
Figure 1. Blue Waters service geminis (yellow spheres)
and XK geminis (red spheres).

Topology-Aware Job Scheduling Strategies for Torus Networks

J. Enos, G. Bauer, R. Brunner, S. Islam

NCSA, Blue Waters Project

University of Illinois

Urbana, IL USA

e-mail: jenos@illinois.edu

R. Fiedler

Cray, Inc.

Seattle, WA USA

e-mail: rfiedler@cray.com

M. Steed, D. Jackson

Adaptive Computing

Provo, UT USA

e-mail: jacksond@adaptivecomputing.com

Abstract—Multiple sites having Cray systems with a Gemini

network in a 3D torus configuration have reported inconsistent

application run times as a consequence of task placement and

application interference on the torus. In 2013, a collaboration

between Adaptive Computing, NCSA (Blue Waters project),

and Cray was begun, which includes Adaptive’s plan to

incorporate topology awareness into the Moab scheduler

product to mitigate this problem. In this paper, we describe the

new scheduler features, tests and results that helped shape its

design, and enhancements of the Topaware node selection and

task placement tool that enable users to best exploit these new

capabilities. We also discuss multiple alternative mitigation

strategies implemented on Blue Waters that have shown

success in improving application performance and consistency.

These include predefined optimally-shaped groups of nodes

that can be targeted by jobs, and custom modifications of the

ALPS node order scheme.

I. INTRODUCTION

Large, massively parallel supercomputers with

multidimensional torus interconnection networks have been

around for many years, including some of the most capable

systems in production today (Cray XT/XE/XK, Blue Gene

P/Q). The largest Cray XT/XE/XK systems including Blue

Waters and Titan have 3-dimensional torus interconnects in

which most of the nodes are devoted to running user jobs

(i.e., compute nodes), but some nodes are service nodes

performing various duties including IO, MOM, boot, internal

login, etc. (see [1]). Fig. 1 shows the current Blue Waters

interconnect topology, which consists of 24 by 24 by 24

gemini routers. The service nodes are depicted as yellow

spheres, the XK nodes by red spheres, and the XE nodes by

small gray spheres. Since the torus wraps around each

dimension, the XK region is in reality a contiguous block of

15 by 6 by 24 geminis. It is well known that as the size of

systems with such interconnects increases, if jobs are

scheduled without regard to topology considerations, the run

time for an application that performs a fixed amount of work

on a specified number of nodes can vary significantly from

one batch job to the next due to the locations of the nodes

allocated to run the job, as well as contention for

interconnect resources from other jobs on the system. Jobs

that spend a greater fraction of their run time on

communication tend to exhibit the most variability,

especially at larger scales [2]. After startup on a large

system whose scheduling policy allows non-contiguous node

allocation strategies, as many different-sized jobs of different

length run and complete, the sets of nodes allocated to new

jobs tend to become more fragmented (i.e., each new large

allocation consists of many non-contiguous groups of nodes

scattered throughout the system, increasing contention for

bandwidth on links between nodes [3].

The Cray ALPS software provides the scheduler with a list

of the compute nodes in an order designed to help improve

bisection bandwidth while reducing hop counts compared to

allocations selected from a node list with torus x,y,z ordering

or random ordering [4]. While the ordering used with most

large XE/XK systems today helps improve application

performance somewhat, it does not do enough to ensure that

allocations are contiguous, nor does it use information about

an application's virtual process topology to provide an

optimal layout on the torus. On the other hand, the current

ALPS node ordering scheme has little impact on utilization,

since its node order does not depend on whether the compute

nodes are idle or busy running jobs.

Efforts to determine an optimal layout of an application's

tasks onto a 3D torus network are stymied by poor allocation

shape. The libTopoMap tool of Hoeffler, et al, is capable of

reducing communication times by as much as 45% when

mapping irregular communication graphs onto (idle) 3D

torus networks [5], but much larger (1.9X) improvements in

overall application run times have been demonstrated for 4D

Cartesian mesh virtual topologies (e.g., for MILC [6], a

lattice QCD application) when the Topaware node selection

and task placement tool is utilized on a dedicated system [7].

Such large communication performance improvements

require compact rectangular prism-shaped allocations, and

therefore enhancements to the scheduler that provide prism-

shaped node allocations are required in order to make using

Topaware practical in a production environment.

