
PROCEEDINGS OF THE CRAY USER GROUP, 2014 1

The Cray Framework for Hadoop for the Cray
XC30

Jonathan Sparks, Howard Pritchard, and Martha Dumler

Abstract—This paper describes the Cray Framework for Hadoop on Cray XC30. This is a framework for supporting components of the
Hadoop eco-system on XC30’s managed by widely used batch schedulers. The paper further describes experiences encountered in
running Hadoop workloads over typical Lustre deployments on the Cray XC30. Related work to enable Hadoop to better utilize the XC
high speed interconnect is discussed.

Index Terms—Hadoop, Cray XC30

F

1 INTRODUCTION

Hadoop is an open source, scalable software eco–system
that can be used to solve many of the problems encoun-
tered by organizations trying to derive value from large
amounts of data, whether structured, semi–structured,
or unstructured [2]. Although Hadoop has gained wide
acceptance in the data–intensive commercial space, and
a few areas of HPC computing that map readily to
the MapReduce programming model [8] (e.g. [12]),
its adoption in the larger HPC community has been
somewhat more limited.

There are a number of obstacles slowing the adoption
of Hadoop as part of typical HPC workflows. One
of the most significant issues involves workload man-
agement. Many Hadoop components (e.g. HBase [10],
Accumulo [1]) are intended to be used as long running,
shared services and are not well suited to the batch
oriented model typically used for managing large HPC
systems. Even for potentially more batch oriented com-
ponents of Hadoop like MapReduce, the YARN resource
manager/job launcher [9] used in Hadoop 2 does not
interoperate well with typical HPC batch schedulers. Al-
though efforts have been made to, for example, integrate
Slurm with some components of Hadoop [6], [7], such
efforts have failed to gain acceptance within the wider
Hadoop community.

Another significant obstacle to broader adoption of
Hadoop within the HPC community is the relatively
tight coupling of Hadoop components to the Hadoop
Distributed File System (HDFS), or more precisely, to
the Hadoop Distributed File System Java class. Also,
Hadoop works best on systems where each node has
some amount of local persistent storage. Since Hadoop
code is mainly developed and used where HDFS is
deployed and nodes have local storage, deployment on
typical HPC systems having no node-local storage, and

• The authors are with Cray, Inc.
E-mail: jsparks,howardp,mbd@cray.com

with parallel file systems designed for HPC style I/O
patterns can present some challenges, particularly at
scale.

The Cray Framework for Hadoop for Cray XC30 is
intended to address both the workload management
challenges presented by the Hadoop ecosystem when
used in a typical HPC environment, as well as address to
some extent issues that arise from trying to use Hadoop
on Lustre.

The rest of this paper is organized as follows. First,
an overview of the Cray Framework for Hadoop is pre-
sented. This includes a high level description of to how
install a Hadoop distribution and the Framework on a
Cray XC 30 system. Various tuning options available to
users are also discussed. A subsequent section describes
experiences using Hadoop MapReduce at scale on a XC
30 system, and measures that can be taken to improve
the performance of the application when using Lustre.
Additional work Cray has undertaken to improve the
performance of Hadoop components is also described.

2 INSTALLING CRAY FRAMEWORK FOR
HADOOP

The Cray Framework for Hadoop is based on the my-
Hadoop project [3]. The Framework consists of Cray
myHadoop – a set of scripts which enable a user of
a Cray XC30 system managed either by PBS Pro or
Moab/Torque to run Hadoop MapReduce jobs. Included
are a default set of Hadoop configuration files tuned
for typical Cray XC30 compute node configurations.
The Hadoop eco-system components Pig, Mahout, and
Crunch are also supported by the Framework. Also
included in the package is a sample batch script users
can modify for their particular Hadoop applications.

Cray myHadoop does not include a Hadoop distribu-
tion. A site wishing to make use of the Cray myHadoop
must first install a Hadoop distribution in the shared
root. Cray myHadoop has been tested with Apache
Bigtop, Cloudera, HortonWorks, IDH (Intel Hadoop)

PROCEEDINGS OF THE CRAY USER GROUP, 2014 2

distributions. Cray myHadoop requires that the Apache
Core Hadoop, Pig, Zookeeper, and Mahout be installed.
Zookeeper is only needed for resolving RPM dependen-
cies and support libraries. Note that all Hadoop services
must be turned off in the default class view of the XC30
root filesystem. In addition, the nc binary (available in
the netcat-openbsd package) is also required. The system
must be running CLE 5.2 UP00 and also have CCM (Cray
cluster compatibility package) installed.

