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Abstract—The Cheminformatics & Chemogenomics Re-
search Group (CCRG) at Indiana University has been working
on algorithms and tools for large scale data mining of drug
discovery, chemical and biological data using semantic tech-
nologies. The work includes finding new gene targets for drugs,
identifying drug/drug interactions and pinpointing the cause
for drug side effects. CCRG uses sematic web technologies like
Resource Description Framework (RDF), triple stores, and the
SPARQL Protocol and RDF Query Language (SPARQL). The
YarcData Urika appliance promises to radically speed up this
specific type of research by implementing a SPARQL endpoint
on specialized hardware. In this paper, we are describing our
first steps in testing if a Urika system could be integrated into
our workflows.
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I. INTRODUCTION

Semantic Web technologies are becoming important when
analysing large and complex data sets as it becomes more
and more common that the analysis is no longer limited to
one data set but relies on connecting multiple data sets. As
once siloed data sets are becoming available for analysis,
it is possible to derive better insights from connecting a
larger number of data sets. Traditional relational database
systems are very good at analysing large datasets, as long as
the schema is well designed and the data conforms to this
schema. However, relational databases are not well suited
for connecting different datasets that were organized for
different purposes using different schemas.

In contrast, this is where Semantic Web technology excels.
Triple stores are used in scenarios where the schema is less
well defined and particularly where there is a wide range

of different types of entities that need to be stored. Triple
stores also support an evolving set of relationships between
entities. In the flexible, schema-free environment that a triple
store provides, dealing with this kind of data is much easier.
Triple stores are well suited to integrating data from a wide
range of sources without having to force that data into a
single normalized schema.

The principal technologies of the Semantic Web fit into
a set of layered components. The current components are
the Resource Description Framework (RDF) Core Model,
the RDF Schema language, the Web Ontology Language
(OWL) and the SPARQL query language for RDF.

The RDF model[1] based upon the idea of describing
statements about resources in a triple. A triple in RDF
terminology is an association of the form (subject, predicate,
object), loosely describing a relation between the subject and
the object. The subject of an RDF statement is a resource
identified by a Uniform Resource Identifier (URI)[2]. The
predicate is denoting a specific property of the subject.
The object, which can be a resource or a string literal,
represents the value of this property. For example, the fact
that “The drug Atorvastatin is given for type II diabetes“
can be represented in an RDF triple by denoting the subject
as “Atorvastatin“ with a predicate “is given“ and the object
“type II diabetes“.

RDF Schema (RDFS)[3] and the Web Ontology Language
(OWL)[4] are used to explicitly represent the meanings of
the resources and how they are related. When connecting
data sources that conform to OWL, the meaning of relations
is predefined and uniform in all data sources. It is no longer



necessary to adapt and map the various schemas to one
another.

SPARQL[5] is a query language for RDF. A SPARQL
query is represented by a graph pattern to match against the
RDF graph. Graph patterns contain triple patterns, which
are like RDF triples, but with the option of query variables
in place of RDF terms in the subject, predicate or object
positions. For example, the query composed of the triple
pattern (“Atorvastatin“, “is given“, ?disease) matches the
triple described above and returns “type II diabetes“ in the
variable disease.

On the YarcData web pages[6], the Urika is described
as an enterprise-ready graph appliance, that once fed with
data, can generate insights fast. This suggests convenient
commodity-computing. The vision is implemented by having
the Urika comply to all of the above outlined standards.
By exposing a standard SPARQL endpoint, it is straight
forward to include the appliance in workflows that rely on
such technology.

As we looked for past experiences with the performance
of Urika, we found only limited published results. [7] has
a nice comparison of different graph databases, but very
little detail on them and the performance comparison in
this paper does not include the Urika system. [8] is a
Urika specific paper and compares the Urika on two specific
problems to a SQL database and another SPARQL endpoint.
Unfortunately, no hardware information is provided for those
two systems making it difficult to compare them. [9] is an
in-depth paper that discusses performance of a Cray XMT
system. The XMT was renamed to Urika after the paper
was published, so the results continue to be relevant. The
paper focuses on the technical details and the performance
of implementing a triple store on the XMT. The YarcData
website[6] lists a number of use cases for Urika, but the
whitepapers are more focused on outlining what is possible
with a Urika, as opposed to performance details.