Compact prism-shaped allocations help reduce contention,

but inevitably impact system utilization to some degree,

since jobs must wait longer for contiguous blocks of nodes to

become available. An important goal in this work is to

develop an interconnect-topology-aware scheduler that

produces very favorable node allocation shapes, which

improve application performance at least enough to

compensate for any decrease in utilization and thereby

increase overall system throughput. According to [8], for

realistic workloads, if contiguous allocations are enforced,

the applications need to run about 25-30% faster in order to

make up for the reduction in system utilization.

The links along the x and z dimensions on gemini networks

are at least 2X faster than the slowest links in the y

dimension [9]. This has implications for which prism shapes

are best in terms of bisection bandwidth per node. In

particular, slabs of gemini hubs of aspect ratio 2:1:2

maximize bisection bandwidth per node and equalize

bandwidth along each of the 3 torus dimensions, provided no

slab dimension spans more than half the nodes in that

direction on the torus.

Torus wrap-around also can play a role in determining
the best prism shapes, given the routing scheme (shortest
path in x, then y, then z) and the torus dimensions. If a prism
of geminis spans more than half of the torus along a given
dimension, messages between geminis on either end of the
prism along that dimension will pass through nodes outside
of the prism to reach their destinations. Thus, to avoid
contending for bandwidth on links outside of a prism-shaped
node allocation, the prism should span either less than or
equal to half of the full torus dimension, or else it should
span the full torus in any given dimension. The largest
allocation size with optimal bisection bandwidth per node on
Blue waters has 24 by 6 by 24 geminis. If a job requires
more than half but less than all of the nodes on the system,
some application communication is likely to traverse links
outside the prism. For more discussion of considerations
relating to the bisection bandwidth per node, see [10].

II. RUN TIME CONSISTENCY AND MITIGATION

STRATEGIES

A. Application Run Time Variability

Early in the production phase of the Blue Waters project,

large run-to-run variations in performance were observed

for a number of applications, particularly those whose

communication times comprise a significant fraction (i.e., of

order 50%) of their overall run time. One such application

is PSDNS, a Computational Fluid Dynamics application that

uses pseudo-spectral methods, requiring frequent global

array transposes for 3-dimensional FFTs [11]. The most

time-consuming communication pattern in PSDNS consists

of 16 concurrent All-to-All operations, each of which

involves sets of M tasks, where M is the number of nodes in

the job. Each of the 16 tasks on a node participates in a

different All-to-All operation.

PSDNS wall clock times for one time step have been

observed to vary by more than a factor of two within a

single batch job, and even larger variations (on the order of

4X) were noted from one batch job to the next. Experiments

on a dedicated system indicated that PSDNS

communication performance is sensitive to node allocation

shape, favoring those with higher bisection bandwidth per

node. On the initial Blue Waters configuration with 23 by

24 by 24 geminis, dedicated runs made in a node allocation

with 6x24x24 geminis took 1.64X more time per step than a

run made in a node allocation with 23x6x24 geminis [10].

A second application exhibiting large job to job

performance variability is MILC [6], a Lattice Quantum

Chromodynamics community code whose 4-dimensional

lattice requires communication involving 4D halo

exchanges as well as frequent reduction (All-reduce)

operations. Although the halo exchanges in principle entail

only nearest-neighbor communication in its 4D Cartesian

grid virtual topology, in typical use the job's tasks are not

carefully mapped onto the 3D torus to ensure

communicating tasks are placed onto nearby nodes. The

current practice is to use Cray's grid_order utility to produce

custom rank orders that minimize off-node traffic without

attempting to place neighboring tasks on nearby nodes in the

torus. Thus, for typical batch jobs that do not use special

task placement, the effective communication pattern is

between random pairs of nodes, resulting in much higher

contention for inter-nodal bandwidth, even if no other jobs

happen to be running on the system. We therefore

anticipate better MILC performance in node allocation

shapes having higher bisection bandwidth per node, for the

same reason that such shapes improve All-to-All

communication performance in PSDNS.

