
Using Resource Utilization Reporting to Collect
DVS Usage Statistics

Tina Butler
 National Energy Research Scientific Computing Center
Ernest Orlando Lawrence Berkeley National Laboratory

Berkeley, CA USA
Email: tlbutler@lbl.gov

Abstract--In recent releases of the Cray
Linux Environment, a feature called
Resource Utilization Reporting (RUR) as
been introduced. RUR is designed as an
extensible framework for collecting usage
and monitoring statistics from compute
nodes on a per application basis. This
paper will discuss the installation and
configuration of RUR, and the design and
implementation of a custom RUR plugin
for collecting DVS client-side statistics on
compute nodes.
Keywords-RUR, DVS

I. CRAY ACCOUNTING: A BRIEF RECAP
	

Beyond charging for usage, historically,
accounting data has been useful for
characterizing a system’s workload. Memory
usage, I/O load and patterns of communication
are valuable for optimizing system use and
applications, for provisioning or upgrading
existing system, and for generating requirements
for new systems.

In the days of vector machines, Cray

provided a utility under UNICOS – Cray System
Accounting (CSA) - that collected numerous job
statistics including CPU time, memory high-
water mark and averages, and block and
character I/O counts. After Cray Research was
acquired by Silicon Graphics, CSA was ported
to Linux, renamed Comprehensive System
Accounting and open-sourced. CSA is still
supported by Cray for the Cray Linux
Environment (CLE), but the current
implementation has not scaled reliably with

larger parallel systems, and some of the more
useful features of previous versions are no
longer available.

In response to customer requirements, in

2010, Cray added a new feature to CLE,
Application Resource Utilization (ARU). ARU
is integrated with the Application Level
Placement Scheduler (ALPS) and provides basic
usage statistics for each aprun. ARU data
(obtained from the kernel via an rusage call) is
incorporated on the apsys finishing line written
to syslog or can be written to a flat file. (Figure
1.) One of the issues we discovered with ARU
is that if a job terminates abnormally, ARU data
is not reported. Many NERSC users submit
batch jobs that terminate by hitting wallclock
limit. Unfortunately, hitting wallclock limit is an
error that causes ARU data to be lost. Also,
ARU is not extensible by customer sites.

Figure 1. ARU Data in syslog

<150>1 2014-04-17T00:00:05.982308-
07:00 c5-0c2s4n3 apsys 19438 p0-
20140403t113614 [alps_msgs@34]

apid=28108121, Finishing, user=56395,
batch_id=7447167.hopque01, exit_code=0,

exitcode_array=
0, exitsignal_array=0, utime=521,

stime=41, maxrss=1425528,
inblocks=443257, outblocks=801443,

cpus=24, start=Wed Apr 16 23:50:43 2014,
stop=Thu Apr 17 00:00:05 2014,

cmd=smoothing

II. RESOURCE UTILIZATION REPORTING
Shortly after ARU was released, Cray was

requested to expand the type and quantity of data
collected and to make it site-customizable. As an
alternative to augmenting ARU, Cray chose to
start afresh and introduced Resource Utilization
Reporting (RUR) in CLE 4.2 and 5.1.

RUR is designed as a scalable, extensible

framework for collecting information from
compute nodes. Like ARU, RUR is initiated by
ALPS, but not tightly integrated. Cray provides
the RUR framework and a set of plugins for data
collection and staging, post processing, and
output. Data plugins collect and stage data on
compute nodes and post-process the data on
MOM or login nodes, output plugins transfer the
processed data to storage. [1]

RUR workflow is shown in Figure 2.

Figure 2. ARU Workflow

Cray provides three sets of data plugins and

three output plugins for RUR. The data plugins
are:

• taskstats – this plugin provides basic

process accounting information
including user and system CPU time,
memory usage and file input/output.
This provides the data previously
available from ARU.

• gpustat – this plugin provides
utilization statistics for NVIDIA
GPUs on XK and XC-30 systems,

including compute time and memory
usage.

• energy – this plugin records energy
utilization for an application on XC-
30 systems.

The output plugins are:
• llm – this plugin writes RUR output to

the Lightweight Log Manager (LLM),
which aggregates syslog information
on the SMW or other site-defined
syslog location.

• file – this plugin writes RUR output to
a site-defined flat file.

• User – this plugin writes directly to a
user directory if an environment
variable is set. (CLE5.1 only)

RUR is installed by default in CLE, but not

enabled. RUR is enabled by adding RUR
information to the apsys stanza in either
/etc/alps.conf (CLE 4.X) or
/etc/opt/cray/alps/alps.conf (CLE 5.x). This
includes the paths to the RUR prologue and
epilogue and timeout values. The RUR
configuration file is found in
/etc/opt/cray/rur/rur.conf. This file has plugin
definitions and values and allows the
administrator to turn plugins on and off, set local
values for file locations and define custom
plugins to the RUR framework.

