
I/O Performance on Cray XC30

Zhengji Zhao1), Doug Petesch2), David Knaak2), and Tina Declerck1)
1) National Energy Research Scientific Center, Berkeley, CA

2) Cray, Inc., St. Paul, MN

Email: {zzhao, tmdeclerck}@lbl.gov; {dpetesch, knaak}@cray.com

Abstract—Edison is NERSC's newest petascale Cray XC30
system. Edison has three Lustre file systems deploying the
Cray Sonexion storage systems. During the Edison acceptance
test period, we measured the system I/O performance on a
dedicated system with the IOR benchmark code from the
NERSC-6 benchmark suite. After the system entered
production, we observed a significant I/O performance
degradation for some tests even on a dedicated system. While
some performance change is expected due to file system
fragmentation and system software and hardware changes,
some of the performance degradation was more than expected.
In this paper, we analyze the I/O performance we observed on
Edison, focusing on understanding the performance change
over time. We will also present what we have done to resolve
the major performance issue. Ultimately, we want to detect
and monitor the I/O performance issues proactively, to
effectively mitigate I/O performance variance on a production
system.

I/O performance; IOR; Lustre; Sonexion; OSTs; I/O
bandwidth; read rate

I. INTRODUCTION
Edison [1], a Cray XC30 system, is NERSC's newest

supercomputer, with a peak performance of 2.57 peta-flops.
It features Intel’s dual-socket 12-core Ivy Bridge
processors; Cray’s Aries interconnect with Dragonfly
topology, and the Cray Sonexion storage system. Edison has
three Lustre file systems providing 7.5 PB of online disk
space with 168 GB/s peak IO bandwidth with a total of 336
OSTs.

As part of the acceptance tests, at the end of August
2013, we performed Lustre file system performance tests on
a dedicated system using the IOR benchmark code from the
NERSC-6 benchmark suite [2]. The IOR benchmark tests
included the Posix file per process and MPI-IO shared file
I/O tests with different access patterns that were designed to
represent the NERSC I/O workload. About four months
later (mid December, 2013), we ran the exact same set of
I/O tests in dedicated mode again after the system went
through several major hardware and software upgrades. We
observed significant I/O performance changes. While most
of the performance changes were under +/- 20% relative to
the August results, some of the tests, especially MPI-IO
shared file read tests, were more than 70% slower or faster
than the August results. We noticed that the MPI-IO tests
with larger transfer sizes ran about 70% faster, but that
MPI-IO with a small transfer size was slower by more than

70%. While the increased performance was not a concern,
the 70% decrease in performance of the MPI-IO with a
transfer size of 10k (denoted as MPI-IO 10k hereafter; this
is one of the tests included in the NERSC-6 benchmark
suite) caught our attention. While some performance
variation, perhaps as much as +/- 20%, may be expected due
to system hardware and software changes and from file
system fragmentation due the production I/O load, the 70%
performance degradation was considered to be very serious
and in need of further investigation.

From the Lustre file system point of view, the MPI-IO
10k test is not optimal because of the relatively small
transfer size; in general, users should avoid such sizes.
However, as shown by data collected by Darshan, an I/O
characterization tool [3], about 50% of all I/O operations on
Hopper, NERSC’s large Cray XE6 system were unaligned,
or small I/O operations with transfer sizes that are much
smaller than the Lustre block size [4]. Understanding the
performance variance of the MPI-IO 10k test after system
changes, therefore, has practical meaning to NERSC users.
In this paper we will present what we have done to
understand this performance issue, and what we have
learned from our debugging efforts.

Ultimately, we want to detect and monitor I/O
performance issues proactively to effectively mitigate I/O
performance variance on a production system, which can be
very disruptive to user production workflows. While I/O
performance variation from contention for the limited I/O
resources is not easily avoidable under the current system
settings and configuration, there are still some steps that can
be taken to mitigate unnecessary contention by promoting
good I/O practices. Moreover, we observed that when users
report huge I/O time variations at NERSC, it is often when
the file systems misbehave or perform poorly for a reason
that requires further investigation. Therefore, it is critical to
be able to monitor the file system health and performance.
We will discuss what monitoring tools are in place on
Edison, and will describe several efforts to detect and
mitigate I/O performance variation.

II. THREE LUSTRE FILE SYSTEMS ON EDISON

Edison has three Lustre scratch file systems built on the
Cray Sonexion 1600 storage system [5], configured in the
ratio 2:2:3 for capacity and bandwidth. Table 1 shows the
configuration of the three Lustre file systems. The first two
file systems (FS1 and FS2) have 2.16 PB disk space and 48
GB/s aggregate peak I/O bandwidth with 12 Scalable

Storage Units (SSUs) and 96 OSTs each; the third file
system (FS3) has 3.2 PB disk space and 72 GB/s peak I/O
bandwidth with 18 SSUs and 144 OSTs. Each OST contains
8 data disks and 2 parity disks (dual-ported 3.5 inch 3TB
NL-SAS 7,200 RPM disk drives) configured as a RAID 6
array; two dual-ported 3.5 inch 100GB SSDs drives, which
are configured as a shared RAID 1 array, and are partitioned
and used for the MDRAID and the file system journals; and
two spare 3TB NL-SAS disk drives.