B. Mitigation Strategies

1) Node sets (“features”): In order to improve node

allocation shapes for the science teams in the Blue Waters

production environment, we used the ability of Adaptive

Computing's Moab scheduler to assign groups of selected

nodes to node sets, which we refer to here as "node

features". For example, one series of node features

configured on Blue Waters is comprised of sets of nodes

with 24x6x24 geminis, each spanning a different set of 6

geminis in the torus y dimension. Users can target any one

of these features using the following directive

#PBS -l nodeset=ONEOF:FEATURE:s1_6700n:s2_6700n:

s3_6700n:s4_6700n:s5_6700n:s6_6700n:s7_6700n:

s8_6700n:s9_6700n:s10_6700n:s11_6700n:s12_6700n:s13_

6700n

The scheduler will run the job in the first node feature in the

list to have sufficiently many idle compute nodes. Note

that, as currently configured on Blue Waters, it is quite

possible for jobs that do not explicitly target a particular

node feature to run on some nodes in that feature anyway, if

they are available. Thus, to avoid long queue wait times,

the "high" priority queue (which consumes service units at a

higher rate) is often used for jobs that require nodes in a

node feature.

These features contain a total of from 6724 to 6760 compute

nodes when all nodes are up, since the number of service

nodes varies somewhat with location in the torus. Users are

advised to allow for several nodes to be down when

submitting jobs, so they should request no more than 6720

nodes if they want to allow the job to run in any of these

features.

We have observed significant performance improvements or

at least substantial reductions in run time variation for most

applications when run in node features. We obtained 30-

50% performance improvements when using node features

with PSDNS on up to 8192 nodes. Users of NWChem (a

computational chemistry code based on the Global Arrays

library with an irregular communication pattern, see [12])

always target node features in production runs. Among the

more communication-intensive applications, an NWChem

benchmark requiring 1000 nodes ran between 32% and 38%

faster in node features with 12 by 4 by 12 geminis than it

did when submitted without any restriction on node

allocation. A 6700 node NAMD (molecular dynamics code,

see [13]) benchmark ran 17% faster in a 24 by 6 by 24

gemini feature than it did in a run without restricting the

allocation to any features, in which the allocation bounding

box was 8 by 24 by 24 geminis.

When an application runs inside a node feature whose shape

is such that it either spans the entire torus in a given

dimension, or it spans up to half of that dimension, no

application communication ever leaves the feature it is

using, which prevents that communication from interfering

with other jobs using links between geminis outside of the

feature. However, for any dimension not spanned by the

feature, it is possible for the scheduler to assign another job

to groups of nodes on either end of the feature, allowing

job-job interference due to other jobs using links inside the

prism, although they are running on nodes outside of the

prism.

2) Node Ordering Schemes: On Blue Waters, we

observed that with the Cray ALPS standard node ordering

scheme "-O2" described in [4], node allocations for large

jobs on a dedicated system were full yz slabs whose extent

in the x torus dimension was four geminis. Since xz slabs

have higher bisection bandwidth per node than yz slabs of

the same aspect ratio, We tried the existing "-OY" option,

which favors xz planes of geminis, but found that this

strategy has the disadvantage of assigning small allocations

in a single y plane. Consequently, small jobs were given an

allocation with relatively low bisection bandwith per node

and a relatively large maximum hop count.

NCSA and C. Albing collaborated on modifying the "-OY"

node ID ordering scheme to order the nodes in 4 by 2 by 8

gemini blocks, first filling the torus along z, then along x,

and then along y. This change ensures that the xz slabs

assigned to jobs are at least 2 geminis thick along y (one

blade). A refinement added in this work reverses the

direction (c.f., Peano curves) in which the blocks fill the

torus after jumping to the next set of x (or y) values to help

provide a more contiguous node list in which neighboring

nodes are closer together on the torus. Further changes help

the scheduler deal with the fact that the XK region on Blue

Waters does not span the full torus in the x direction.

We used a synthetic workload that included a suite of seven

real applications to evaluate the impact of the node ordering

scheme on run times. The applications in this suite are:

MILC, NWChem, PSDNS, Changa (collisionless N-body

solver for astrophysics, [14]), NAMD, WRF (Weather

Research and Forecasting, [15]), CESM (climate modeling,

Figure 3. Job placement for Nov. 11 2Y node ordering.

Figure 2. Job placement for baseline node ordering scheme.

Figure 4. Job placement for Nov. 11 4Y node ordering.

[16]), and DNS_distuf (Computational Fluid Dynamics,

spectral method, [17]).