The Cheminformatics and Chemogenomics Research
Group (CCRG) [10] in the School of Informatics and
Computing at Indiana University, Bloomington is a world-
leader in the development of large-scale semantic networks
of data for drug discovery and biomedicine[11][12][13].
Major contributions include: Chem2Bio2RDF[14], the first
large-scale semantic network of drug discovery data, and a
wide range of network prediction, association finding and
modeling tools that work on this data. Of particular note
are the association search tool[15] that integrates pathfinding
and literature-based association finding algorithms to iden-
tify literature supported association paths between drugs,
genes, diseases, side effects and biological pathways, and
the highly novel and validated Semantic Link Association
Prediction (SLAP) approach[16] which makes drug-gene
association predictions based on statistical analysis of the
subnetworks which exist between them.

This paper describes our first steps of evaluating if a Urika

system could be used by researchers at Indiana University,
it is not intended as a thorough performance comparison.
The paper describes out experiences when moving a popular
dataset from the Virtuoso triple store onto a Urika system
and initial performance numbers. The paper is organized
in the following way. Section II outlines an interesting
use case for combining data from multiple data sources,
motivating our research into this topic. Section III briefly
describes the hardware that we have used in this paper.
Section IV outlines the methodology of our tests and section
V describes the results of our testing. Section VI concludes
the paper, outlining what we found and what we plan on
working next.

II. USE CASE

An example that can easily be solved using SPARQL
queries is discovering drug-drug interactions and drug side
effects. This is very important for patients taking more than
one drug. For example, a patient with high blood pressure
and a history of cardiovascular disease, which includes heart
attacks and bypass surgery, may take 5 or more drugs at
the same time. For this example, lets assume those drugs
are: Fenofibrate (lowers LDL/VLDL, triglycerides, increases
HDL), Levothyroxine (Synthetic thyroid hormone used to
treat hypothyroidism), Valsartan/Hydrochlorothiazide (An-
giotensin II antagonist for hypertension), Aspirin (as a blood
thinner) and Rosuvastatin/Crestor (LDL lowering drug).
Those drugs target certain proteins in the body and once
those targets are identified, one can actually go a step further
and also compute what other drugs effect the same target,
but have different side effects. All the relevant data sources
are available in RDF and can easily be loaded into a triple
store.

PREFIX sider:
<http://chem2bio2rdf.org/sider/resource>
SELECT *
FROM <http://chem2bio2rdf.org/sider>
WHERE
{
?sider sider:drug_name ?drug_name .
FILTER regex(?drug_name,
"Fenofibrate|Aspirin|Rosuvastatin|
Levothyroxine|Valsartan","i" ) .
?sider sider:side_effect ?side_effect .

}

Figure 1. SPARQL query to retrieve the side effects of 5 drugs.

The SPARQL query for retrieving the side effect of those
five drugs is shown in figure 1. The query works on the sider
database, first retrieving all drug names and filtering it down
to the relevant drugs. Then, the side effects of those drugs are
retrieved. This will yield a complete list of side effects for



Figure 2. A graph showing the proteins that are targeted by the drugs Fenofibrate, Aspirin, Rosuvastatin, Levothyroxine and Valsartan. The proteins are
colored in red circles, the dugs in yellow squares and the other drugs that target the same proteins in blue squares.

those drugs. In a similar manner, the actual protein targets
of the drugs can be retrieved. With this information, other
drugs can be found that target the same protein, but may
have different side effects. Figure 2 shows the graph that
was computed using this information. In the graph, the five
original drugs are represented using yellow squares. The
proteins that are targeted by those drugs are connected by an
edge to the drug and are shown as red circles. Other drugs
that target the same proteins are shown in blue squares.

III. HARDWARE AND SOFTWARE

For our testing we used a standard rack mounted server
for running the Virtuoso triple store and a Urika-64 sys-
tem for comparison. Details of the hardware and software
configuration of both systems are described in the next two
sections.

A. Urika

1) Hardware: YarcData offers the Urika in different
sizes, labeled after the number of Threadstorm processors
in the system. For our tests, we had access to two systems
of the smallest configuration, Urika-64. The Urika appliance
includes two distinct types of nodes, compute and service.

Compute nodes run application programs. Each Urika com-
pute node consists of two Threadstorm 4.0 application-
specific integrated circuit (ASIC), DIMM memory, and a
SeaStar2 chip. All compute nodes in a logical system use the
same processor type. Service nodes handle support functions
such as user login, I/O, and network management. Each
service node contains an Opteron processor, DIMM memory,
and a SeaStar2 chip. In addition, each service node may be
configured with one or two PCIe Ethernet Network Interface
Cards (NIC).