Please note that CLE must be configured with

the /dsl environment for compute nodes as
default as RUR relies on the service node shared
root accessed via /dsl. CLE ships with /dsl as
the default, but if that has been modified, the
administrator must fall back to the default
configuration.

III. THE NEED FOR A CUSTOM PLUGIN

The National Energy Research Scientific
Computing Center (NERSC) has an active and
expanding interest in collecting many types of
resource usage data in order to characterize the
workload of our users. We are interested in

collecting information on both a system-wide
and per-application basis.

NERSC supports its users by providing them

with access to a multi-petabyte, global parallel
filesystem that is mounted on all the major
compute platforms at NERSC. This is known as
the NERSC Global Filesystem (NGF), and uses
IBM’s Global Parallel File System (GPFS).

NGF actually comprises multiple filesystem

instances resident on different storage hardware
platforms with different fabric connectivity
(InfiniBand and 10 Gb Ethernet), different block
sizes and different performance characteristics.
The current set of NGF filesystems mounted by
NERSC production systems is shown in Figure3.

Figure 3. NERSC NGF filesystems with block sizes

On the Cray systems at NERSC, access to
NGF filesystems from the compute nodes is
through the Data Virtualization Service (DVS),
which provides I/O forwarding service from XE
and XC service nodes to the compute partition.

System-level usage information for I/O to

filesystems is relatively easy to collect at the file
servers; collecting per-application data is more
difficult

In recent released versions of CLE, DVS

statistics are available for both DVS servers and
clients [2]. The system-level data on the DVS
servers is available through the /proc filesystem
and includes both IPC and request/operation
statistics for a given server. The client data, also
available through /proc, includes the same

statistics per mount point. If we can collect
those DVS client statistics from compute nodes
it will allow us to begin to characterize NGF
usage for individual applications. With the
release of RUR, we now have a flexible
mechanism for collecting and storing DVS client
statistics.

IV. IMPLEMENTING A CUSTOM PLUGIN

The RUR framework is written in Python, but

custom plugins are not required to be in the same
language. The interfaces to the framework and
functional requirements for plugins are defined
and described in the Cray manual, ‘Managing
System Software for the Cray Linux
Environment’. The data_staging plugin is called
before the application runs, allowing counter
initialization, and after the application completes
to collect the desired data. Data is written to a
file in /var/spool on the compute node and
copied by the framework to a MOM or login
node using pcmd. The data post plugin runs on
the MOM/login node, and aggregates the data
files copied from the compute nodes.

On each client compute node, DVS statistics

are written to two areas in /proc/fs/dvs:

• /proc/fs/dvs/mounts/*/{mount,stats,
openfiles) – the stats file has the per-
mount point counts of successful and
failed file system operations); the
mount file has the mount point data
including local and remote paths
(Figures 4 & 5).

• /proc/fs/dvs/ipc/stats – this stats file
has DVS IPC statistics including
bytes transferred and received, and
message counts. This file does not
segregate data by mount point.

The dvs data staging plugin first resets the
stats counters by writing a ‘2’ into the stats file
for each mount point in the pre-application
phase. After the application completes, the
plugin walks the /proc/fs/dvs/mounts sub-tree

/global/syscom, bs=65536
/global/common, bs=65536
/global/u1, bs=131072
/global/u2, bs=131072
/global/dna, bs=1048576
/global/project, bs=4194304, RDMA
/global/projectb, bs=1048576, RDMA
/global/scratch2, bs=8388608, RDMA

and collects the mount point and stats data.
Statistics are written to /var/spool/RUR/dvs.apid
on each compute node. The dvs post plugin
aggregates the DVS statistics from each compute
node and passes the data to the RUR framework
for processing by the active output plugins.

RUR output from the dvs plugin is shown in
Figure 6.

I’d like to make a few observations on

implementing a custom plugin for RUR. First,
the RUR framework for gathering and output
expect a single line file for each node. This
constrains custom plugins that might want to
write output to a different backing store like a
database or a set of file that are not aggregated.
Second, it would be valuable to be able to
explicitly tie data and output plugins to each
other. Currently in the RUR framework, the
products of all active data plugins will be passed
to all active output plugins. This constrains the
format of the data plugin to comply with the
most restrictive output plugin. Last, it is
important to know that error logging from RUR
does not go to syslog, but is available in
/var/log/apsys on the MOM node where the
particular aprun was scheduled.

