using arbitrary striding
which can be specified with Fortran slice notation (even in
C). Array data can be displayed in three ways:

1. Memory-ordered elements in list form
2. 2D slices displayed in spreadsheet format
3. Graphically with line plots and surfaces

TotalView excels in working with arrays of aggregate

data types. The user interface features a “dive-in-all”
capability that makes extracting numerical fields from array-
of-aggregate type structures very easy.

Data abstraction with tools like C++ template libraries
can be a great thing, but it can also serve to unintentionally

1 As previously discussed in: Gottbrath, Chris. Proceedings
of the Cray Users Group 2013. “Debugging and Optimizing
Programs Accelerated with Intel® Xeon® Phi™
Coprocessors”

obfuscate what is happening in a program when being
debugged. Rogue Wave provides TotalView with automatic
translation support for STL list, map, vect, set, multi-set, and
multi-map and string classes. These objects transform
automatically into harmonious array-, structure-, or array-of-
structure type objects. Furthermore, TotalView provides the
user with the ability to transform their custom data types in
the same manner.

A. MPI debugging
TotalView integrates with the Cray aprun command.

The user manual provides greater details, but for a high-level
overview, users can simply use qsub to create an interactive
partition on the Cray system and then run:

 TotalView aprun –a –n<num> a.out

The debugger queries aprun for information about all the
MPI tasks that make up the mpi job and then attaches to all
of them.

B. NVIDIA GP-GPU accelerator debugging
TotalView supports debugging codes that take

advantage of NVIDIA® GP-GPU accelerators on the Cray
XK™, XC and CS™ series supercomputers.2 TotalView 8.13
supports CUDA 4.2, 5.0, and 5.5 and CCE 8 OpenACC
applications. TotalView provides full visibility into both
what is running on the host processor and in the GP-GPU
accelerator. The control TotalView can exert over the
scheduling of the device threads on the accelerator is less
than what users may be accustomed to from traditional
multithreaded debugging, but it is as much as TotalView is
able to provide with the CUDA runtime. Once a warp is
launched on a SM, TotalView can control the progress of
that warp with stepping commands (individual device
threads can’t be stepped or run separately from the warp)
and breakpoints can be used to halt the running kernel when
the first thread hits the breakpoint.

With CUDA 5.5, TotalView supports CUDA dynamic
parallelism. Dynamic parallelism is the ability to launch a
new kernel from within a kernel already running on the
accelerator.

C. Intel Xeon Phi coprocessor debugging
The Intel Xeon Phi coprocessor, which is an available

option in Cray XC and Cray CS300 series systems, is also a
valid debug target. There are three ways Xeon Phi
coprocessors have been used: native (called autonomous by
Cray) mode, symmetric mode, and offload mode. These
modes are different ways of taking advantage of the Xeon
Phi to accelerate computations within an application.

2 Gottbrath, Chris Proceedings of the Cray Users Group
2012 “Debugging and Optimizing Scalable Applications on
the Cray”

In a native or autonomous mode program the application
is compiled specifically for the Xeon Phi and run across the
Xeon Phi coprocessors as a hybrid MPI + OpenMP
application (usually OpenMP is used, TBB or pthreads
could be used instead to provide thread-level parallelism).
Running TotalView on a native mode application is very
similar to running TotalView on any other MPI application.
The only difference is that TotalView runs as a cross-
platform debugger, with TotalView running on the Xeon
host processor and the application (and TotalView’s tvdsvr
debug agents) running on the Xeon Phi. In this mode the
user’s application does not run directly on the Xeon host
processor.

In a symmetric mode application the target program
being debugged actually runs as a heterogeneous hybrid
(MPI + OpenMP/Pthreads/TBB) application across both the
host Xeon and Xeon Phi coprocessor nodes. The added
complexity here is that some MPI ranks are running on
architecture A and some are running on architecture B. With
the Xeon and the Xeon Phi, the architectures are very
similar, but not exactly the same. Also, load balancing is
frequently a challenge since the two node types can be
expected to progress at different rates through numerical
code. Running TotalView on this is nearly the same, simply
launch the MPI application and TotalView resolves which
nodes are host processors and which are coprocessors, and
does the right things. All the MPI ranks appear in the
debugger as part of the same control group.