The default Lustre stripe size is 1MB and the default
stripe counts are 2, 2, and 8 on the three file systems,
respectively. Users are distributed to the first two file
systems evenly in a round-robin fashion. The third file
system is reserved for users who need large I/O bandwidth,
and access is granted by request. Therefore, one may expect
a different I/O usage pattern on FS3 while a similar I/O load
and usage pattern may be expected on FS1 and FS2. These
file systems are subject to purging. Files that are older than
12 weeks (defined by last access time) are removed.

III. BENCHMARK CODES AND TESTS

A. IOR
IOR [6] is a commonly used I/O benchmark program for

testing performance of parallel file system. It provides
multiple interfaces and options for access patterns that can
be used to produce a wide variety of I/O workloads. IOR
was one of the codes included in the NERSC-6 benchmark
suite that resulted in the Hopper acquisition and was also
used for Edison procurement that is internally coded as
NERSC-7 project. The IOR version we used was 2.10.0.

B. IOBUF Library
IOBUF [7] library is an I/O buffering library provided by

Cray. It can reduce the I/O wait time for programs that read
or write large files sequentially. IOBUF intercepts I/O
system calls such as READ and OPEN, and adds a layer of
buffering, thus improving program performance by enabling
asynchronous prefetching and caching of file data. IOBUF
was used in some of our IOR benchmark tests. The behavior
of IOBUF can be controlled by a number of environment
variables. The environment variable, IOBUF_PARAMS, can
be used to control the buffer sizes and files to selectively
apply buffering. The IOBUF versions we used were 2.04 and
2.05.

C. Instrumented IOR
The standard IOR benchmark reports net read and write

rates at the end of the runs. To debug the I/O performance

issue, we used an instrumented version of IOR [8] in our
debugging runs, which reports the “instantaneous”
bandwidth during a benchmark run. The instantaneous I/O
bandwidth was obtained by summing up the data moved per
second by each processor core. The instrumented IOR was
based on IOR 2.10.3.

D. IOR Benchmark Tests
 We used the IOR tests with different interfaces and I/O

access patterns that were designed to represent the NERSC
I/O workload. The tests include Posix file per process and
MPI-IO shared file I/Os with transfer sizes of 10,000,
1,000,000 and 1,048,576 bytes using a number of processor
cores that are proportional to the number of available OSTs
in each file system. Table 2 shows these tests in more detail.
For simplicity, we will use the short names, PosixFpP 10k,
PosixFpP 1m1, PosixFpP 1m2, MPI-IO 10k, MPI-IO 1m1,
and MPI-IO 1m2 to denote these benchmark tests hereafter.
In all these tests, each node writes or reads 96 GB data (4 GB
per core) either from a single file or multiple files, which is
1.5 times the available per-node memory, 64 GB. This is to
eliminate cache effects. As one of the official run rules
defined in the NERSC-6 benchmark suite (also by IOR
default), in all of the IOR benchmark tests mentioned above,
the IOR program does the write and the read tests within a
single aprun invocation. It opens the file(s), writes, then
closes the file(s); and reopens the file(s), reads, and closes
the file(s) again. To defeat buffer caching for read after
write, we made each task read its neighbor’s data from
different nodes (reorderTasks=1). The IOR program reports
the net write and read rates at the end of the run. We will
often refer to the read test in this standard benchmark run as
the “read-after-write” test. There are many flexible ways to
run IOR. For example, in some of the investigations, we
made the IOR program read existing files that were written
by the previous standard benchmark runs. We will refer the
read test in this case (read alone) as the “re-read” test
throughout the paper.

To improve I/O performance, we used the IOBUF
libraries with some of the tests (See Table 2), especially with
the MPI-IO 10k test. We disabled the collective buffering
(CB) in the MPI-IO 10k test to use the IOBUF library, which
improves this specific test performance significantly. Since
the IOBUF library provides a buffer to aggregate small
transfers to a bigger size before the file system actually
“sees” any of these file operations, the MPI-IO 10k test +
IOBUF with 1,000,000 byte buffer is equivalent to the MPI-
IO 1m1 test with collective buffering (CB) disabled.
Therefore, we ran the MPI-IO 1m1 test without CB in some
cases when investigating the MPI-IO 10k performance issue
for simplicity.

IV. I/O PERFORMANCE ON EDISON
Edison was delivered to NERSC at the end of June 2013.

About one month after installation, site integration,
configuration and staff tests, we enabled the first batch of
early users. At the end of August we enabled all
(approximately 2,000) NERSC users. We carried out the
official I/O acceptance tests on Aug. 23, 2013 using a

Table 1. The configuration of the three Lustre file systems on Edison

 Size
(PB)

Aggr. Peak I/O
Bandwidth (GB/s)

of
SSUs

of
OSSs

of
OSTs

FS1 or /scratch1 2.1 48 12 24 96

FS2 or /scratch2 2.1 48 12 24 96

FS3 or /scratch3 3.2 72 18 36 144

dedicated system. Fig. 1 shows a part of the IOR
performance results from the acceptance tests. Each test was
run two or three times. Among the three file systems, FS2
(green symbols in Fig. 1) and FS3 (orange) were almost
clean (1% full), while FS1 (blue) was about 30% full. There
were 72, 72, and 144 OSTs in the three file systems,
respectively, at that time. (As we will describe in the next
section, three more SSUs were added to each of the first two
file systems after the August acceptance tests, so that today
Edison has 96, 96, 144 OSTs in its three file systems,
respectively). Fig. 2 (a) shows three representative IOR tests
selected from Fig. 1, but instead of showing the bandwidth
for the whole file system, we show bandwidth per SSU. Fig.