Three different node ordering schemes where compared

using this application suite. Allocations for the default or

baseline scheme ("-O2") are depicted in Fig. 2. The geminis

in each allocation are represented by a set of spheres of a

unique color. It is evident that this scheme favors yz slabs

that are 4 geminis thick along the x direction of the torus (y

is up, z is toward the viewer). Fig. 3 shows allocations for

"Nov.11_2Y", a scheme that favors xz slabs that are 2

geminis thick along y, while Fig. 4 shows allocations for

"Nov.11_4Y", a scheme that favors xz slabs that are 4

geminis thick along y.

Table I gives the speedups for each application for which

we obtained timing information when using the "2Y" and

"4Y" node ordering schemes Two separate test runs were

performed on two different dates, corresponding to the

"Nov.11" and "Nov.4" prefixes in the table. Although some

applications running in certain allocations performed better

in the allocation provided by the older "-O2" scheme, on

average the speedups were between 1.14 and 1.25. If we

had been able to collect data for Changa, WRF, and CESM

for all tests and they had exhibited little or no benefit from

either new ordering scheme, the averages would be reduced

to a range from 1.12 to 1.19, which is still a very substantial

improvement over the baseline "-O2" scheme. The tests

indicate that the 4Y scheme gives slightly better overall

performance than the 2Y scheme. However, 2Y was

ultimately selected to be the default because the applications

showing the strongest 4Y benefit (skewing the averages to

4Y favor) were typically being run inside a pre-defined node

feature anyway, and would therefore not suffer from 2Y as

the default.

C. I/O and Job-Job Interference

As the Lustre file system is currently designed, I/O

operations can use any of the IO service nodes scattered

throughout the system, and therefore IO traffic from other

jobs would remain a source of job-job interference even if

all jobs were running in favorable prism-shaped allocations.

This type of interference is not addressed in this work, but

may potentially be greatly reduced by enabling applications

to use only the service nodes within their allocation prism

when writing new files [18]. This strategy would not help

when reading a restart dump from a prior run, unless the job

happened to be assinged to the same node feature as the

prior run. However, typical batch jobs write much more

data then they read, mostly in the form of solution snapshots

and checkpoints. However, this IO strategy may also

significantly reduce IO throughput for a given job, since its

IO operations could use only a fraction of the full system's

IO nodes, and therefore only a fraction of the Lustre file

system's OST resources.

TABLE I. APPLICATION SPEEDUPS FOR XZ ORDERING

SCHEMES

App Nodes Nov.11

2Y

Nov.11

4Y

Nov.4

2Y

Nov.4

4Y

MILC 1372 1.00 1.02 1.15 0.91

MILC 2744 1.52 1.47 1.43 1.31

NWChem 3000 1.34 1.22 1.32 1.39

PSDNS 1024 1.09 1.15 1.22 1.74

Changa 1024 -- -- 1.00 0.95

NAMD 1368 1.62 1.77 0.91 0.91

WRF 1386 -- -- 1.01 1.01

CESM 600 1.01 1.00 -- --

DNS_distuf 512 1.13 1.13 1.05 0.98

AVERAGE 1.24 1.25 1.14 1.19

III. ADAPTIVE/CRAY/NCSA COLLABORATION

In 2013, a collaboration between Adaptive Computing,

NCSA (Blue Waters project), and Cray was begun in order

to address run time consistency issues by helping to improve

application communication performance and reduce job-job

interference through scheduling policies that take into

account the characteristics of both the interconnect and the

applications. These capabilities are expected to be included

in a production release of the scheduler by the third quarter

of 2014.

A. Goals and Design Considerations

The overarching goal of this collaboration is to add
topology awareness to the Moab job scheduler for Cray
systems with the gemini interconnect. However, the
foundational changes implemented in Moab for this purpose
will facilitate topology-aware scheduling capabilities for
systems with other types of interconnects in the future.

The main objectives to be achieved by the new scheduler

are to:

 Improve application performance through better-
localized job placement.

 Improve application run-time consistency by
eliminating job-job interference due to
communication.

 Improve system throughput and maintain reasonably
high utilization.

 Provide relevant configuration tools for users and
administrators.

 Provide monitoring and diagnostic information to
help users and administrators understand how jobs
are being scheduled on the system.

