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Abstract—Understanding the complex interplay between ap-
plications competing for shared platform resources can be key
to maximizing both platform and application performance. At
the same time, use of monitoring tools on platforms designed
to support extreme scale applications presents a number of
challenges with respect to scaling and impact on applications
due to increased noise and jitter. In this paper, we present
our approach to high fidelity whole system monitoring of
resource utilization including High Speed Network link data
on NCSA’s Cray XE/XK platform Blue Waters utilizing the
OVIS monitoring framework. We then describe architectural
implementation details that make this monitoring system suit-
able for scalable monitoring within the Cray hardware and
software environment. Finally we present our methodologies
for measuring impact and the results.

I. INTRODUCTION

On large scale High Performance Computing (HPC) plat-
forms there can be significant variation in application run
times due to other concurrently running applications and ap-
plication placement. This variation on the Cray XE/XK plat-
form stems largely from applications’ contention for shared
High Speed Network (HSN) resources for inter-process
communication and storage subsystem access. Therefore,
understanding how applications utilize the HSN can be key
to maximizing both platform and application performance.

This research is part of the Blue Waters sustained-petascale computing
project, which is supported by the National Science Foundation (award
number ACI 1238993) and the state of Illinois. Blue Waters is a joint
effort of the University of Illinois at Urbana-Champaign and its National
Center for Supercomputing Applications.

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

Such understanding can only come from taking a whole
system view of metrics affecting performance through the
analysis of hardware performance counters and collected
measurements for differing network traffic types. This re-
quires an application independent monitoring system which
can provide high fidelity snapshots of performance related
metrics of interest including HSN traffic/contention. The
major challenges to such a monitoring system are scalability,
access to pertinent data, and the ability to minimize adverse
impact on running applications resulting from increased
system and network noise.

NCSA collaborated with Cray and Sandia National Labo-
ratories (SNL) to evaluate the suitability of SNL’s OVIS [1],
[2] monitoring system for performing run-time whole system
monitoring of performance related metrics of interest on
their 27,648 node Cray XE/XK platform Blue Waters [3]
with specific attention to previously unavailable HSN met-
rics. As part of this evaluation: NCSA defined a set of
performance related metrics to be collected as well as
collection intervals; SNL and Open Grid Computing (OGC)
implemented several enhancements to OVIS’s Lightweight
Distributed Metric Service (LDMS) framework to enable
efficient collection, transport, and storage of these metrics;
and Cray enhanced access to its HSN performance counters
pertinent to the NCSA defined metric set. In this paper
we present details and evaluation of this work. We discuss
the choice of the performance metrics collected, including
details of attribution of application vs. OS traffic, and
intended use cases for the data. We also discuss impediments
to gathering HSN performance metrics in a lightweight
fashion and how those impediments were overcome. We
provide a description of the architectural details of the



OVIS monitoring framework that address scalability and
application impact. Additionally, we discuss details of a
number of enhancements to the monitoring framework that
were motivated by NCSA’s requirements for production
deployment of large scale data analysis. Further, we present
our evaluation criteria and methodologies for assessing the
impact of OVIS’s monitoring on running applications and
benchmarks. In particular, we evaluate both additional OS
noise introduced and changes in the run times of various
applications over their baseline values for several different
collection intervals. Finally we present the results of these
evaluations along with our conclusions on the viability of
this approach.

II. DATA SET

NCSA needed to better understand the current state of
the Cray HSN at any given time. As we began to see more
impact from network contention, it became apparent that
we needed a method to gather more detailed information
regarding the usage of individual network links at the
administrative level for analysis. Cray suggested that OVIS
was the preferred method for gathering HSN metrics for a
long term solution. Given the broader scope of OVIS beyond
merely link data, we assembled a team of systems engineers
and application specialists to compile a list of metrics that
could help us best analyze system and user behaviors.

After finalizing a metric set covering processor, storage,
and network subsystems, we needed to balance the value
of the data against both the performance impact on appli-
cations and data volume that would need to be stored. We
determined that we could achieve most goals with a one
minute collection rate of data, but incorporated tests of one
second intervals to measure the potential impact of higher
rates.

A. High Speed Network Performance Metrics

1) Summary: We report the following HSN metrics for
each XE/XK node:

• Total Output Bandwidth
• Total Input Bandwidth
• Total Fast Memory Access (FMA) Output Bandwidth
• Total Block Transfer Engine (BTE) Output Bandwidth
• Total Non-Application Output Bandwidth
• Total Non-Application Input Bandwidth
and the following metrics for each network link, or HSN

torus dimension:
• Bandwidth
• Average Packet Size
• Time Stalled
• Channel Status
We derive HSN performance metrics from two sources:

performance counter registers on the Gemini devices [4] and
Linux kernel modules software implementing the Gemini
device driver and the LNet driver.