2 (b) shows the coefficient of variation (COV) of the I/O
rates for the three selected tests.

We can see that with the two clean file systems, FS2 and
FS3, IOR achieved aggregate bandwidths of about 36 GB/s
and 72 GB/s, respectively, which are 100% of the theoretical
peaks. With 30% full FS1, IOR achieved around 80% of the
peak bandwidth. We can see that the I/O bandwidth scales

Figure 1. The IOR performance results observed in August 2013 on
Edison’s three file systems. Solid triangles and x’s denote the write

and read rates. The blue, green and orange symbols are for FS1, FS2,
and FS3, respectively.

Figure 2. (a) The bandwidth per SSU obtained with three selected IOR
benchmark tests with both Posix file per process and MPI-IO shared

file tests on the three Lustre file systems on Edison.

Figure 2. (b) The Coefficient of Variation (COV) of the read and write
rates for the three selected IOR benchmark tests.

Table 2. IOR benchmark tests run on Edison. Note the number of cores
used and the size of the files are for the upgraded file systems, which
have 96, 96 and 144 OSTs in FS1, FS2, and FS3, respectively. FS1 and
FS2 had 72 OSTs each before the upgrade. The number of cores and the
size of the files used in the acceptance tests were 75% of the values
shown in this table for FS1 and FS2.

Transfer Size 10,000
bytes

1,000,000
bytes

1,048,576
bytes

Posix File
Per Processor

Test Name PosixFpP
10k

PosixFpP
1m1

PosixFpP
1m2

of Nodes/Cores
Used

FS1: 32/768; FS2: 32/768;
FS3: 48/1152

Aggregate File Size FS1: 3.1TB; FS2: 3.1TB; FS3: 4.6TB

of Files (4GB each) FS1: 768; FS2: 768; FS3: 1152
IOBUF_PARAMS count=2:size=32m:direct

Lustre Striping lfs setstripe -s 1m -c 1

Other IOR options

 useO_DIRECT=0
 reorderTasks=1
 fsync=1
 intraTestBarriers=1

MPI-IO
Shared File

Test Name MPI-IO
10k

MPI-IO
1m1

MPI-IO
1m2

of Nodes/Cores
Used

FS1: 96/2304; FS2: 96/2304;
FS3: 144/4608

Aggregate File Size FS1: 9.2TB; FS2: 9.2TB;
FS3: 13.8 TB

of Files 1

IOBUF_PARAMS

For MPI-IO 10k:
 count=1:size=1000000:
 prefetch=0

For MPI-IO 1m1 and 1m2:
 IOBUF was not used

MPI-IO Hints

For MPI-IO 10k:
 cb_romio_read=disable
 cb_romio_write=disable

For MPI-IO 1m1 and 1m2:
 cb_romio_read=enable
 cb_romio_write=enable

Lustre Striping

For MPI-IO 10k:
 lfs setstripe -s 1m -c -1
For MPI-IO 1m1 and 1m2:
 lfs setstripe -s 4m -c -1

Other IOR options

 collective=1
 reorderTasks=1
 fsync=1
 intraTestBarriers=1

almost linearly up to 144 OSTs, which is the largest number
of OSTs available in a single Lustre file system on Edison.
The maximum bandwidths per SSU were about 4000 MB/s
for write and slightly less for read (see Fig. 2 (a) PosixFpP
1m2 tests on FS2 and FS3). It should be noted that all our
tests are “fixed data” IOR runs, which usually report lower
bandwidths than the “fixed time” IOR tests [8].

 We can also see that the performance variation from run
to run was up to 40% for the read tests on FS1 even under
dedicated conditions, while it was under 10% on the other
two clean file systems. Since FS1 was 30% full, the large
performance variation may be related to file system
fragmentation and physical positions of the files relative to
the slower or faster end of the disk drive. File fragmentation
usually affects reads more than writes. As noted in [8], the
physical positions of a file could result in 15-30% of
performance variation even on a dedicated file system.
However, it was not proven that fragmentation and physical
positions of files alone had contributed for the 40% variation
in our case. We do not exclude the possibility of FS1 being
affected by some undetected undergoing file system events
at that time as well. Unfortunately, we did not save the
original files (multi-TB in size) to investigate this further.

V. I/O PERFORMANCE CHANGES OVER TIME
 After the acceptance tests, Edison went through several

major hardware and software upgrades. See Table 3 for
details. Both FS1 and FS2 were expanded with three more
SSUs (24 OSTs). There were multiple upgrades of the Cray
Linux Environment (CLE) and Lustre client, as well as the

Cray Developer Toolkit (CDT), which contains the MPI and
IOBUF libraries, and compilers used by IOR. In addition, we
opened up all the three file systems to users, so that FS2 and
FS3 became loaded with user production I/O files. Since we
enforce purging, the file system usage was under 30% on all
the three file systems [See Fig. 3]. There were about 1,000
active users on each of the first two file systems and fewer
than 40 active users (non-support staff) on FS3 as of now.