An offload application treats the coprocessor as a
computational accelerator, following more directly the
model of languages like OpenACC or OpenMP 4.0. The
developer annotates routines they would like to have
offloaded to the coprocessor and the Intel compiler and
Xeon Phi runtime create a context on the Xeon Phi and
transfer data and code to the coprocessor. TotalView
supports debugging single node offload programs. The user
can freely debug both the host code and the offloaded
regions.

D. Memory debugging
TotalView includes MemoryScape, a memory debugger

that gives users the ability to detect memory leaks, heap
memory allocation overruns, and execute heap memory
analysis and optimization. MemoryScape is integrated into
TotalView and supports performing memory analysis across
the many tasks of an MPI job.

MemoryScape supports the Knight’s Corner Xeon Phi
coprocessor in parallel programs that are accelerated using
autonomous and symmetric mode.

E. Reverse debugging
One of the most unique features of TotalView is its

reverse debugging feature. Reverse debugging allows
running the program backwards from the point where the
failure appears to pinpoint the root cause of that failure.

TotalView’s reverse debugging feature is called
ReplayEngine, which allows users to step backwards
through the program’s execution history while utilizing a
record and deterministic replay technique. As the program
runs, the tool records program execution, with particular
attention paid to non-deterministic inputs such as I/O, thread
context switches, and operating system calls. If at any point
the user wishes to see the previous state of the process, the
tool arranges to place a synthetic unix process in that same
state. This is done by creating a copy of the code and data
state that was saved earlier and then re-executing the code
deterministically along exactly the same execution
trajectory that the program took during the record phase.

All of this is managed behind the scenes by
ReplayEngine. The user interface simply shows “backwards
step” and “backwards continue” commands that can be used
to take the process back to earlier states. Once the process
has been replayed to the desired state, all the usual process
and thread inspection capabilities are usable. Any variable
or data (even those that the user did not previously know
would be important) can be inspected during this replay
process.

The deterministic nature of this replay process makes it
especially helpful to track down hard to reproduce or
intermittent bugs. These defects, which might otherwise
take days or weeks to diagnose without TotalView, can
sometimes be resolved within a single session with
ReplayEngine.

The Cray CCE compiler on Cray XC systems makes
frequent use of AVX instructions to provide performance
for numerical codes. The ReplayEngine capability in
TotalView 8.12 had limited support for AVX instructions
and had difficulty supporting users on the Cray XC.
TotalView 8.13’s ReplayEngine does not have this problem
and can be used on Cray XC systems with ease.

F. Scripting with TVScript
TotalView is most often used for interactive graphical

debugging, but it also is completely scriptable with a TCL
based CLI. This can be used to automate repetitive tasks and
drive completely non-interactive debugging sessions.

TVScript is a simple way to drive non-interactive
debugging sessions. TVScript is a driver script, written in
the TotalView TCL command line interface language,
which takes a target executable and a set of instructions
about where to set breakpoints, and then drives the target
program towards completion. TVScript has an event-action
model. An event is triggered each time a program hits a
breakpoint. Other events occur when the program reaches
certain other specifically defined states, such as program
completion, segmentation violations, or memory errors.
TVScript driver program can take a variety of different
actions in response to these events.

The most frequent action is to report information to a
debugging logfile, which can be parsed after the fact to
diagnose the behavior of the program. TVScript merges

some of the benefits and conveniences of “print” style
debugging with the control and capabilities of a powerful
interactive debugger.

TotalView, MemoryScape, ReplayEngine, and TVScript
are fully supported for Cray XC and CS300 environments.

III. SCALABILITY
Rogue Wave is collaborating with specific customers on

a scalability project. The project team members implemented
a server tree network using the MRnet technology. The tree
allows for scalable broadcast and reduction techniques to be
used on communication between the debugger and debug
agent processes.