2) Metrics Acquisition: The performance counters were
already available via the gpcd kernel module [5]. This
module provides an interface for applications to sample the
counters to measure their own use of the HSN. This interface
has several drawbacks for this monitoring effort. Notably, it
requires revalidating the set of registers requested each time
the registers are sampled.

Additionally, not all nodes on the system combine the
registers in the same manner to produce the metrics. Each
Gemini has 40 network channels. Certain of those channels
may be used for one torus dimension on one node, and
for a different dimension on another, depending on a given
system’s topology, and upon each node’s physical location
in that system.

As part of this work Cray has provided a new kernel
module, gpcdr, providing a more suitable interface to the
performance counter registers for this effort and userspace
tools to configure it appropriately for the node.

A single configuration file defines what metrics to report.
For each metric, it defines the combination of registers to use
to generate them. For the metrics that are defined per-NIC,
the configuration file defines the metric in terms of specific
registers. For the metrics defined per-dimension, the metric
is defined using partial register names that are later combined
with channel numbers to fully specify the registers.

Cray also enhanced the RCA subsystem to provide each
node with the mapping of links to dimensions for its Gemini.
This mapping will not change while a node is booted. When
each node boots, an init script combines the configuration
file with the link-dimension mapping, and configures the
gpcdr module to compute and report the desired metrics.

The gpcdr module reports the metrics via files in the
/sys file system, which are read by the LDMS sampler. The
gpcdr module reads the registers and calculates the metrics
when the files are read, allowing the daemon to control the
poll rate.

3) Metrics details: The gpcdr module calculates the
per-link metrics, except for Channel Status, from per-channel
performance counters. It calculates the per-node metrics
from Gemini NIC performance counters. It calculates the
Channel Status metric from registers that are not perfor-
mance counters. It reports the number of functioning lanes
in each Link at the time of each sampling.

In addition to the HSN metrics acquired through gpcdr
and reported directly, the LDMS sampler produces several
derived metrics based on these counters, collection time
interval, network media speed, and others as follows:

• Percent of bandwidth used in each torus dimension
is calculated from the change in traffic in that di-
mension over the sampling interval divided by the
actual time since the previous sample was collected.
This is converted to a percentage of the maxi-
mum using knowledge of the network media type
maximum bandwidth in the following way: 100 ∗



(∆traffic/∆time/max bandwidth) with traffic in bytes,
∆time in sec, and bandwidth in bytes/sec.

• Average packet size for each torus dimension is calcu-
lated as the quotient of the difference in traffic divided
by the difference in packets over the last sampling
interval.

• Percent of time stalled for each torus dimension is
calculated from stall count, number of links, and the
time delta between current and previous samples as:
100 ∗ (time stalled/num lanes)/∆time with time and
time stalled in nanoseconds.

Note that the time deltas are taken between gpcdr
timestamps and not sampler timestamps as the former reflect
when the gpcdr metrics were collected by the module.
Where percentage values are calculated they are multiplied
by 106 because we report integer values and this provides
more dynamic range. Since each Gemini is shared by two
nodes we could collect all HSN related information using
half of the nodes. We decided, however, that in the interest
of simplicity through uniformity, we would collect the same
counters on both nodes connected to each Gemini. This also
provides redundant Gemini performance counter information
in case one of the nodes sharing a Gemini is down.

4) HSN Metrics Limitations: Due to limitations of the
Gemini performance counters, several of the metrics can
only be approximated. These are the per-node Total Output,
FMA Output, and BTE Output metrics. Two approximations
of the Total Output and BTE Output metrics are provided,
distinguished by the optA and optB suffixes.

B. Non HSN Metrics

In addition to the HSN performance metrics described
above, NCSA identified other information to collect for
understanding system performance. Of note are:

• Lustre file system counters
• CPU load averages
• Current free memory
• LNet traffic counters
• ipogif counters
The ipogif component of the Gemini device driver reports

how much HSN traffic is IP traffic. The LNet driver reports
how much is LNet traffic (e.g., the Lustre and DVS file
systems). All IP and LNet traffic is deemed to be system
traffic. All other traffic is deemed to be application traffic.