In order to meet the first two objectives, we designed a

series of tests (described below) to quantify the effect of
node allocation shape and job-job interference for a set of
representative applications running on Blue Waters.

Regarding the third objective, defining overall system

throughput in a production environment is a non-trivial task.
One might choose to measure throughput in terms of the
number of floating point operations (FLOP) devoted to
science and engineering applications running on the system
over a fixed amount of time. However, we must account for
the fact that different applications can achieve very different
FLOP rates even on a dedicated system. Therefore, as
described later, we use a synthetic workload with job sizes
and run times derived from actual Blue Waters production
workloads.

Given a representative workload, we can define the total

system efficiency as the product of the scheduling efficiency
and the average application efficiency, where the latter term
is calculated as the production usage distribution weighted
by application efficiency. The application efficiency is
defined as the ratio between the measured run time and the
run time obtained for the same benchmark problem on a
dedicated system with the best possible mapping of tasks to
nodes. For example, suppose 20% of the production
workload is application A, 50% is application B, and 30% is
application C. Suppose further that we examine application
run times during a scheduler test, and find that application A
is 93% efficient, application B is 87% efficient, and
application C is 74% efficient. Then the average application
efficiency "E_AVE" is

E_AVE = 0.20 * 0.93 + 0.50 * 0.87 + 0.30 * 0.74 = 0.84

If the measured scheduling efficiency is 88%, then the

total system efficiency is 74.2%. This metric can be
compared for different versions of the scheduler running the
same workload in order to determine whether increased
application performance due to well-shaped allocations
compensates for decreased utilization.

In the initial implementation of the new scheduler, a strict

policy prohibiting job-job interference due to application
communication is enforced. In order to do so, Moab chooses

only node allocations which guarantee that intra-job
communication would not be routed over links used by any
other job. Preliminary results gathered from the system-wide
throughput test run on Mar 21, 2014 indicated that this strict
enforcement of non-interference resulted in highly consistent
job run times, with measured variations of only 1 to 4% for
jobs run with the same prism dimensions. This strict policy
is expected to have a relatively high impact on utilization,
however.

Subsequent implementations may enable user-specified

indications of communication sensitivity (the degree to
which the application slows down when communication
from other jobs shares the same links) and communication
intensiveness (the degree to which the application saturates
the links it uses). This information would allow the
scheduler to more aggressively pack workloads that include
applications that have low sensitivity and/or are less
communication intensive via allocations that result in some
link sharing. Such an approach would increase scheduling
efficiency at the cost of possibly reduced application
performance. Studies are planned to allow better workload
characterization to determine the viability of this approach.

Most jobs do not fit perfectly into a cuboid or rectangular

prism which is required to guarantee non-overlapping
communication. Service and down nodes within a given
prism tend to complicate this further, making 'perfectly
matching' fits difficult to locate. Consequently, in most
cases, some nodes within the bounding box of the prism will
not actually be allocated to the job. Moab will attempt to
utilize these 'internal' idle nodes by launching small jobs on
them which are guaranteed to not interfere with the main job
running in the same prism. Because of this optimization and
the potential that all idle nodes could be subsequently
allocated, Moab may charge the main job only for the nodes
in the prism which are allocated and utilized, not for all
nodes within the prism. Constraints on the small jobs
utilizing the internal idle nodes could include limits on the
run time, communication intensiveness, and/or requiring
them to be pre-emptible, so that the system can signal them
write a final application-level checkpoint and terminate
shortly after the main job completes. In return for obeying
these constraints, such small jobs could be charged at
compellingly low rates.

B. Workload Test and Results

The purpose of this test is to create an environment which

reproduces to the extent possible the target production

environment, while allowing reasonable measurement of

both scheduling efficiency and application performance.

Consequently, the following steps were taken:

 use test resources that match the production

resources in terms of

o scale

o architecture

o mix of GPU and non-GPU nodes

o topology

o create test workload that matches the

production workload in terms of

o backlog size/depth

o job submission timing distribution

o job size distribution

o job duration distribution (scaled down in

time to fit test time window)

o job walltime accuracy distribution

o mix of applications including

representative communication patterns

o mix of node types required

 use scheduler configuration that matches the

production scheduler, including policies, priorities,

and limitations

 create starting state via reservations that match the

steady state fragmentation of the production

environment

To get the starting state for both the topology-aware

scheduler and the older one, we measure a typical steady

state in a long-running simulation of a system with a realistic

workload and a topology-aware scheduler. This state is less

fragmented than the one which the steady-state simulation

would provide in the non-topology-aware environment.