Due to all the changes mentioned above, we ran the same
set of the IOR tests again last December in dedicated mode.
Fig. 4 shows the I/O performance change we observed in
December relative to the August results. We can see that
most of the performance changes were under +/- 20%
relative to the August results. However, some of the tests,
especially MPI-IO shared file read tests, were more than
70% slower or faster than the August results. The two MPI-
IO read tests with relatively large transfer sizes, MPI-IO 1m1
and MPI-IO 1m2, were faster by 70%, while the MPI-IO 10k
read test, which has a relatively small transfer size, was
slower by more than 70% across all three file systems. In
what follows, we attempt to uncover the basis for this
change.

A. Debugging the MPI-IO 10k performance slowdown
To understand this performance degradation, we took a

few dedicated system times between December 2013 and

!100.00%&

!80.00%&

!60.00%&

!40.00%&

!20.00%&

0.00%&

20.00%&

40.00%&

60.00%&

80.00%&

100.00%&

write& read& write& read& write& read& write& read& write& read& write& read&

PosixFpP&10k& MPI!IO&10k& PosixFpP&1m1& MPI!IO&1m1& PosixFpP&1m2& MPI!IO&1m2&

Pe
rc
en

ta
ge
)+
/,
)R
el
a/

ve
)to

)8
/2
3)
Ac

ce
pt
an

ce
)R
es
ul
ts
)

Benchmark)Ttests)

IOR)Performance)on)12/17/13)Rela/ve)to)the)8/23/13)Acceptance)
Test)Results)on)the)Three)Lustre)File)Systems)on)Edison)

FS1& FS2& FS3&

Figure 4. The IOR performance tests on December 17, 2013 on
dedicated Edison system. The performance data was shown is relative

to the last August results.

Table 3. Edison file system expansions and CLE /Lustre upgrades.

Date FS1

(# of OSTs)
FS2

(# of OSTs)
FS3

(# of OSTs)
CLE/Lustre

Versions
Aug 1, 2013 72 72 144 5.0.UP03/2.3.0

Dec 6, 2013 5.1.UP00/2.4.0

Dec 16,2013 96

Jan 17, 2014 96

Mar 11, 2014 5.1.UP01/2.4.1

Figure 3. This figure shows the Lustre file system usage on Edison. The third file system has a larger average file size compared to the first two file systems.

March 2014. We ran the MPI-IO 10k tests on the dedicated
system a few more times, and conducted a series of
debugging runs. We started by confirming that this
performance slowdown is indeed a persistent issue. (See the
READ tests in Fig. 5). We looked at a number of issues; six
of them are described below.

1) File Fragmentation and physical positions on the
disk drive: As we have mentioned earlier, file fragmentation
and physical positions of the files on the disk drives could
result in significant performance variation, especially for
read tests. However, these don’t seem to account for the
persistent 70% performance slowdown. As mentioned
earlier, the write and read rates in a standard IOR
benchmark run (read-after-write) were obtained in a single
aprun invocation. We discovered that when running the read
test alone (re-read), i.e., making the IOR program read an
existing file that was generated by a previous MPI-IO 10k
standard run, the read rates were consistently much
improved compared to the read-after-write test, and
sometimes they were even comparable to the August results.
See Fig. 5 for the RE-READ tests. This rules out the file
fragmentation and physical position on the disk drive as the
cause of the 70% slowdown, since the read-after-write and
the re-read tests both read the same file and so have the
same file fragmentation and physical position.

2) Programming environment changes: When we run
benchmark tests, we usually compile codes with the current
default software versions. However, since we fortuitously
retained some previous binaries, we had the opportunity to
compare performance from tests compiled under CDT 1.10
and CDT 1.06. Fig. 6 shows the read rates of the read-after-
write tests for the MPI-IO 10k test that were run on different
dates. The August acceptance tests used the binary built on
7/19 under CDT 1.06. Note that the last two runs in the
figure (purple and orange), were the runs on 12/30 with the
two binaries built on 12/15 and 7/19, respectively. They
were very similar, which suggests that none of the Intel
compiler, MPICH, and IOBUF library changes were the
cause of the 70% MPI-IO 10k read slowdown.

3) Characteristic performance profile of the MPI-IO
10k read test: Debugging an I/O performance problem
observed in the dedicated tests is difficult on a production
system because there is no way to separate performance
variation due to contention from other users. However, since
Edison is a petascale system that delivers 3.2 million core-
hours to users daily, it was very difficult for us to obtain
significant dedicated time. (Even on a dedicated system, I/O
performance could easily vary by about 40% from run to
run.) In general, one can run the same tests multiple times to
mitigate variation effects; however, it was not very practical
for us to do so with this specific test, as it takes a bit more
than two hours to complete the standard MPI-IO 10k test
(write and then read) during a limited dedicated system
reservation hours. So it was highly desirable for us to be
able to reproduce the performance issue on a smaller
internal Cray R&D XC30 system.