V. FURTHER WORK

The current dvs plugins are only collecting

per-mount point filesystem operations data.
The DVS IPC data is also of interest, the plugin
set needs to be extended to incorporate at least
part of that data. NERSC job statistics are
aggregated in our “Job Completion” database;
DVS client data collected by RUR will become
part of that as well.

RUR is a valuable new capability with the

potential for gathering a broad range of compute
node –based data and a welcome addition to the
administrative toolkit.

VI. ACKNOWLEDGEMENTS
This work was supported by the Director,

Office of Science, Office of Advance Scientific
Computing Research of the U.S. Department of

Energy under contract No. DEAC02-
05CH11231

VII. REFERENCES:

[1] Introduction to Cray Data Virtualization
Service, S-0005-51-1
[2] Managing System Software for the Cray
Linux Environment, S-2393-4202

Figure 4. Example of /proc/fs/dvs/mounts/[0-x]/mount

Figure 5. Example of /proc/fs/dvs/mounts/[0-x]/stats

Figure 6. RUR output from the dvs plugin

RQ_LOOKUP: 8994092 0 RQ_OPEN: 68151 0
RQ_CLOSE: 68151 0 RQ_READDIR: 23753 0
RQ_CREATE: 698 0 RQ_UNLINK: 337 0
RQ_LSEEK: 0 0 RQ_IOCTL: 0 0
RQ_FLUSH: 0 0 RQ_RELEASE: 0 0
RQ_FSYNC: 0 0 RQ_FASYNC: 0 0
RQ_LOCK: 0 0 RQ_LINK: 0 0
RQ_SYMLINK: 2 0 RQ_MKDIR: 12 0
RQ_RMDIR: 0 0 RQ_MKNOD: 0 0
RQ_RENAME: 37 0 RQ_READLINK: 27312 0
RQ_TRUNCATE: 6 0 RQ_SETATTR: 2074 0
RQ_GETATTR: 313266 0 RQ_PARALLEL_READ: 19034471 0
RQ_PARALLEL_WRITE: 1408148 77 RQ_STATFS: 11 0
RQ_READPAGE_ASYNC: 4555 0 RQ_READPAGE_DATA: 4555 0
RQ_GETEOI: 0 0 RQ_INITFS: 0 0
RQ_SETXATTR: 236 0 RQ_GETXATTR: 49 0
RQ_LISTXATTR: 0 0 RQ_REMOVEXATTR: 0 0
RQ_VERIFYFS: 0 0 RQ_GET_LANE_INFO: 0 0
RQ_RO_CACHE_DISABLE: 0 0 RQ_PERMISSION: 5329 0
read_min_max: 0 4616704 write_min_max: 1 8388608
IPC requests: 0 0 IPC async requests: 0 0
IPC replies: 0 0 Open files: 0

local-mount /global/project
remote-path /global/project
options
(rw,blksize=4194304,nodename=c3-0c0s4n0:c7-
2c2s6n3,nocache,nodatasync,noclosesync,retry,failover,userenv,clusterfs,k
illprocess,nobulk_rw,noatomic,nodeferopens,no_distribute_create_ops,no_
ro_cache,maxnodes=1,nnodes=2,magic=0x47504653)
active_nodes c3-0c0s4n0 c7-2c2s6n3
inactive_nodes
remote-magic 0x47504653

uid: 18639, apid: 450546, jobid: 14941.grace01.nersc.gov, cmdname: /bin/hostname dvs
dvs['/global/scratch2', ' 4172 0', ' 149 0', ' 149 0', ' 0 0', ' 149 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', '
0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 746 0', ' 0 0', ' 892 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', '
0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 8 3360', ' 0 0', ' 0 0', ' 0 0', ' 0']['/project', ' 0 0', '
0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', '
0 0', ' 0 0', ' 0 0', ' 1 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', '
0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0']['/global/u2', ' 1376 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0
0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 1 0', ' 0 0', ' 0 0', ' 0 0', ' 0
0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', '
0']['/global/u1', ' 14343 0', ' 552 0', ' 552 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0
0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 553 0', ' 1104 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0
0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 177', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0']['/global/common', ' 0 0', '
0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', '
0 0', ' 0 0', ' 0 0', ' 1 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', '
0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0']['/dsl', ' 34035 0', ' 47428 0', ' 47329 0', ' 628 0', ' 0 0', ' 0 0', ' 0 0', ' 0
0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 772 0', ' 0 0', ' 0 0', ' 483 0', ' 0 0', ' 0
0', ' 0 0', ' 16440 0', ' 16440 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 0 0', ' 8 32768', ' 0 0',
' 0 0', ' 0 0', ' 0 0', ' 99'