TABLE II. SYNTHETIC WORKLOAD CODES AND PARAMETERS

With such a test environment created, the following

performance metrics were collected:

 overall steady state scheduling efficiency

 overall application efficiency

Application Node

count/type

Time limit (m)

Changa 1024 XE 60

Chroma 768 XK 50

DNS-DISTUF 512 XE 10

MILC 324, 576, 1372,

4116 XE

30

NAMD 1, 2, 4, 8, 16, 32,

64, 100, 128,

256, 456, 640,

1368 XE and

XK; 2000, 3272

XE

60

NWChem 400 XK; 1000,

7000 XE

30-45

PSDNS 3072 XE 30

QMCPACK 700 XK; 4800

XE

30

SpecFEM3D_Globe 5419 XE 60

WRF 456, 1386, 3298

XE

30

Figure 5. Utilization and backlog for Topology-aware

scheduler test

Figure 6. CoV for application run times during

topology-aware scheduler test.

 per application runtime consistency and

performance for each allocation shape and

orientation

Table II lists the applications, node counts, and requested

times for the synthetic workload used to test the scheduler on

Blue Waters. SpecFEM3D_Globe [19] is a seismic wave

propagation application whose unstructured computational

grid discretizes the entire planet. Chroma [20] is a lattice

QCD application based on the QUDA [21] library to utilize

GPUs. Finally, QMCPACK [22, 23] is an electronic

structure application based on Quantum Monte Carlo

techniques.

In the workload, which is tailored to represent the actual set

of job sizes run on Blue Waters in recent months (although

the actual mix of applications is somewhat different from the

synthetic workload), multiple instances of each job are

submitted at different times. There are a much larger

number of jobs with small node counts than large node

counts, but the vast majority of the total service units

delivered are consumed by jobs using 512 or more nodes.

Many of the requested run times are the same (30 minutes),

which reflects the maximum time limit imposed by the site.

We reduced the lengths of the jobs in the workload

compared to the real jobs so that we could complete a

scheduler test in 3 hours which represents about 6 days of

typical production.

Fig. 5 shows the backlog and utilization for the final 30

Moab scheduling iterations in a test of the topology-aware

scheduler that was truncated after 2 hours due to a Gemini

failure, which was corrected later via a warm swap

operation. Each iteration took 3-4 minutes of wall clock

time, which is not significantly greater than the time for a

typical iteration of the old scheduler. In the test, groups of

jobs are submitted together in multiple waves, corresponding

to the spikes in backlog. Soon after the rise in backlog, the

scheduler allocates nodes for many of the jobs, the backlog

drops, and utilization increases somewhat. However,

utilization tends to improve even more whenever the

scheduler is able to start one of the largest jobs in the

workload. Although the desired steady-state statistics were

not obtained after only 2 hours, averaged over the last 10

iterations utilization was a respectable 71%.

We found that the scheduler ran multiple instances of a given

job (i.e., application and node count) in allocations with only

1-2 different shapes, although the location of an allocation of

a given shape often varied from run to run. Fig. 6 shows the

coefficient of variance for the run times of several

applications for both shapes, and for each shape individually

(QMCPACK ran in only one shape). Even though there

were two different shapes with similar node counts for most

of these applications, the largest CoV value is < 2%. As

expected, for a given job, the CoV of run times for a given

shape is substantially less than the CoV for two different

shapes.

Comparing typical run times for PSDNS on 3072 nodes in

production under the old scheduler to typical run times in our

test of the topology-aware scheduler, we observed a 2.4X

improvement with the new scheduler due to the favorable

prism shape and elimination of job-job interference. For

MILC, using grid_order even in the test of the new

scheduler, the speedup on 324 nodes was 1.5X, while on

4116 nodes the speedup was 1.8X. The MILC run time

CoV decreased from 18% with the old scheduler to 5% with

the new scheduler. As we describe in the next section, a large

(~2X or more) additional total run time improvement can be

obtained for MILC when the Topaware tool is used to

provide a near-optimal task layout.