The system fits in a single cabinet, and consists of 64
compute nodes and a number of service nodes depending
on local configuration. Four compute nodes fit on a single
blade for a total of 16 compute blades. The compute blades
are actually Cray XT-5 blades, with the AMD Opteron
processors replaced with Threadstorm 4.0 ASICs. The blades
are interconnected using the Cray SeaStar2 interconnect.

The Threadstorm 4.0 is custom-designed compute proces-
sor designed to provide uniform performance across a large
shared memory architecture despite memory and network
latency. The Threadstorm processor is organized into a series
of streams, which the hardware uses to execute a single
thread. Each Threadstorm chip provides 128 streams with
31 general purpose 64-bit registers, 8 target registers, and



Figure 3. The Urika software stack[17].

a status word that includes the program counter as well a
flag indicating the ready state of the individual stream. At
each instruction cycle, Threadstorm switches contexts to the
next stream that is indicating a ready state. Streams making
memory requests are placed into a non-ready state until the
memory references are fulfilled, allowing the Threadstorm
processor to skip over them to continue processing steams
in the ready pool. The large number of streams allows each
processor to avoid stalls due to memory requests to a much
larger extent than commodity microprocessors[9].

The Seastar-2 ASIC chip is the message processor for
the Urika system. SeaStar offloads communications func-
tions from the Threadstorm processor by integrating six
high-speed serial links and a 3D router on each compute
node. The network architecture includes a message passing
interface, which provides a data path from an application
to memory. Portions of the interface are implemented in
SeaStar firmware, which transfers data directly to and from
user memory without operating system intervention.

A Urika-64 system is usually equipped with a total of
2 TByte of globally shared main memory. The memory
has uniform access across the system, in a data cache-free
architecture. The system is booted using a single system
image, allowing for an application to use all 2 TByte of
memory and 64 processors with 8192 threads at once.
Overall, the hardware configuration of a Urika system is
very similar to a Cray XT5, with the exception of having
Threadstorm compute processors instead of AMD Opterons.

2) Software: While the overall hardware architecture of
a Urika is very similar to a Cray XT5, the system software
is considerably different. Users can certainly write their own
applications that run on the compute nodes of the system,
since compilers and libraries are provided, however, much
of the functionality of a Urika system is achieved by making
use of the already provided RDF triple store and SPARQL
endpoint. The system is marketed as an appliance, not as
general purpose machine.

YarcData has implemented a proprietary W3C compliant
tripe store for the Urika, optimized for the architecture of
the shared memory. Figure 3 shows a schematic overview
of the software architecture of the Urika.
The triple store can be loaded using either data that is
available via HTTP or on a local Lustre file system. Making
use of the Lustre file system will allow for a quick load
of large data sources. Results of SPARQL queries can be
retrieved using HTTP, or can be saved to the Lustre file
system. Due to the integration of Lustre as a way to load
and store data, a Urika system can be integrated relatively
easily into a center that already has Lustre available for other
HPC systems. GPFS and Panassas are also supported.

B. Standard Server

1) Hardware: The standard server that was used for com-
parison is a Dell PowerEdge R510. The server is equipped
with two Intel Xeon X5550 quad core processors running
at 2.67Ghz. Hyper-threading was enabled, turning the eight
physical cores into 16 logical cores. The server was equipped
with 26 GB of main memory.

2) Software: The server was run using Red Hat Enterprise
Linux Server release 5.10. Virtuoso version 06.01.3127-
pthreads was used, as available from http://virtuoso.
openlinksw.com/.