 Reproducing an I/O performance at scale on a smaller
internal Cray R&D XC30 was not straightforward, as the
exact benchmark test can not be run due to the smaller
number of OSTs and compute nodes available (and may
also be subject to other slight architectural differences). In
addition, the net I/O bandwidths reported by IOR alone
were not sufficient to tell if a problem at scale is reproduced
at a smaller scale or not, because large I/O variation from
run to run may occur even on dedicated system (we have
seen up to 40% variation). A key advance in the
investigation was made last March when we learned that the
read-after-write and the re-read tests have very different
performance profiles using an instrumented version of IOR.
Fig. 7 shows the read profiles we observed on the Cray
R&D XC30 system (with 32 OSTs) for the read-after-write
and the re-read tests. As shown in Fig. 7, while the read rate
steeply declines in the read-after-write test, it stays fairly
constant after an initial drop in the re-read test. This profile
was consistently seen later on various systems as long as the
file size per node was at least as large as the memory per
node and multiple OSTs were used. The read rate drops
even more steeply when the larger file size per node and
larger number of OSTs were used.

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

write" read" re/read" write" read" re/read" write" read" re/read"

FS1" FS2" FS3"

Ba
nd

w
id
th
)(M

B/
s/
SS
U
))

Benchmark)Tests)

MPI9IO)10k)performance)changes)over)Bme)

8/23/13"

12/15/13"

12/17/13"

12/30/13"

3/26/14"

Figure 5. The MPI-IO 10k dedicated performance change over time.

Figure 6. This figure shows the MPI-IO 10k read rates (read-after-
write) measured by the two binaries that were built for the August
acceptance tests (built on 7/19) and for the December retest (built on
12/15/13).

In March of 2014, we got dedicated system time on
Edison and ran a number of tests. First, we needed to
confirm if the same profiles also occurred on Edison. Fig. 8
shows the I/O profiles we obtained using the instrumented
IOR with the MPI-IO 10k test on Edison FS2. It shows two
plots, each with three curves: a write, a read, and a re-read.
The first read is the distinctive read-after-write profile and
the second read is the re-read profile. We can see that the
read profiles on Edison are consistent with what we
observed on the internal Cray R&D XC30 system (Fig. 7).
With more OSTs and file size per node being used, a steeper
read rate drop is observed. Note that Fig. 8 has the write,
read, and re-read data all in sequence which makes the
curves more compressed than in Fig. 7

Then we used the instrumented IOR for a number of
scaling experiments on Edison FS3 using the MPI-IO 1m1
test with collective buffering disabled as seen in Fig. 9. Fig.
9 (a) has three curves. These three tests were all done on
64-GB nodes with file sizes equal to 16, 32, and 64 GB per
node. All three tests were read-after-write, but only the read
data are plotted for clarity. The first test completed in about

100 seconds, with performance fairly constant throughout.
The second test, with a file twice the size as the first test,
completed in about 200 seconds, and again, with
performance fairly constant. The third test, with file size
twice the size as the second test, but significantly, also the
size of all the compute node memory, did not have a
constant rate but declined dramatically throughout the test.
This confirmed that the performance profile seen on the
smaller Cray system was indeed happening on Edison. Fig.
9 (b) shows what happened when the file size, the number
of OSTs, and the number of ranks were all doubled
compared to the third test in Fig. 9(a). Performance was

Figure 8. The I/O rates measured by the instrumented IOR for the two
MPI-IO 10k jobs that were run on Edison FS2 in dedicated mode on
3/26/2014. The second read curve shows the read rate from the re-read
job.

Figure 7. The distinctive read profiles for the read-after-write (upper
plot, write rates are not shown) and the re-read test (lower plot)
observed on the internal Cray R&D XC30 system with dual socket
12-core Ivy Bridge processors with 64 GB per node memory
(dedicated). 32 nodes, 32 OSTs and 64GB/node file size were used
in the tests. Instead of the MPI-IO 10k test, the equivalent MPI-IO
1m1 test without collective buffering was run in the tests.

almost doubled, due to having twice as many OSTs, but the
profile has the same overall shape.

These scaling tests strengthen the belief that the problem
can be reproduced on a smaller system and that the profile,
rather than the net performance, is the signature of the
problem. Since this read profile as reported by instrumented
IOR was to play a critical role, we compared that profile
with the file system performance profile from the Lustre
Monitoring Tool (LMT) [10]. Fig. 10 shows the LMT data
for the same two jobs that were shown in Fig. 8 (MPI-IO
10k runs on FS2). They agree, except that the IOR plot
shows a more zigzag shape, because it used one-second bins
to collect data, while the LMT used five-second bins to
calculate the rates over time. Otherwise, the match in the
profiles confirms that instrumented IOR is reporting the true
performance.

Knowing that the read profile of the read-after-write is a
characteristic of the performance slowdown in the MPI-IO
10k test, we then looked back the August LMT data. Fig.
11 (a) is for FS1 and Fig. 11 (b) is for FS2. We see that the
read-afer-write profile in August was more like the current
re-read profile. FS2 was less full and less fragmented than
FS1 that time, which probably accounts for the slightly
better performance of FS2.