Figure 7. Topaware node selection algorithm

Based on our preliminary results for the larger applications

in the workload, we estimate an average performance

improvement of roughly 40%. Anticipating a reduction in

utilization of around 20% compared to the old scheduler, we

expect an overall improvement in system throughput of

approximately 20% for the topology-aware scheduler, which

represents a very significant benefit for the Blue Waters

science teams.

IV. TOPAWARE NODE SELECTION AND TASK PLACEMENT

To facilitate more effective use of topology-aware task
mapping tools developed by Cray, new capabilities were
added to Moab which allow the user to request a minimum
required number of geminis (each with two available
compute nodes) along each z-pencil through a prism. This
enables near-optimal assignment of tasks to nodes for
applications with primarily nearest-neighbor communication
patterns. With this new capability, Moab takes into account
any service or down nodes in each potential prism under
consideration and rejects or adjusts the size of the prism as
needed to provide the specified number of nodes in each z-
pencil.

A. Topaware Algorithm

The Topaware node selection and task placement tool [7]

provides near-optimal mappings of tasks to nodes in systems

having gemini networks for applications with 2D, 3D, or 4D

Cartesian grid process topologies. Its node selection strategy

can be illustrated via an example for a 3D virtual topology

with D1 by D2 by D3 partitions in each virtual dimension.

In the absence of unavailable nodes, Topaware would map

the tasks onto a prism of LX by LY by LZ geminis, and the

pair of nodes attached to each gemini would have NX by NY

by Nz partitions, such that

D1 = LX * NX

D2 = LY * NY

D3 = LZ * NZ

(Note that the 3 virtual dimensions can be aligned with any

permutation of the 3 torus dimensions, and Topaware

determines which permutation to use.)

The values of NX, NY, NZ are constrained by the

requirement that their product be no larger than the desired

number of tasks per node pair (often equal to the number of

cores). The NX, NY, NZ and LX, LY, LZ values are further

constrained by the dimensions of the region of the torus in

which the search for usable nodes is conducted.

As an example, a virtual topology with 32 by 32 by 32

partitions can be mapped to a logical grid of 8 by 8 by 8

geminis, provided 4 by 4 by 4 partitions are placed on each

pair of nodes attached to each gemini. If we chose instead to

run the job with 8 tasks per node, we could use, for example,

a prism with 16 by 16 by 8 geminis and 2 by 2 by 4

partitions per node pair. However, we could not use 8 tasks

per node with 32 by 8 by 8 geminis and 1 by 4 by 4

partitions per node pair, since the Blue Waters torus has only

24 geminis along each dimension.

In the presence of unavailable nodes in the system,

Topaware selects (from within a specified region of the

system) a regular prism of geminis that has LY xz planes,

each xz plane having LX pencils along z that all have at least

LZ geminis with available compute node pairs. This "logical

grid" of geminis is constructed by scanning the z-pencils

beginning at the "leftmost" end of the search region and

continuing until LZ available compute node pairs are

identified, skipping over any geminis with one or more

unavailable nodes. Fig. 7 illustrates the selection process for

a single xz search plane of the torus with 8 by 9 geminis

including service nodes (green squares without numbers).

Here, the desired logical grid is 8 by 8 by 8 geminis, and we

are able to obtain an xz plane of this logical grid in this

region because all 8 z-pencils through the search plane have

at least 8 available compute node pairs (numbered white

squares).

The actual set of geminis to be used by the application (the

"selected geminis") often has an irregular surface normal to z

at both ends, but especially on the rightmost side, since most

z-pencils can be expected to have one or more unavailable

nodes somewhere along their length. The skipped node pairs

add an extra hop or two along the torus z direction for

nearest-neighbor communication paths in their vicinity,

which increases the load on the local z links somewhat.

However, the increased contention due to the skipped node

pairs is usually much less than the contention arising from

placing groups of tasks that should be neighbors onto the

torus in a non-conforming pattern, which is nearly always the

case when using the grid_order tool.

Topaware can be allowed to construct logical grids whose

selected geminis have a non-contiguous set of xz planes or

some z pencils that are left completely idle in order to use as

many nodes as possible in a single benchmark run.

However, in a production environment, if the search region

is such that the selected geminis have any idle internal xz

planes or z-pencils, it would be better to reject that layout or

try a different search region. We therefore expect that in

production, the selected geminis will always have LY xz

planes with LX z-pencils.