After installing a Hadoop distribution, the Cray my-
Hadoop rpm can be installed in the shared root. Before
using Hadoop and the Cray myHadoop, some site spe-
cific customizations are recommended:

• A consistent version of the Java JVM needs to be
used. The /etc/hadoop/conf/hadoop-env.sh script needs
to be modified so that JAVA HOME points to the
default Cray CLE JDK;

• Adjust the following YARN parameters to reflect the
number of cpus per node (cores) and memory per
node for the nodes in the XC system to be used for
running Hadoop jobs: yarn.nodemanager.resource.cpu-
cores and yarn.nodemanager.resource.memory-mb.
These are in the yarn-site.xml configuration file that
comes on the Cray myHadoop RPM.

• The system administrator may also wish to
adjust default the memory limits for MapRe-
duce mapper and reducer tasks. These are con-
trolled via the mapreduce.map.memory.mb, mapre-
duce.map.java.opts, mapreduce.reduce.memory.mb, and
mapreduce.reduce.java.opts. These parameters are
specified in the mapred-site.xml configuration file that
comes on the Cray myHadoop RPM.

Note that Hadoop works best when all of the nodes to
be used for myHadoop batch jobs have the same amount
of memory and cores per node. See [4] for further details
on setting default Hadoop parameters.

In addition to the Hadoop tuning parameters de-
scribed above, there are additional parameters control-
ling the location of YARN application log directories and
application work directories that need to be considered.
By default Cray myHadoop uses tmpfs for these directo-
ries. This helps considerably in mitigating issues encoun-
tered with the Lustre MDS when running larger (more
than about 16 nodes) myHadoop jobs on a Cray XC30.
However, since the tmpfs on each node is limited, jobs
requiring a lot of memory for map and reducer tasks can
fail. Rather than set Lustre as the system–wide default
file system for these directories, it is recommended that
users running Hadoop jobs which cannot use tmpfs do
the following:

• Make a copy of the contents of
/opt/cray/myHadoop/default to a directory (designated
X in this example) where the user has read write
permissions and which is mounted on the compute
nodes.

• The user should modify the line in
X/bin/functions.sh where the yarnlocalstoredirtmp

 0

 50

 100

 150

 200

 250

 300

 350

 400

10 100 1000 10000 100000

th
ro

u
g

h
p

u
t

(M
B

/s
e

c
)

file size (MB)

HDFS over Lustre
rawfs over Lustre

Fig. 1. Single node DFSIO Test using HDFS over Lustre
and rawfs over Lustre

is set.
• In the user’s batch script set the MY-

HADOOP HOME environment variable to point to
directory X.

There are a number of environment variables users
can employ in their myHadoop batch jobs to fine tune
the behavior of Hadoop and the myHadoop framework.
See Table 1.

3 OBSERVATIONS AND EXPERIENCES USING
CRAY MYHADOOP

A typical Hadoop deployment, in which many elements
of the Hadoop eco–system are utilized, including Hbase,
etc. makes extensive use of HDFS. Application jar files
are copied to HDFS as part of job launch, YARN saves
job logfiles to HDFS, etc. Input and output data from
MapReduce jobs are stored on HDFS. Basically any
persistent data is stored on HDFS.

In initial investigations of how to support Hadoop
on Cray XC systems, it was considered important to
try and support HDFS which meant running HDFS on
top of Lustre. Although HDFS can be run on top of
Lustre, there are significant performance penalties. Also
as attempts were made to run larger jobs using HDFS
over Lustre, numerous issues in the Lustre software stack
were encountered.

Tests using the DFSIO benchmark show the impact of
the HDFS protocol when running over Lustre verses just
having the DFSIO benchmark read and write directly
to Lustre. Figure 1 compares throughput rate obtained
by the DFSIO test for a single process when read-
ing/writing to HDFS over Lustre and directly to Lustre

PROCEEDINGS OF THE CRAY USER GROUP, 2014 3

TABLE 1
Environment variables for Cray myHadoop

Variable Description Default or Suggested Value
MYHADOOP DEBUG Turns on script debugging output, false

true or false
MYHADOOP HOME Location of myHadoop scripts /opt/cray/myHadoop/default
HADOOP PREFIX Location of installed Hadoop /

User scripts will need to set to
/alt-root if Hadoop is installed
in an alternate root location
/alt-root

HADOOP USER PATH FIRST Prepend Hadoop paths to user false
path, true or false

HADOOP USER CLASSPATH FIRST Prepend Hadoop classpath to true
classpath, true or false