III. OVIS

OVIS is a suite of HPC monitoring tools, under active
development at SNL and OGC, that collectively provide: 1)
lightweight collection of metrics from HPC platform compo-
nents, 2) a variety of analysis and visualization tools to oper-
ate on stored data, 3) the ability to evaluate data against some
criteria as it is being collected, and 4) the ability to provide
notification to system administrators, feedback to platform
components (e.g. resource manager), and performance data

to running applications. This section focuses on use of the
Lightweight Distributed Metric Service (LDMS) component
of the OVIS suite and its application to Blue Waters. In
particular we discuss details of the architecture that make
it viable for providing collection, transport, and storage of
the data metrics to the NCSA system administration team on
relevant time scales with minimal adverse impact on running
applications. In this section we also describe enhancements
that we have made to the infrastructure in order to meet
NCSA’s needs with respect to size, time attribution, ease of
storage, and timely whole system analysis.

A. LDMS: The OVIS Data Collection, Transport, and Stor-
age Framework

Figure 1. Simple LDMS use case

The Lightweight Distributed Metric Service consists of: 1)
a daemon (ldmsd) that allocates data set memory, supports
data sampler, storage and filter plug-ins, requests data sets
from other ldmsd’s, and listens for connection requests, 2)
data sampler plug-ins that periodically sample data on-node
3) storage plug-ins that write data to a variety of storage
formats, and 4) multiple transport methods that define the
media of data transmission and whether a socket connection
or Remote Direct Memory Access (RDMA) will be used.
In this section we describe each of these components,
their functional characteristics, and the techniques used to
minimize monitoring overhead.

Figure 1 illustrates the single tiered topology includ-
ing redundant fail-over connections. Because service nodes
where the aggregators run are a scarce resource, the ratio of
monitored nodes to aggregators must be reasonably large.
Currently upper limit of this ratio is about 15,000:1.

1) Metric Sets: Data is stored as collections of data
values called metric sets. The data contained in a particular
metric set can be raw or derived with all values taken from
a particular data source (e.g. /proc/meminfo) or with
values coming from a variety of sources.

Metric sets also contain metadata, including name, size,
and generation numbers (GN). Whenever a metric set’s



Figure 2. Diagram of LDMS Metric Set Memory.

definition changes or when a metric value within a set has
been updated, the GN of the set’s metadata or data, respec-
tively, changes. Generation numbers enable a consumer to
discriminate between current and previous instantiations of
data. The metric set is laid out in memory such that the
metadata of the metrics are in one contiguous memory region
and the data values are in another (Figure 2); this allows the
data values to be efficiently acquired as a memory chunk
independent of the associated metadata thus minimizing
network perturbation.

Information about metric sets, metrics, and metadata can
be obtained through the ldms_ls command line utility.
Parameters to ldms_ls include the host being queried,
transport, and port. Selected lines for a metric set using the
optional -l flag (long listing) and -v flag (verbose listing)
are shown in Figure 3.

Note that a metric set in this case is associated with a
single component identified by a unique component_id
which is the node identification (NID) number from which
the data was gathered (e.g. the component id for nid00044
is 44).

2) Sampler Plug-ins: Samplers are plug-ins to the LDMS
framework.

Because we target minimal processing on the node, raw
data values rather than functions of values, typically consti-
tute the metrics. However, if there is the desire to directly
utilize derived data (e.g. quickly search data for outliers
without having to do differences as a post processing step)
then this processing can be performed in the sampler and
may even decrease the amount of data needing to be moved
over the network.

3) LDMS Daemon: The LDMS component that orches-
trates sampling, transport, and storage is a daemon called
ldmsd. Both data and metadata associated with a sampler’s
metric set are written into local memory. The data portion

Figure 3. Representative ldms ls long and verbose listing for the Blue
Waters metric set. While link-aggregated metrics are reported separately,
here for readability, after the first instance (traffic), only one value (Z-) is
shown. Such metrics are indicated by (XYZ +/-). Similarly, Lustre metrics
are reported per Lustre mount point (3 for Blue Waters) here only 1 is
shown.



is over-written each time a new datum is collected. Thus an
ldmsd retains no history.

LDMS daemons run multiple worker threads to per-
form the following functions asynchronously: The sampling
thread takes care of scheduling sampler plug-ins to run
according to their configured period. The period for each
sampler plug-in is independent of all others being run on a
given ldmsd and is user configurable during run time.

