
Resource Management Analysis and Accounting

Mike Showerman Mark Klein Joshi Fullop Jeremy Enos

National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign

Urbana, IL USA

Email: mshow@ncsa.illinois.edu {mdk,fullop,jenos}@illinois.edu

Abstract— Maximizing the return on investment in a large

scale computing resource requires policy that best enables the

highest value workloads. Measuring the impact of a given

policy presents great challenges with a highly variable

workload. Defining and measuring the separate components of

scheduling and resource management overhead is critical in

reaching a valuable conclusion about the effectiveness of the

system’s availability for your workload. NCSA has developed

tools for collecting and analyzing both user workload and

system availability to measure the delivered impact of the Blue

Waters resource. This publication presents solutions for

displaying the scheduler’s past and present workloads well as

an accounting for the availability and usage at the system and

compute node level for application availability.

NCSA has developed the Nodestats web based utility to

evaluate the scheduler’s perspective of node availability and

job eligibility. This interfaced was motivated by a constant lack

of insight into the reason queued workload was not being

executed and required a laborious process to understand. This

process was additionally impractical due to the lack of state

data for investigating behavior for past workloads. Job

dependency data and intentional draining of compute

resources for prioritized workloads are not readily visible to

end users and system managers. In addition, separating nodes

draining for future reservations from large fragments that do

not have appropriated queued workload is not readily

presented. This type of analysis was found crucial in

separating the impact of intended policy from workload

mismatches for idled compute resources.

I. INTRODUCTION

The Blue Waters supercomputer is a large scale Cray

system focused on sustained application performance at

scale. Its compute engine incorporates 22640 Cray XE6

nodes and 4224 Cray XK7 nodes. In operating a large

capability machine, it is important to allocate the resources

in accordance with the goals for the scientific research

teams, and to account for the usage accordingly. The Blue

Waters must develop policy that provides appropriate

turnaround time for jobs while supporting a variety of large

differing workloads. Many of the desired criteria conflict

with maximal utilization, therefore, it is important to

attribute and quantify the impacts of policy decisions and

separate them from workload and system characteristics.

This has led to a series of tools and methods to work in

conjunction with the scheduler and resource manager

environments to analyze system utilization and job

turnaround. In addition to this activity we have discovered

that there are many potential sources of inaccuracy in how

we account for the utilization of the system.

II. ANALYZING ACCOUNTING ACCURACY

A. Moab torqe/alps issues

The scheduling and resource management environment

is comprised of Moab and Torque from Adaptive

Computing layered on top of Cray’s Application Level

Placement Scheduler (ALPS). See figure 1. For real time

handling of allocations and accounting, we have utilized

Moab’s allocation manager interface to communicate

directly with our existing allocations database. This allows

us to process allocation transactions at job submission, start

and end events.

Figure 1. Moab Torque Alps Integration.

Image reprinted from “Production Experiences with the Cray-Enabled TORQUE Resource

Manager” by Matt Ezell and Don Maxwell

It was soon discovered that our charging differed from

user experience in many cases. The initial challenge was

dueto the interface between the scheduler and allocation

manager contains no fault tolerance capabilities. The

packets traverse the Cray High Speed Network (HSN) to

communicate with the allocation manager, and dropped

packets and failed connection attempts appear to be

common in a system our size. Therefore, many charge

events were simply lost, and the charges would need to be

reconciled with the Torque accounting records. In back

loading Torque accounting records, it was determined that

failure modes in the resource manager can lead to missing

accounting records there as well. In addition, in nearly all

cases there is variation in the timing reported by Torque

compared to the successful Moab records, and that care

must be taken in accounting for preempted jobs. Finally,

both sources of timing data potentially differ from the user’s

timestamps of output files. A fourth source of timing was

necessary from ALPS to understand and identify

inaccuracies due to system or software failures. The layers

of potential timing overheads are detailed in Figure 2.

Figure 2. Timing variations by Layer

B. Integrating Timing Data

While user perception of job finish times are not

immediately available, the remaining sources are, but in

separate logs streams. Blue Waters utilizes a central

database to integrate all log and event streams from the

system in a facility named The Integrated System Console

(ISC). This enables us to create single entries for each job in

the database that incorporate the timing from ALPS, Torque

and Moab and to generate alerts when timing skews exceed

thresholds. This allows us to identify cases where attempted

job cancels fail to result in immediate job termination via

Alps. Future work includes the plan to take job and

accounting actions based on system failure modes. These

would include enhancements such as automatic job walltime

increases during filesystem recoveries as well as credit to

account balances for periods of reduced capability do to

system failures.