We attempted to look further into the difference between
the two read profiles. Fig. 12 shows the I/O time per
compute node for one of the dedicated runs on FS2. Fig. 13
shows the I/O rates for the two selected nodes, 47 and 48.
We can see that the I/O times of the compute nodes vary a

Figure 10. The LMT data for the two MPI-IO 10k jobs ran on
3/26/2014 (the same two jobs as in Fig. 8). The second read curve in
each panel is the read rate from the re-read job.

(a)

(b)

Figure 9. The scaling tests with the MPI-IO 1m1 test without CB on
FS3 in dedicated mode. The MPI-IO 1m1 test with CB disabled is
equivalent to the MPI-IO 10k test using IOBUF library with a buffer
size of 1,000,000 bytes. The upper panel shows the read rates when
increasing the file sizes. The number of cores and OSTs used were
kept constant, 768 cores and 32 OSTs. The lower panel shows the read
rates when increasing the number of OSTs used while keeping the file
size per OST constant. Note, read rates shown here were from the
read-after-write tests, not from the re-read tests.

.

lot in the read-after-write test but are very balanced in the
re-read test. Since each compute node has perfectly
balanced I/O workload, and does not do any computing, we
could expect a very balanced I/O time among compute
nodes in dedicated runs. The fact that the re-read job has a
well balanced I/O time while the read-after-write does not
suggest some kind of interaction between the write and read
phases in the standard run. However, from how the IOR
code was run, and from the application level, we do not
expect any interaction between the write and read phases.

Whatever has caused the 70% slowdown between
August and December, we have at least identified that
something has changed that dramatically changed the
performance profile and the net performance. This has made
it practical to use internal Cray R&D systems to debug the
problem and to confirm the fix. In addition, on the internal
systems it is easy to switch back and forth between CLE and
Lustre versions compared to a production system like
Edison.

4) CLE and Lustre upgrades: The CLE and Lustre
versions are not easily revertible, especially on a production

(a)

(b)

Figure 11. These are LMT data for the three dedicated MPI-IO 10k jobs on the FS1 (upper panel) and FS2 (lower panel) that were run on 8/23/2013.

Figure 12. The write and read time per compute node. This was a

dedicated run on FS2 on 3/26/2014.

system. However, we had a chance to run a test with CLE
4.2 + Lustre 1.8.6 and with CLE 5.2 + Lustre 2.4 on the
internal Cray R&D XC30 system. We observed that the read
profile was fairly flat with CLE 2.4 + Lustre 1.8.6 (See Fig.
14) while it steeply declined with CLE 5.2 + Lustre 2.4 (Fig.
7 upper panel). This comparison is more evidence that
something has changed in CLE and/or Lustre client that is
the cause of the change in performance. By comparing the
versions running on Edison in August and in December, it
further narrows down the range of changes to somewhere
between CLE 5.0.UP03 + Lustre 2.3.0 and CLE 5.1.UP00 +
Lustre 2.4.0. However, since the Lustre client upgrades are
always incorporated into specific CLE versions, it was
difficult to determine if it was CLE or Lustre that was
responsible for the performance slowdown.

5) A Sonexion parameter readcache_max_filesize:
When looking into the file system configuration changes on
Edison since last August, we noticed that the value of a
Sonexion parameter, readcache_max_filesize, was changed
from “infinite” to 1MB with one of the Lustre upgrades on
Edison. This parameter controls the maximum size of a file
that both the read and write-through caches will try to keep
in memory. Files larger than readcache_max_filesize will
not be kept in cache for either read or write. This parameter

change appeared to be worth investigating. Fortunately, this
parameter was resettable without needing to revert the
Lustre version. So in one of our dedicated tests, we tested if
this change was responsible for the MPI-IO 10k
performance 70% slowdown. We observed that when set to
”infinite” (the same as in last August) the MPI-IO 10k read
rates improved, especially in the re-read tests. However, the
read pattern of the MPI-IO 10k test was not changed, and
the improvement of the read rate in the read-after-write test
was not enough to restore the last August results. See Fig.
15.

6) Compute node kernel and Lustre caches: As we have
mentioned earlier, in the standard IOR benchmark runs the
write and read tests were run in a single aprun invocation.
The fact that the read-after-write performs poorly while the
re-read test does not indicates that the write phase must have
left some “residue” which affects the follow-on read test.
The compute node kernel caches appear to be the first
suspect. We did an MPI-IO 10k test (in production), in
which we cleared the compute node kernel caches between
the write and read phases by running the following
command on the compute nodes,

echo 3 > /proc/sys/vm/drop_caches
This was possible because IOR has an option to add an
arbitrary time delay between the write and the read phases
(the –d option), so that we (root) could run the above
command on the compute nodes. However, this did not
result in any observable difference in the read profile of the
MPI-IO 10k test. Next, we further cleaned up the Lustre
caches by running the following command on the compute
nodes,

echo 1 > /proc/fs/lustre/ldlm/drop_caches
and finally, we found that the read profile of the MPI-IO
10k test changed to the same as that of the re-read test. See
Fig. 16. This points to issues in the Lustre implementation.
We provided our investigation results to a Cray Lustre
developer, who worked closely with us at the late stage of
the debugging. With further analysis, he was able to identify

Figure 13. I/O rates for the nodes 47 (upper panel), and 48 (lower

panel) in Fig. 12.