A connection thread listens for a socket connection re-
quest from an aggregator or ldms_ls query. A persistent
connection is then established over the requested transport
type. Connections are maintained for the mutual life of the
ldmsd pair and an ldmsd may maintain multiple simulta-
neous pair-wise connections (e.g. for fail-over standby).

A configuration thread handles the task of external con-
figuration of ldmsd via a Unix Domain Socket connection.
This configuration consists of defining sampler plug-ins,
sampling periods, connections to other ldmsd’s and their
collection periods, and storage plug-ins to load along with
file system information, output format, and data-sets to be
written.
ldmsd’s operate asynchronously in a pairwise fashion

e.g., a request for data results in transfer of data from
sampler to aggregator only and does not result in additional
queries to other ldmsd’s.

4) Writing to a Store: The LDMS daemon also supports
a variety of storage plug-ins (CSV, MySQL, Flat File). Be-
cause LDMS uses an asynchronous pull model it is possible
for an aggregator to read a sampler’s data before or during
an update. We elect to drop rather than store redundant or
inconsistent data. Thus, before values are written, both the
GN of the new set must have changed and the consistent
flag must be TRUE. If either or both of these conditions is
not met collection is rescheduled for the next configured
interval. Thus, there can be data gaps in the store due
to either samplers not updating or the unlikely event that
the aggregator happens to perform a collection during a
sampler update. Such losses are unlikely, however, when
utilizing the synchronous mode of operation and scheduling
the aggregator to have a time offset greater than expected
clock skew plus sampling time.

B. Enhancements to LDMS for Blue Waters

Synchronization: Because LDMS daemons on different
nodes all perform sampling and aggregation asynchronously,
the data sampled in a given recording cycle on one host
could be up to two sampling periods removed from that of
another host. Since the original target was a sampling period
of 10 minutes, the resulting data could at best be used to
gain a vague understanding of trends but certainly not for the
kind of understanding NCSA needed (Section II). Thus we
implemented a synchronous feature which enables all nodes
to sample within a small time window of approximately
5ms. Figure 4 (top) shows the time at which samples were

taken, according to each node’s clock, across 10,000 nodes
and over a 25 minute time interval where the sampling
and aggregation intervals were each 30 seconds. Figure 4
(bottom) zooms in on the interval around the last sample
and shows the tight grouping of samples. Note that this does
not take into account clock skew and is not related to the
time at which the aggregator collects the samples. Using this
feature we configure the aggregators to start their collection
from the compute nodes at an offset from the nodes sample
time that is sufficient to ensure all collected metric sets are
from the same sample time.

Figure 4. Synchronized sampling and collection over 10,000 Blue Waters
compute nodes. Y-axis is nid number. The top plot shows 30 second
collection intervals over a 1500 second time window. The bottom plot
zooms in on a particular collection interval to show the tight grouping.

Minimal Image Footprint: On the Cray XE/XK plat-
form, compute nodes boot an image served by the boot node.
Larger images take longer to boot. Since the image resides in
main memory, the image size also reduces memory available
to applications. Starting monitoring at boot time on all nodes
(including service nodes) requires inclusion of a minimum
set of LDMS libraries and binaries in the system image. In
order to minimize the image footprint we made some com-
ponents of the ldmsctl interface (readline and ncurses)
compile time options thus saving 1MB of space over the
original size. The current size of LDMS required libraries
and binaries is 2.5MB. In addition to LDMS component, an
interconnect text file (obtained on the system management
workstation using the rtr --interconnect command)
containing link type information is required in order to
calculate percent of bandwidth used. For Blue Waters this
file is 41MB (16x the size of the LDMS image and 10%
of the original compute node image). We algorithmically
consolidated this to 31kB while still retaining the per node
direction and media type information thus making it viable



for inclusion in the image.
Ease of system wide start-up: A problem faced by all

HPC systems is that not all components serve the same func-
tion (e.g. compute nodes vs. service nodes) and thus there
are usually differences in what file systems are mounted,
number of cores, amount of memory, and connectivity. In
keeping with ease of data handling, we decided to have all
metric sets contain the same data whether or not the data is
actually available on any particular node. Thus the resulting
common metric set contains a superset of the desired data
across both compute and service nodes. In the event the data
does not exist, the sampler records zeroes. This enables use
of a simple start script that is the same for all nodes and
the ability to bulk load data from all nodes into the same
database without preprocessing.