MYHADOOP FSTYPE Switches Hadoop to use the rawfs
built in raw file system class, or
HDFS. Values: hdfs or rawfs

 0

 200

 400

 600

 800

 1000

W
ordcount

InvertedIdx

Selfjoin

AdjacencyList

C
lassification

H
istrogram

M
ovies

H
istrogram

R
atings

SequenceC
ount

R
ankedInvertedIndext

Terasort

G
rep

hdfs
lustre

Fig. 2. Runtime for PUMA benchmarks using HDFS vs
using Lustre (Hadoop raw file system class)

using the raw file system class available in Hadoop -
the file system class Hadoop uses when writing to local
file systems. Note that for the HDFS default block size
(64MB), using the raw file system yields over a two–fold
improvement in throughput rate compared to HDFS.
In addition, as shown in Figure 2 using Lustre directly
for job input and output, rather than HDFS, was found
to speed up almost all of the PUMA Hadoop bench-
marks [5] significantly. In addition, running HDFS over
Lustre at scale – in terms of data stored – presents other
challenges, particularly in the growth of file metadata,
since HDFS adds yet another block storage construct
on top of the striping notion intrinsic to the Lustre file
system.

Fortunately, a refinement of efforts to support Hadoop
on Cray XC30 systems allowed for the revisiting of the
assumption that HDFS needed to be supported. If usage
of Hadoop is restricted to a subset of the Hadoop eco–
system, namely only supporting MapReduce, workflow
management software for MapReduce workloads, and a
few other applications making use of MapReduce, then
the need to support HDFS on XC30 systems becomes
optional. Note that without the presence of a global file
system already (Lustre) this would not be the case.

Although turning off HDFS over Lustre helps, as
attempts were made to scale up job sizes run within
myHadoop, the ways in which Hadoop uses filesystems
still resulted in quite a number of issues with Lustre.
Lustre is intended primarily for use by HPC style appli-
cations, which tend to focus on reading and writing data
to files. Although Hadoop does this, parts of Hadoop,
for example the OutputCommitter class, tend to do a
lot of meta-data type operations: getting file attributes,
renaming files and directories, traversing directory struc-
tures, changing permissions on files and directories, etc.
Depending on the Hadoop workload, many threads on
a given node can be simultaneously issuing these types
of meta-data operations. The Lustre meta-data server
(MDS) is not designed to hold up very well under these
types of I/O workloads when many nodes are being
used for a Hadoop job.

To mitigate these Lustre issues, the default myHadoop
configuration was changed to use local ramfs on the
compute nodes for as many intermediate files (YARN
task logs, application intermediate output files – such
as map output files from mapper tasks) as possible. By
using the compute node ramfs, many of the problems
encountered with Lustre can be bypassed. Using ramfs
rather than Lustre also speeds up many MapReduce jobs
significantly.

The startup overhead of the myHadoop framework
itself was also found to be a bottleneck when scaling
beyond a few dozen nodes. By not using HDFS (and
thus eliminating the startup associated with starting the

PROCEEDINGS OF THE CRAY USER GROUP, 2014 4

 1

 10

 100

 1000

 100 200 300 400 500

ti
m

e
 (

s
e

c
s
)

node count

myHadoop startup time

using ssh
using pdsh

Fig. 3. Comparison of myHadoop startup times using ssh
and pdsh.

namenode and datanode daemons), the startup time
was reduced somewhat, but not sufficiently to make
the script practical for more than about 32 nodes. By
replacing the use of ssh to startup the YARN nodem-
anagers with pdsh, a much more significant speedup
was realized. Replacing ssh with pdsh yielded a speedup
of about 20 when launching the framework across 512
nodes. See Figure 3.

4 OTHER WORK

At first glance, when using MapReduce with a global
shared file system like Lustre, it would seem an obvious
place for improvement of the algorithm would be to
bypass the http get method by which reducer tasks access
the map output files where mapper tasks had previously
executed. Note that map output files are written to local
storage on a typical Hadoop cluster, not to HDFS. In
contrast, on an XC30 system using Cray myHadoop,
the map output files may optionally be written to Lustre
rather than ramfs.