Figure 14. The read rates measured by the instrumented IOR for an
MPI-IO 1m1 test without collective buffering under the CLE 4.2 and
Lustre client 1.8.6 on the internal Cray R&D Cray XC30 system.

the specific Lustre patch which was responsible for this
performance issue [9]. However, the patch was both too old
and too central to be easily removed from Lustre 2.4/2.5/etc.
Further investigation is still under way.

B. Lessons learned from the MPI-IO 10k performance
issue
Through the debugging of this performance issue, we

clearly see some room to improve the software release,
installation and testing process. While we could not expect
bug-free software in general, a better set of benchmark
suites seems to be needed for both developers/vendors and
sites, which would help in catching performance issues
earlier. Yet while this may be obvious in principle, there are
many challenges in I/O testing. For example, this specific
MPI-IO 10k test takes more than two hours to complete, and
that has made it an unfavorable test to run after every CLE

and Lustre client upgrade in dedicated mode for a
production system like Edison. However, running a shorter
version of this test may not show the performance problem.
It seems the instrumented IOR is something we could
deploy in the future as it may provide a way to catch
performance profiles without running lengthy benchmark
runs. Or if we have to run lengthy tests, the instrumented
IOR may catch distinctive performance profile changes
without needing to run on dedicated systems.

VI. I/O PERFORMANCE VARIANCE AND MONITORING IN
PRODUCTION ENVIORNMENT

I/O performance variation is very disruptive to user
workflows. The two major causes of I/O time variation are
the contention for the I/O resource among users and the
degraded file system performance. While contention is
unavoidable under our current configuration (because I/O
resources are not a "schedulable" resource), we can still take

Figure 15. Dedicated MPI-IO 10k test runs on FS2 with the
readcache_max_filesize of 1MB (upper panel, the current value) and
“infinite” (lower panel, the value in August, 2013). The IOR rates
were from instrumented IOR.

Figure 16. The figure shows the I/O rates for an MPI-IO 10k standard
test (write and then read, upper panel), and a re-read test (lower panel)
on FS2. These tests were run under the production environment.
Between the write and read phases during the standard run, the
compute node kernel and Lustre caches were cleaned up.

some steps to mitigate the situation by promoting good I/O
practices where applicable. During one of our debugging
processes we located a user job that was stressing the file
system with the Posix file per process I/O on FS3. The user
bundled 11 job instances into one large job. Each job
instance used 1024 cores; each core read a 50 MB file. So
the job ran with a total of 11,264 cores, reading 500 GB in
total. Looking into the past Darshan [3] profiling data
(unfortunately, Darshan is disabled on Edison now because
it does not work with the current craype version, 2.0 and up,
therefore no current data) it appeared that the user code may
do small transfer size I/O operations. In addition, the user
was using the default Lustre stripe count on FS3 (8), which
is not optimal in general for Posix file per process I/O. So
we suggested that the user try the IOBUF library with stripe
count 1. The user was able to get at least 100 % I/O time
improvement and reduced I/O time variation. See Fig. 17.

We notice that when users report huge I/O variation,
usually it is when some components of the file systems are
underperforming or misbehaving. Last March, many users
reported that their file I/O was slow by more than 10 times.
With dedicated debugging from the onsite Cray staff (the
debugging was not trivial), we were able to locate a slow
disk drive, and resolved the problem by replacing the slow
drive with a spare one. During this process, we ran the Posix
FpP 1m2 IOR test multiple times to aid the debugging. This
test assigns one file (or several files) with stripe count of 1
to each OST, and has exactly one rank writing to and
reading from each file. This way, the performance of each
specific OST can be measured with only about 5 minutes of
test time. Any OST that is having performance problems
can then be easily identified, even without dedicated system
time. Determining the cause is another challenge, but at
least it is known that there is a problem and it has been
narrowed down to a specific OST. It has proven to be an
easy tool to use to help debugging and confirm the fix.
Therefore, we are now running IOR tests regularly to
proactively detect performance issues.

Being able to monitor and detect file system health and
performance is crucial to delivering quality I/O service to
users. Currently we have the Lustre Monitoring Tool (LMT)
[10], which monitors Lustre file system servers, and the
Simple Event Correlator (SEC) [12], which monitors system
events, in place on Edison. LMT data is very useful to
monitor the file system activity and performance. Currently,
the LMT data is not available for general users, though. It
requires extra efforts to be able to make them available to
users. NERSC is working on it now. Edison uses the Cray
provided Simple Event Correlator (SEC) tool to monitor file
system events, which can alert system administrators when
there are system changes that are predefined in the SEC rule
file. For example, SEC monitors the following file system
related events:

Boot, disk in and out,
Various failovers, e.g., mds, OST, etc.,
Slow or hung threads on OSS nodes
Failed to connect to database
Lock timed out
Fan enclosure error

We often receive SEC reports about slow or hung threads on
the OSS nodes, but it is usually difficult to determine if it is
something that can wait until the system recovers by itself
(e.g., if they are just from user contention), or it is serious
enough and is in need of investigation right away. In
addition, it is usually difficult to correlate the slow threads
with the affected user jobs without non-trivial manual
interaction.