Single time attribution: In order to facilitate analysis,
data sampled concurrently should all have a single time
stamp. While the canonical LDMS implementation supports
multiple concurrent samplers which typically are based on
a single data source each, for this application we created
a single multi-source sampler for the data of interest. Thus
all desired data, including some derived data, is included in
a single metric set. Since the time to sample, derive, and
write all of the data for a metric set is approximately 400
microseconds and the timescales of interest are seconds to
minutes, this gives a reasonably representative single time
stamp for all data.

Ease of Large Scale Post Processing of Data: As of
the start of this project the LDMS infrastructure supported
multiple storage formats but stored each data type separately
(e.g. X+ stalls stored to own file with time stamp per data).
Because we wanted to be able to bulk load data we wanted
data to be stored at the time stamped metric set level. This
necessitated a re-write of the interface to the storage plug-ins
as well as data structures for data movement within ldmsd.
The result is that we are now storing each metric set as a
set of comma separated values (CSV) to a single flat file
which can be bulk loaded into a MySQL database for post
processing.

C. Implementation on Blue Waters

Figure 5 presents a high level overview of the topology
and configuration of the LDMS monitoring software on Blue
Waters. The associated components and configurations are
described below.

Sampler Configuration: As described in Sections II
and III-B, all sampler ldmsd’s present identical metric
sets for collection by their aggregators independent of node
type and availability of particular data. The metric sets are
comprised of 194 metrics and represent 1,552 Bytes of data
to be transmitted over the network for each compute node
at each collection interval. Representative data from this
metric set is shown in Figure 3. We defined two collection
frequencies normal and high to be once per minute and

Figure 5. LDMS configuration on Blue Waters. Note that this includes
redundant connections to each sampler ldmsd for fast fail-over capability

once per second respectively. The impact of collection of
this metric set at these frequencies is described below in
Section IV. Whether collecting at sixty second or one second
intervals, all samplers are scheduled for the same wall clock
time (Figure 4).

Aggregator Configuration: Aggregators pull metric set
data from sampler ldmsds using the Remote Direct Memory
Access (RDMA) protocol. RDMA was chosen in this de-
ployment to eliminate collection related impact on compute
node CPU utilization. We configured four aggregators to
each be a primary aggregator of metric sets for a quarter
of the nodes (6,912) and a fail-over aggregator for another
quarter of the nodes. As can be seen in Figure 5 aggregators
A1 and A2 are paired for fail-over as are aggregators A3
and A4. The sampler to aggregator pairings were chosen
to minimize metric set network impact. The aggregators
are configured to collect on the same time intervals as the
samplers but with sufficient offset from the samplers to allow
all samples to have been taken before collection by the
aggregator. Because of possible clock skew we configure
the aggregators collection offset to be that of the samplers
plus 0.4 seconds.

Store Configuration: Aggregators are configured to
store to flat file with a CSV format. This means that at each
aggregation period each metric set from each node is written
as a comma separated set of data to a flat file which in this
case is a named pipe that is forwarded by syslog-ng to a host
where it is bulk inserted into a MySQL database. A header
file is written that describes what particular data is in each
location. The common metric set guarantees the data and
order is the same for every node’s metric set. Additionally,
though each piece of data has an associated component
identifier, we use a single identifier for all data for a given



node. To save on storage bandwidth and make it possible to
do bulk inserts we only write the component identifier once
for each metric set storage event along with the time stamp.
The time stamp itself is broken into two comma separated
values, seconds since the epoch and microseconds past
the second. Splitting time this way enables faster database
loading and faster searches than storing it as a single float
value.

IV. PERFORMANCE

Test Selection: The Cray Linux Environment is a
streamlined Linux implementation focused on minimizing
the operating system impact on the scalability of applica-
tions. We must balance collection cost against the potential
impact to application performance. We compiled a suite of
benchmarks and applications to test the various impacts of
both the collection of the metrics on each compute node
and the transfer of the data off of the compute resource. We
measured the operating system noise impact of LDMS costs
using the PAL System Noise Activity (PSNAP) benchmark.
We used the Intel MPI Benchmark (IMB) and Cray’s internal
tool LinkTest to measure network performance variations
at full scale for collective operations and individual link
performance respectively. Finally, we selected the MIMD
Lattice Computation (MILC) QCD application and SNL’s
Minighost to measure the holistic impact on applications.