IV. METHODOLOGY

Dataset Triple Count
http://chem2bio2rdf.org/omim 17,251
http://chem2bio2rdf.org/kegg 245,997
http://chem2bio2rdf.org/reactome 15,849
http://chem2bio2rdf.org/ctd 4,933,479
http://chem2bio2rdf.org/chebi 5,812,141
http://chem2bio2rdf.org/dcdb 20,780
http://chem2bio2rdf.org/bindingdb 1,191,201
http://chem2bio2rdf.org/hprd 477,697
http://chem2bio2rdf.org/hgnc 1,720,541
http://chem2bio2rdf.org/medline 480,716,135
http://chem2bio2rdf.org/kidb 744,738
http://chem2bio2rdf.org/pubchem 15,439,873
http://chem2bio2rdf.org/qsar 32,206
http://chem2bio2rdf.org/bindingmoad 252,938
http://chem2bio2rdf.org/matador 269,656
http://chem2bio2rdf.org/pharmgkb 512,361
http://chem2bio2rdf.org/pdb 95,925
http://chem2bio2rdf.org/ttd 116,767
http://chem2bio2rdf.org/chembl 85,156,878
http://chem2bio2rdf.org/medline lite 56,212,993
http://chem2bio2rdf.org/dip 1,113,871
http://chem2bio2rdf.org/sider 127,755
http://chem2bio2rdf.org/uniprot 1,994,607
http://chem2bio2rdf.org/drugbank 436,283
http://chem2bio2rdf.org/chemogenomics 7,327,361
Total 664,985,283

Table I
TRIPLE COUNT FOR THE CHEM2BIO2RDF DATA SETS.

Our testing focused mostly on functionality, and only to a
small extent on performance. We were interested if we can
migrate an existing workflow relying on a SPARQL endpoint

http://virtuoso.openlinksw.com/
http://virtuoso.openlinksw.com/


Figure 4. Runtime comparison of selected queries on the Urika and the standard server.

to the Urika. For this test, we imported the chem2bio2rdf
data sources[18] into the Urika triple store. The triple count
for the individual datasets is shown in table I.

During import, we found a few thousand triples that could
not be imported on the Urika, due to spaces in the URI. We
believe that those won’t effect performance or functionality
for our testing. Besides this, importing the data went without
a problem. Data can be imported in two ways, using a
command line utility or using the web-GUI. The data can
be provided via the HTTP protocol or can be imported from
the file system that is available on the Urika.

Once the data is imported, the Urika will combine the
data into a “database“. Multiple such “database“ can exist
on a Urika, but only one can be active. For our testing, we
inserted all the data sources into one database.

Then we ran queries against those datasets. We picked
a subset of the queries[19] that are published for the
chem2bio2rdf datasets. On the Urika, queries can be submit-
ted directly to the SPARQL endpoint from the command line
or using a web-GUI. In addition, since the Urika SPARQL
endpoint is build on the widely used Apache Jena[20]
framework, applications that can connect to Jena should
work out of the box. In the beginning we used the web-GUI
to make sure the queries ran without an issue. The web-GUI
will also format the output in a nice way, so that one can
click on the results for further analysis. For detailed timing,
we used a Java application that connected to the SPARQL
endpoint directly.

V. RESULTS

The first and most important result from our testing is
that the Urika can be used for the kind of work that we are
interested in. Due to relying on industry standards, existing

triple store based workflows can easily be reconfigured to
run on a Urika system. YarcData has created a solution that
combines a custom and proprietary hardware platform with
a standard software platform.

Figure 4 shows the runtime of the queries on the Urika
and the standard server. Queries were run 5 times and the
runtimes were averaged. No easy conclusion can be drawn
from the chart. There are queries where the standard server
is faster and there are queries where the Urika is faster. The
queries we picked were certainly not designed to test the
various features of SPARQL provides. Overall, it should be
noted that the workload is very small, compared to what a
Urika was designed for. The memory required for the dataset
was nowhere near the 2TByte of main memory that were
available on the Urika.

When loading a “database“ on the Urika, quite a number
of optimizations are performed to distribute the data across
the compute nodes. Those optimizations are performed for
all dataset sizes, consistent with the design goal of the Urika.
When running a query the same methodology is applied.
This means that even small queries are distributed across the
compute nodes to exploit maximum parallelism. For small
queries, the overhead cannot be amortized by the available
parallelism in the query. In addition, the Urika has a certain
irreducible overhead latency due to communications between
the Opteron front end nodes and the Threadstorm based
compute nodes. This is not a problem for the complex
queries over large databases it was designed for, but it is
noticeable on simple queries. The standard server we tested
has a much smaller latency for simple queries.



VI. CONCLUSION

In this paper we outlined our initial testing of running
chem2bio2rdf workflows on a Urika. We moved the required
datasets to the system and ran a few queries to validate the
results and get a better understanding of how to interact with
the system. Since our tests were not defined to specifically
stress a triple store, we are not drawing any performance
conclusions. However, it seems that incorporating a Urika
into our work is possible and we are looking forward to
continue our testing with larger datasets.
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