We do not use the Cray Sonexion System Manager
(CSSM) [13] on Edison. It has a web based GUI that
provides status and control of all system components,
including storage hardware, RAID, operating system and the
Lustre file system. It seems to be considered more as a
debugging tool instead of a monitoring one among the
onsite Cray staff. In their last attempt to run CSSM on
Edison, the GUI failed to display LMT data because the
available browser version was too old on the system
management server. It seems some work is needed for
CSSM to fully function on Edison at this point. However, in
the long run if we could incorporate some of the monitoring
capability of CSSM in to the Nagios [14] framework, it
should be very helpful.

VII. CONCLUSION AND FUTURE WORK
In this paper we provided a detailed investigation into

many potential causes of I/O performance variation on
NERSC’s Cray XC30 system. Through an extensive series
of experiments on Edison and on an internal Cray system we
ruled out programing environment changes, file
fragmentation and physical positions, a Sonexion caching
parameter, and CLE upgrades. We were able to narrow the
cause to a range of Lustre releases and eventually to a
specific Lustre patch. A further investigation to fix the
problem is still under way.

The key progress made in this investigation was
identifying the distinctive read profiles of the MPI-IO 10k
test with the instrumented IOR benchmark code, which made
it possible to reproduce the dedicated performance issue of
large file systems on a small internal Cray system, and to
investigate the problem in a production environment.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200 250

re
a

d
 t

im
e

numbe of read call

with iobuf, rec=32M, count=2, stripe 1
wout iobuf, stripe 8

Figure 17. File read time comparison of a user code, QLUA [11], with
and without using the IOBUF library. The stripe count was also
changed from the default 8 to 1. This figure was provided by a NERSC
user.

Catching the distinctive performance profiles using the
instrumented IOR could be a general approach that helps
debugging elusive IO performance issues. Because the
performance profile is more sensitive to the changes
compared to the net I/O rates, especially a large I/O rate
variation from run to run may occur.

The I/O run time variation can be very disruptive to user
workflows. Promoting good user I/O practices may mitigate
the variation from user contention. NERSC uses the SEC and
LMT to monitor the file system health and performance, and
is running IOR benchmarks regularly to help monitor the file
system performance. NERSC is looking into making LMT
data available to users, and is also looking into other
benchmark options to test the I/O performance with small
transfer sizes.

ACKNOWLEDGMENT
The authors would like to thank Mark Swan at Cray, Inc.,

for extracting LMT data on Edison, and would also like to
thank Steve Luzmoor, Patrick Farrell at Cray, Inc., for their
work and help to resolve the bug 809189 [the bug we opened
for this MPI-IO 10k performance issue]. The authors also
thank a NERSC user, Marcus Petschlies, who provided the
IOBUF tests results with a QCD code, QLUA. They also
thank Nathan Wichmann at Cray, Inc., who conducted the
IOR acceptance tests. They also thank Shane Canon at
NERSC for providing Lustre file system usage on Edison,
and Harvey Wasserman at NERSC for valuable discussion
and help. In addition, most of the debugging jobs were
required to run on the dedicated Edison system, which was
not possible without the support from Jeff Broughton, the
NERSC-7 project manager, and the help from other Cray

onsite and NERSC system staff. This work was supported by
the ASCR Office in the DOE, Office of Science, under
contract number DE-AC02-05CH11231. It used the
resources of the National Energy Research Scientific
Computing Center (NERSC).

REFERENCES
[1] NERSC Edison: http://www.nersc.gov/users/computational-

systems/edison/
[2] NERSC-6 benchmark suite, a set of benchmark codes and tests

resulted in the Hopper system, a Cray XE6, acquisition. Edison
procurement, coded as NERSC-7 internally, used the same set of
benchmark suite.

[3] Darshan, a light weight I/O profiler,
http://www.mcs.anl.gov/research/projects/darshan/

[4] NERSC workload analysis used for NERSC-8 procurement [internal
communication]

[5] Cray Sonexion Brochure, is available at
http://www.cray.com/Assets/PDF/products/sonexion/SonexionBrochu
re.pdf

[6] The source for the IOR benchmark application, version 2.10.3, is
available at http://sourceforge.net/projects/ior-sio.

[7] Cray IOBUF: module load iobuf, man iobuf
[8] D. Petesch, M. Swan, “Instrumenting IOR to Diagnose Performance

Issues on Lustre File Systems”, Proc. Cray User Group, May 2013.
[9] LU-744 osc: add lru pages management - new RPC,

http://review.whamcloud.com/#/c/2514/
[10] LMT: Lustre File System Operations Manual - Version 1.8 S-6540
[11] QLUA, https://usqcd.lns.mit.edu/redmine/projects/qlua_code
[12] SEC: http://simple-evcorr.sourceforge.net/
[13] CSSM: Cray® Sonexion® Administrator’s Guide HR5-6093-B
[14] Nagios: http://www.nagios.org