III. NODE STATE ACCOUNTING

A. Availability of Nodes

As part of the overhead described in the previous

section, there is potential lost node availability for job

execution as part of health checking at the completion of

jobs with failure codes. It was our desire to quantify the

availability loss due to each system state.

Cray's XTAdmin database on the Cray Service Database

(SDB) houses the processor table that stores the current state

of the compute and service nodes. When things change in

the system, those changes of state are reflected in this table.

When various Cray tools need to know or modify the

current state, they update the processor table. This table is

inherently the de-facto authority of system state. In efforts

to account for aggregate node time spent in the various

states (up, down, suspect, admindown, etc.), this table is

looked to for current status. Periodic sampling of this data

can give a simplistic, albeit imperfect, accounting of time

spent in these states. However, since the data is housed in

MySQL, we are able to construct triggers to log in a

separate table when a node changes an attribute in the

processor table. This differential data collection method

also allows us to store a much smaller amount of data than a

periodic snapshot of the entire Blue Waters compute and

service node environment. We specifically track two fields:

status and mode. We track both the state it changed from

and to for better data quality in case of data loss during

transmission. We also have to track any change in either, as

the two are mutually exclusive of each other.

Generating reports from this data involves

querying the changelog for each node individually and

sorting their change records by time. Then the list of

changes must be traversed and time spent in each state

accumulated. This set of times is then aggregated across all

nodes and an actual node hours number can be determined

for each state. We also provide scripts to manage the

potentially unbound growth of the changelog table by

migrating it to another home for long term storage and

analysis.

B. Mean Time To Interrupt

This solution has been implemented on our test

system, and upon completion on the Blue Waters system,

we intend to use this data determine the operational

availability of the compute nodes and to be able to account

for down states and time spent in node health checking

separately. Finally, we will be able to generate MTTI data

for software interrupts and hardware faults on a per node

basis.

IV. POLICY ANALYSIS

A. Nodestats

An early goal in Blue Waters’ operation was to validate

that the system was being utilized effectively. Reports were

received that the Blue Waters User Portal frequently showed

low utilization, while many jobs where waiting to be run.

This generated concern that there was either something

wrong with the system scheduler, or that our job scheduling

policies were excessively contributing to the idle time. With

a machine this size, and the mixed architecture of XE/XK

nodes, it can be difficult to diagnose and easily explain

previous states of the workloads and priorities when

investigating past events. The information exists in logs, but

this leads to large data challenges due to logs containing

hundreds of gigabytes of messages per day. A tool was

needed to better visualize the behavior and state of

scheduler at a given point in time to give a clear view of the

backlog of work compared to the drain of the system.

The first step was to gather more data. Various iteration

times were tested, but a 5-minute iteration was settled upon.

A cron job was created on the internal login node that takes

an xml-snapshot of showq every 5 minutes. A list of jobs

and the node requirements for each is stored in a database,

as well as whether the job is eligible to run or not. We call

this the backlog. Also at this time a snapshot of both

“xtprocadmin” and “showres –f” is taken. The “showres –f”

dumps a list of all free nodes, and when the next reservation

on the node begins. Some light processing is done on these

two lists separating them into XE and XK nodes, and also

breaking them down into four categories; Busy, Draining,

Idle, and Down. This helps show a difference between the

purely Idle nodes, with no future reservations; and nodes

that are Idle, but are currently being held so a large job can

run. We call this portion of data the frontlog.

By splitting the system into XK and XE, we have a

backlog of jobs that require XK nodes separate which does

not present itself in the XE graph this removes any

confusion on jobs being incorrectly held. The portal feed

was rewritten to use the data from this tool to create a more

accurate state of jobs on the system. Prior to this, all jobs

were represented in the portal as a single pool for the

system. Also, by grabbing the snapshot every 5 minutes,

jobs in a held state are no longer included in the list of jobs

waiting. Prior to these changes, all jobs, even held jobs,

were considered idle. This increased accuracy of the user

portal greatly.