This work provides a foundation to deliver both large
absolute scale (debugging across very large total numbers of
processes) and responsiveness and performance at scale
(fast startup and fast debugger operations when debugging
at scale). In terms of absolute scale, TotalView has
debugged across 786,432 cores and as many as 1,048,576
threads on the Lawrence Livermore National Laboratory
(LLNL) Sequoia system using this new scalable
infrastructure.

In terms of performance at scale, work is being done to
tune the performance of launch and attach in order to
optimize the responsiveness of various debugger operations
such as stepping, displaying program status, and variable
data. Performance at scale varies depending on a number of
characteristics, including the linking model (static or
dynamic), the total number of debug symbols, and the use of
language features like C++ templates. For this reason a
collaborative methodology called application driven tuning
is used, which involves tuning debugger behavior on real
programs at scale on our collaborator’s leadership-class
supercomputers.

This work is being done across three platforms: the
IBM® Blue Gene™, Cray XE, and x86-based Linux® +
Infiniband™. The MRnet infrastructure is already in place
and users can receive a technical preview of TotalView that
includes the MRnet capability by contacting the author.
MRnet will be fully folded into the product with
documentation in a future release of TotalView.

Optimization of TotalView operational performance
using the new infrastructure is ongoing. Rogue Wave is
working with a range of different applications and tuning
the debugger’s performance with respect to those
applications.

Rogue Wave conducted testing using the ALE3d multi-
physics code from LLNL on the Sierra system. ALE3d is a
C++ application and was dynamically linked with 16 shared
libraries. Sierra is a 64-bit Linux cluster with Infiniband
interconnect and 12 cores per compute node. Runs were
conducted with 24 ranks per node. This represents a
substantial and realistic target program, far more complex
than a “hello_mpi_world” app.

Two things are critical for performance at scale. One is
the time to get a parallel session started under the debugger.
This start-up time only occurs once per debugging session,
but what really matters is the time taken to perform
individual debugger operations that will be performed many
times during a debugging session. The start-up time
includes the time to launch the job, attach the debugger, and
stabilize the processes. The second critical item is the time
needed for the debugger to perform specific operations.
Rogue wave has optimized gathering and displaying the PC
address and report the time it takes to request, gather, and
display the PC data from all the MPI processes below. It
should be emphasized that these are timings gathered during
an application driven optimization process that is still
ongoing.

This test captures both the start-up time and data

aggregation time. Rogue Wave has tested on an XE6
(Hopper) and XK7 (Titan) as part of this larger project. Both
tests focused around start-up time. At approximately 16,000
MPI tasks, start-up took about 70 seconds on Hopper with an
application called IRS. At the same scale it took about 190
seconds on Titan with an internal test application called
tx_mpi_longmsg.

One distinct benefit of the TotalView architecture is that
the memory usage on the compute nodes is very low and
does not increase significantly as the number of processes or
threads on that node increase. This is critical because it
reserves the compute node memory for the users application
that is being debugged. Alternate techniques have been
known to hang or crash the session due to excessive demand
for compute node resources in other, less efficient, tools.

IV. CONCLUSION
This paper discussed the current status of TotalView for

the Cray XC and CS 300. This involved reviewing the
different kinds of debugging TotalView supports: source
code debugging of C/C++ and Fortran, MPI debugging,
NVIDIA GP-GPU debugging, Xeon Phi debugging,
memory debugging, reverse debugging, and batch
debugging. This paper highlighted that over the last year
Rogue Wave has added support for CUDA 5.0 and 5.5
debugging, Xeon Phi native, symmetric, and offload
debugging, Memory debugging on the Xeon Phi, and
corrected a frustrating defect in ReplayEngine that made it
hard to use on the Cray XC. This paper also gave some
specifics on Rogue Wave’s work to provide a scalable
debugger with great performance and responsiveness both at
low and high scale.