Test Configuration: Five monitoring configurations
were used to gather performance data:

• Baseline with no data collection or aggregation (novis)
• Once every 60 seconds collection with no aggregation

(c60noa)
• Once every 60 seconds collection with aggregation

(c60a60)
• Every second collection with no aggregation (c1noa)
• Every second collection with 1 second aggregation

(c1a1)
These sample scenarios were chosen a) to measure the

network transfer separately from the local impact on the
compute nodes, i.e., no-aggregation conditions would po-
tentially impact the node performance, but not give rise to
any network traffic, and b) demonstrate potential impacts at
higher than targeted data sampling rates. All tests, including
partial scale, were executed with no other applications
utilizing the HSN.

A. PSNAP

PSNAP [6] performs multiple iterations of a loop cali-
brated to run for a given amount of time. On an unloaded
system, variation from the ideal amount of time can be
attributed to system noise. We ran PSNAP with and without
the OVIS monitoring in order to determine the additional
impact of the monitoring. PSNAP was run without the
barrier mode, making the effects on each node independent.

32 tasks per node were executed with a 100 microsecond
loop.

Figures 6 and 7 show the baseline and monitoring results
with 1 minute sample interval and the 1 sec sample interval,
respectively.

Figure 6. PSNAP results: Histogram of occurrences vs. loop time (us)
with 1 minute sampling data (X) compared to none (red boxes).

Figure 7. PSNAP results: Histogram of occurrences vs. loop time (us)
with 1 second sampling data (X) compared to none (red boxes).

The one minute sampling interval results show no signif-
icant impact. This is because the run time for the test was
slightly less than a minute and a sampling event did not oc-
cur during the test. The one second sampling interval shows
an additional 50− 60 events, out of 16 million total, out in
the tail with an additional delay of 375−475 microseconds.
This is in line with the expected delay caused by the known
sampling execution time of order 400 microseconds and the
expected number of occurrences given the execution time of
around a minute and the sampling period of 1 second.



While an application process running on the node would
only be impacted during the sampling time, an MPI ap-
plication might wait upon processes on other nodes and
thus random sampling across nodes might result in greater
impact. The synchronized sampling feature (Section III-B)
has the additional benefit that the occurrences of sampling
across the nodes can be coordinated in time and thus bound
how many of an application’s iterations would be affected.

B. LinkTest

Cray has developed an MPI program that measures the
individual link performance within a job. For this test we
used the the more extreme test configurations of novis and
c1a1. We used 10,000 iterations of 8kB messages. This gives
us multiple collections of data per link test. The results
showed a baseline of 1.74278 milliseconds per packet with
novis, and 1.74276 milliseconds with the data collection
active. While the c1a1 time is slightly shorter, the difference
is statistically insignificant.

C. Intel MPI Benchmark

The Intel MPI benchmark for MPI AllReduce was initially
tested at small scale. This test was run on the same 2744
nodes as the MILC runs to validate it against MILC’s
internal AllReduce performance measurements. Also, this
allowed us to validate on a consistent node set that was
topology optimized for maximum network performance.
This test used a 64B payload and one task per compute node.
The results are shown in Figure 8. While the average time
rose for the c60a60 configuration, the maximum time (e.g.,
worst case performance outlying performance data point) for
three of the configurations decreased. Overall, there was not
a correlating impact factor with the OVIS configuration.

Figure 8. Intel MPI Benchmark results at small scale.

Table I
MILC TIMING RESULTS FOR A 2744 NODE RUN (50 STEPS)

Test seconds novis c60noa c60a60 c1noa c1a1
Llfat Ave 0.502 0.514 0.503 0.508 0.510

Min 0.473 0.472 0.474 0.472 0.472
Max 0.624 0.819 0.653 0.734 0.691
StdDev 0.035 0.061 0.046 0.053 0.051

Lllong Ave 0.014 0.015 0.015 0.016 0.015
Min 0.010 0.010 0.011 0.011 0.011
Max 0.043 0.048 0.048 0.048 0.050
StdDev 0.007 0.009 0.006 0.008 0.008

CG Ave 5.20e-3 5.21e-3 5.20e-3 5.20e-3 5.19e-3
(per iter) Min 5.00e-3 5.20e-3 5.00e-3 5.01e-3 5.00e-3

Max 5.43e-3 5.44e-3 5.44e-3 5.45e-3 5.41e-3
StdDev 0.14e-3 0.14e-3 0.14e-3 0.12e-3 0.13e-3

GF Ave 0.485 0.494 0.497 0.493 0.498
Min 0.450 0.456 0.451 0.451 0.449
Max 0.597 0.734 0.635 0.834 0.803
StdDev 0.040 0.060 0.046 0.067 0.066