With the data now gathered in an easy to parse and query

format, a web frontend was developed to better present the

state of the system for analysis. Taking these datapoints, we

use the Google Chart API to generate graph of the system

over time separated between the xk and xe node types.

Backlog is plotted in the +y axis, and frontlog is plotted

around the -y axis. The different states of the nodes are

color-coded for easy visual processing: Down nodes show

up as light blue, draining nodes are dark blue, idle nodes are

red. Information at a given point is provided by mouse-over

hover. Figure 3

Figure 3. NodeStats display

In the ideal case, there will be nothing on the -y axis, as

all nodes will be busy. Light blue should not be heavily

represented except during maintenance. Dark blue means

there's workload scheduled on the nodes within our max-

walltime hours into the future. Anything scheduled past our

max walltime into the future, and the node is classified as

red for idle. With these charts in hand, it became trivial for

the admin team to determine when there's a problem with

the system or a problem with the workload.

The scheduling policy for Blue Waters is to prefer large

jobs, which will causes more draining than similar systems

that prefer to maximize system utilization by maximizing

job placement. This frequently causes a large dark blue

frontlog as shown in the chart, but it also shows that small

jobs are backfilling, as the backlog is shrinking even with

the large blue drain. For these small jobs to be scheduled, a

proper walltime for placement within these drain periods

must be specified. “showbf” is helpful for figuring out the

job requirements that are available. Large areas of drains

denoted by the blue regions is not ideal for system

utilization, but is not cause for alarm as long as we maintain

this policy. See Figure 4

Figure 4. Draining

When we see a red frontlog; however, it does represent

cause for concern. There are two cases where this will show

up. An excessive red frontlog with no backlog means that

there is not enough workload being submit to the system.

This is a utilization problem outside our control. A red

frontlog that shows up with sizeable backlog means there is

something not allowing Moab to schedule a job at this time.

This usually means a requested feature conflicts with the

available nodes, but is worth checking the logs around that

time period to see what was blocking the job. Transient

small amounts of red are occasionally seen when the

snapshot is taken when a node is free, but a Moab iteration

hasn’t been completed yet.

Figure 5. Daily Cycle of undersubmitted workload during overnight

hours

Other unplanned benefits have shown up on these graphs.

Occasionally a sawtooth (see figure 6) pattern will show up.

This generally means that there was a sliding job

reservation, which can be cause for concern. Moab is trying

to start a job, but is failing, and the reservation gets pushed

back. This can block other jobs and needs to be remedied.

Another problem that can be seen is when Moab is

unresponsive. If there hasn't been any new data in two

iterations, the graph is marked unknown. Investigation is

needed to see why Moab is taking longer than 5 minutes to

schedule a job.

Figure 6. Sawtooth due to sliding job

By giving us an overall visual view of the system’s

workload, this web tool allows us to easily answer concerns

about the system utilization. It has given us an easy way to

show exactly what was going on at various span time. An

overall trend is needed to diagnose many of the issues with a

system of this size. It can either show that the system is

performing correctly, even if at a given point it looks like it

might not be; or it can show that there is something wrong

when it might look correct. This goes well beyond what is

shown by the normal daily utilization numbers, or a single

snapshot in time on a user portal. Seeing these trends

allows for insight on whether a configuration change was

valuable or not, by easily showing over time the impact is

has made on the system. This can be either shown in the

utilization, or a change in the number of scheduling issues

seen in the graph.

Figure 7. Unavailable Node Representation

V. CONCLUSIONS

1) Regularly occuring failures result in accounting
inaccuracies at ever level of resource management.

2) While no direct utility is available for accouning for
the possible states of the compute nodes, the existing SDB
database can be modified to make the node based stistics
readily available

3) Seperating policy impacts on utilization from
workload characteristics requires new tools and visualation
methods to clarify effective system use.

ACKNOWLEDGMENT

I would like to acknowledge Michael Pitcher and Mark
Dalton from Cray for their efforts in the accounting
investigations. Also David and Scott Jackson for the
expertise in allocation management interfaces.

REFERENCES

[1] Matt Ezell and Don Maxwell David Beer “Production Experiences

with the Cray-Enabled TORQUE Resource Manager” Cray User’s
Group, 2013

[2] Scott Jackson “Unifying Heterogeneous Cray Resources and Systems
into an Intelligent Single-Scheduled Environment” cray Users Group
2009