With Hadoop 2, MapReduce supports a plugin model
which allows one to override the default MapReduce
shuffle method with a different Java class. As part of
the Cray Framework for Hadoop, a Shuffle class was
implemented in which reducer tasks bypass the http get
for obtaining the map output file data by reading the
data directly from Lustre. It was found that this method
actually is slower for cases where the map output files
are small enough to remain within the file system buffer
cache of the nodes where mapper tasks were run. It is
actually faster in this case for the YARN nodemanager
daemon (where the http server for handling the map

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06

b
a
n
d
w

id
th

 (
M

b
/s

e
c
)

message size (bytes)

gsockets
TCP sockets

Fig. 4. Comparison of Bandwidth using gsockets vs TCP
sockets on Cray XC30.

output file transfers is run) to send the data back to
the requesting reducer task directly – without having to
retrieve the data from slow spinning media. In the course
of analyzing the performance of the shuffle method it
was found that on XC30 systems running MapReduce
jobs of potential interest for HPC applications – where
its typically one of distilling a large amount of input
data into a small set of interesting data points – this is
the more frequent MapReduce usage model. However,
for large Extract-Transform-Load (ETL) style MapReduce
jobs running at modest 4-8 node counts, the plugin may
prove useful. This Lustre–aware shuffle plugin is included
as part of the Cray Framework for Hadoop. Note that to
use this plugin, the user must follow the steps described
in section 2.

Another avenue was also explored for improving the
performance of Hadoop, as well as other applications
which make use of TCP–sockets for inter–node commu-
nication. Using the OFED rsockets package as a starting
point, this user–space based sockets over IBverbs library
was enhanced to use the XC30 native GNI api. This
native GNI port of rsockets was renamed gsockets. A
significant improvement in both bandwidth and latency
was observed using gsockets compared to standard TCP
when using NpTest. See Figure 4.

In practice it was found to be very challenging to get a
user–space based sockets implementation to work within
even the relatively restricted Cray myHadoop usage
model. Nonetheless, with sufficient modifications to the
various Hadoop startup scripts, and fixes to the original
OFED rsockets implementation, it could be made to
work with Hadoop. Although no significant speedups
of typical Mapreduce jobs has yet been observed using
gsockets, it is anticipated that with further testing certain
MapReduce jobs may benefit from the use of gsockets.
Efforts are underway to rework gsockets into a kernel–
based implementation. This should significantly reduce

PROCEEDINGS OF THE CRAY USER GROUP, 2014 5

effort needed to get TCP applications using this higher–
performing socket path.

5 CONCLUSIONS

The Cray Framework for Hadoop on Cray XC30 pro-
vides a supported means by which users can run
Hadoop MapReduce applications on Cray XC30 systems
in a way that is batch–scheduler friendly. Possible future
work to extend the capabilities of the Cray myHadoop
include interoperability with Spark [11], enhance the
Framework to work with Slurm, as well as enhance-
ments to better work with Lustre at scale.

ACKNOWLEDGMENTS

The authors would like to thank James Shimek (Cray,
Inc.) and Zach Tiffany (Cray, Inc.) for their work devel-
oping the gsockets package.

REFERENCES
[1] Accumulo. accumulo.apache.org.
[2] Hadoop. hadoop.apache.org.
[3] Myhadoop. sourceforge.net/projects/myhadoop.
[4] Cray Software Document S-2536-06:Installing myHadoop on Cray XC,

XK, and XE Systems, April 2014.
[5] F. Ahmad, S. Lee, M. Thottethodi, and T. Vijaykumar. Puma:

Purdue mapreduce benchmarks suite. 2012.
[6] R. Castain, W. Tan, J. Cao, M. Lv, M. Jette, and D. Auble.

MapReduce and Support in SLURM: Releasing the Elephant. In
Slurm Users Group 2012, 2012.

[7] R. H. Castain and O. Kulkarni. MapReduce and Lustre: Running
Hadoop in a High Performance Computing Environment. In Intel
Developers Forum 2013, 2013.

[8] J. Dean and S. Ghemawat. Mapreduce: simplified data processing
on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[9] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, et al. Apache
hadoop yarn: Yet another resource negotiator. In Proceedings of
the 4th annual Symposium on Cloud Computing, page 5. ACM, 2013.

[10] M. N. Vora. Hadoop-hbase for large-scale data. In Computer Sci-
ence and Network Technology (ICCSNT), 2011 International Conference
on, volume 1, pages 601–605. IEEE, 2011.

[11] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mccauley,
M. Franklin, S. Shenker, and I. Stoica. Fast and interactive
analytics over hadoop data with spark. USENIX, 2012.

[12] Q. Zou, X.-B. Li, W.-R. Jiang, Z.-Y. Lin, G.-L. Li, and K. Chen.
Survey of mapreduce frame operation in bioinformatics. Briefings
in bioinformatics, page bbs088, 2013.