FF Ave 0.739 0.741 0.750 0.731 0.756
Min 0.664 0.665 0.664 0.665 0.667
Max 0.967 1.030 1.034 1.045 1.005
StdDev 0.078 0.072 0.085 0.082 0.091

Steptime Ave 11.151 11.195 11.179 11.164 11.179
Min 10.678 10.658 10.664 10.669 10.659
Max 11.694 11.631 11.783 11.597 11.710
StdDev 0.299 0.316 0.312 0.294 0.293

D. MILC

MILC [7], [8] is a large scale numerical simulation to
study quantum chromodynamics (QCD) and is used exten-
sively across a wide variety of platforms, and is known to
have sensitivity to interconnect performance variation. In this
test, the application was run using 2744 XE nodes with a
topology aware job submission to minimize congestion. It
utilizes a 64B Allreduce payload in the Conjugate Gradient
(CG) phase with a local lattice size of 64. Performance
variations for each of the phases of the calculation are
shown in Table I. Overall application performance is most
dependent on the CG phase which has many iterations per
step. No statistically significant impact was observed.

E. Minighost

MiniGhost [9] is a Sandia code which is used for studying
the communications, not the computations, relevant to mesh-
based codes. An instrumented version [10] of MiniGhost
was run which reports total run time, time spent in com-
munication time, and time spent in a phase which includes
time spent waiting at the barrier (GRIDSUM). Parameters
were chosen to obtain an approximately 1.5 minute run time
on 8, 192 nodes in order to determine effects on timing.
Because of the short runtime, three repetitions of the code
were run under the novis and c1a1 conditions only. In order
to ensure that the rank-to-core (and node) mapping was
consistent for all repetitions, each repetition was launched
on the same nodes and an internally computed ordering for
determining based on the known communication pattern of
the application was used.



Table II
TIMING RESULTS FOR MINIGHOST WITH AND WITHOUT MONITORING.

TOTAL RUN TIME AND AVE/MAX/MIN TIMES PER RANK FOR
COMMUNICATION AND GRIDSUM ARE REPORTED.

novis c1a1
Tot Ave Max Min Tot Ave Max Min

Run 98.5 - - - 92.3 - - -
Time 95.3 - - - 90.2 - - -

91.8 - - - 90.8 - - -
Comm. - 9.2 15.8 2.6 - 9.0 15.0 2.5
Time - 9.0 15.6 2.7 - 9.0 14.9 2.5

- 9.1 15.2 2.7 - 9.0 14.4 2.6
GRIDSUM - 60.4 67.2 54.4 - 53.6 60.4 48.4
Time - 56.2 63.8 50.2 - 52.4 59.1 47.1

- 53.6 60.4 48.3 - 53.0 59.3 47.8

Timing results for three runs MiniGhost are shown in
Table II. There was no statistically significant impact in any
measure when using OVIS at the one second collection rate
vs. no collection. Average, maximum, and minimum timings
are computed over the set of iterations within each run.

V. USE CASES FOR DATA

On the Cray XE/XK platform, applications contend for
HSN resources for inter-process communication and stor-
age subsystem access. In order to gain insight into an
application’s performance, an understanding of the entire
system mesh is necessary. The size of the Blue Waters
system and the number of metrics make it non-trivial to
mine the information gathered and to develop meaningful
representations. However, initial explorations of the data and
representations have been promising and are discussed here.

In this section we consider data from a 24 hour period on
Blue Waters over the entire system. This is about 40 million
data points per metric or 7.7 billion data points total. A
high-level understanding of the system and identification of
hot spots can be gained by even a simplistic visualization
of data through time. In the plots in this section, data
points are larger than the divisions between points (e.g.,
points for consecutive NIDs will overlap) in order to aid
in visualization. Data values are plotted from smallest to
largest in order to ensure that the highest value in any
group in points is not obscured. Values less than 1 for
any quantity are not included in the plots. We utilized
the (negative) cubehelix [11] palette, to take advantage of
continuous perceived intensity.

1) Lustre: The Lustre parallel file system is a shared
resource that is critical to the operation of Blue Waters. Too
many open/close operations in a given time interval can over-
whelm the Lustre meta-data server, as too much write/read
traffic can overwhelm the storage server infrastructure. Both
of these conditions, if left unchecked, can negatively impact
the system as a whole. Thus when the Lustre file system
becomes slow or unresponsive, identification of which nodes
and, by extension, which applications are causing the prob-
lems can enable system administrators to take mitigating

action (e.g. kill an offending job) rather than having to do
a system reboot. Even if mitigating action could not be
taken fast enough, such identification can still enable the
system administrators to work with the user(s) to identify the
problem and ensure it isn’t repeated. Using monitored data
about Lustre file system activity enables easy identification
of hot spots. Figures 9 and 10 show Lustre reads and writes
and opens and closes, respectively, on snx11001 which
hosts the home file system. Note that it is easy to visually
identify components with a lot of Lustre file system activity
as well as time frames over which it occurred. Together with
the Moab job scheduler logs it is then simple to identify
associated users and applications.

2) HSN Link Stalls: The High Speed Network (HSN) is
also a shared resource whose health is critical to the healthy
operation of the system as a whole. Deveci et al. [10] have
shown a direct correlation between output credit stalls on
HSN links and application performance degradation. Output
credit stalls are a good indicator of network hot spots.
Identification of where and when hotspots occur, amount of
traffic, maximum link speeds, and applications’ behavioral
characteristics with respect to network traffic can enable
better understanding of application performance variation as
well as better job scheduling and placement. As in the case
of Lustre file system usage, monitoring these characteristics
about the HSN in a whole system context can enable easy
identification of all of the above. Figures 11, 12, and 13
show, for each direction, the derived metric percent of time
spent in output stalls (Section II-A3). This is the percentage
of time that a logical link (comprised of multiple physical
links) is unable to transmit data due to lack of credits on
one or more of its physical links. This can be used to give
an idea of regions and times of HSN congestion. Note that
the stall rate can vary by more than an order of magnitude
over the different links of a particular node over the 60 sec
sampling interval.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

From the application impact testing presented in Sec-
tion IV it is clear that the OVIS data collection, transport,
and storage infrastructure provides scalable access to whole
system data, in a snapshot fashion, with no statistically
significant adverse impact to running applications at the
tested sampling rates of 1 and 60 seconds.

We have shown that whole system snapshots of shared
system resource utilization data can provide valuable in-
sights to system performance which in turn impacts applica-
tion performance. Additional analysis and visualization tools
need to be developed/applied in order to fully utilize the new
volume of data that we are collecting.



Figure 9. Lustre reads (top) and writes (bottom) on snx11001 which hosts
the home file system.

B. Future Work

While the use of OVIS’s LDMS framework has worked
out well overall, the future work planned and described here
will improve on several aspects of LDMS and the available
HSN data.

Separate thread pool for connect: While the number of
worker threads available for the various tasks of a ldmsd
can be user defined at the time the ldmsd is started, this
thread pool is shared for connection, collection, and storage.

Figure 10. Lustre opens(top) and closes (bottom) on snx11001 which
hosts the home file system.

Thus if there are a significant number of nodes that are
in an unreachable state, an aggregator ldmsd’s collection
operation can be starved for threads. This happens when
all threads in the pool are blocked waiting on connection
timeouts while trying to set up connections to unreachable
nodes. Thus we will be modifying ldmsd to enable creation
of a separate (number will be user defined) thread pool for
connection setup to mitigate the collector thread starvation
problem.



Figure 11. Link aggregated percent of time spent in credit stalls in X+
(top) and X- (bottom).

Post processing in storage plug-in: When we defined
the original metric set we wanted to minimize the memory
and CPU footprint of the sampler ldmsd in order to mini-
mize impact on running applications. Thus the metric set is
comprised mostly of raw counter values with some derived
rates and percentage of total derived for HSN counters.
When attempting to utilize the Lustre data, however, it
became clear that having rate information for data other than
just the HSN would make identification of outliers much

Figure 12. Link aggregated percent of time spent in credit stalls in Y+
(top) and Y- (bottom).

faster. We have thus decided to incorporate the ability to
produce derived data at the aggregator for storage either with
the original metric set or as a separate set.

Export of relevant media type/speed information to
nodes: In Section II-A we described how the HSN data
is exposed via the sys file system. Though all the pertinent
dynamic data is being exposed, static data such as what
type of media (e.g. cable, mezzanine, backplane) and their
associated maximum data rates is not exposed. This lack



Figure 13. Link aggregated percent of time spent in credit stalls in Z+
(top) and Z- (bottom).

is what necessitated consolidation and inclusion of the
interconnect data into the image (Section III-B). In order to
remove the need to preprocess the interconnects file, which
is different from system to system, and include it in the
image we plan on incorporating this information into the
gpcdr data or rca-helper information or similar.
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