If n is the largest number of unavailable node pairs along

any z-pencil, then the selected nodes fit within a bounding
box of LX by LY by PZ geminis (including those with
unavailable node pairs), where PZ = LZ + n. Since the
number of service nodes and down nodes is (normally) a
small fraction of the number of available compute nodes, the
value of n is typically between 1 and 3, depending on the
size of the logical grid and the region of the torus being
searched. The IO service node pairs are scattered more or
less at random throughout the system, but other unavailable
node pairs may be clustered together.

B. Results for 3D Halo Exchanges

In order to compare nearest-neighbor communication times

for 2D, 3D, or 4D Cartesian grid virtual topologies, we

developed a synthetic application that performs halo

exchanges, i.e., point-to-point message passing between

adjacent partitions along each virtual dimension. This code

uses the Cray rca library to obtain the node ID and torus

coordinates of each task, so that it can determine the actual

path on the interconnect that each message takes. We submit

a batch job that targets a node feature whose shape allows

Topaware to obtain a near optimal layout. In the same batch

job, we also run the halo-exchange code using the custom

rank order generated by grid_order. The nodes used by the

grid_order run are the first M nodes in the allocation, whose

node order is determined by ALPS using the new scheme

described in section 2. The Topaware run uses the M

selected nodes that provide the logical grid of geminis

required for the near-optimal mapping. A third run in the

same batch job uses the default (SMP) rank order on the first

M nodes in the ALPS list, in order to quantify the benefit of

using grid_order.

For the 3D virtual topology in the example above with 32 by

32 by 32 partitions and 32 tasks per node running in a node

feature with 12 by 8 by 12 geminis, Table III shows the

averaged slowest (over all tasks) timings for halo exchanges.

Here, non-blocking MPI send and receive operations are

performed, and all messages are initiated at the same time, in

order to avoid requiring the messages to arrive in any

particular order and to potentially enable overlap of various

operations such as copying data to/from cache/memory with

the transmission of message packets across links between

node pairs. The message size was 32 kB.

TABLE III. 3D HALO-EXCHANGE TIMINGS

Placement Iter time (ms) Max hops

Default 11.315 9

Grid_order 7.722 16

Topaware #1 2.771 2

The default rank order places 32 consecutive tasks on the

first node in the allocation, the next 32 tasks on the second

node, etc. Since there are 32 tasks in each virtual dimension,

this placement eliminates off-node communication for an

entire dimension. For the grid_oder run, the per task layout

was 4 by 2 by 4 partitions, which helps to decrease the

communication time by reducing the amount of off-node

communication compared to default placement. The halo-

exchange code counted a maximum of 16 hops for messages

in the grid_order run, but a maximum of 9 hops for default

placement. The default task placement actually resulted in a

smaller maximum for the hop count, and yet the

communication time was nearly 1.5X shorter for grid_order

placement. For Topaware placement, the largest hop count

was only 2 and communication times are reduced by a factor

of nearly 2.8 compared to grid_order placement. Ideally, the

maximum hops count would be 1, but the presence of

unavailable nodes precludes achieving such a perfect layout.

Evidently, there are no z-pencils through the selected nodes

with more than one unavailable node in this particular

experiment.

C. 4D Virtual Topologies

For 4D virtual topologies, we constrain the partitions of the

4th dimension (called "T" for time) to fit on each node pair,

and treat the remaining 3 dimensions in the manner

described above for 3D virtual topologies. For example, a

virtual topology with 8 partitions in each dimension can be

mapped onto the system in several ways with 16 tasks per

node:

1) LX = 8, LY = 4, LZ = 4, NX = 1, NY = 2, NZ = 2, NT = 8

2) LX = 4, LY = 4, LZ = 8, NX = 2, NY = 2, NZ = 1, NT = 8

3) LX = 8, LY = 2, LZ = 8, NX = 1, NY = 4, NZ = 1, NT = 8

All of these layouts have NT = 8 to place all 8 T partitions on

each node pair (4 T partitions per node).

A second 4D example has 11 by 12 by 11 by 12 partitions

(17424 tasks), which will run on 545 nodes with 32 tasks per

node using default placement or grid_order (although some

nodes will have fewer than 32 tasks). In contrast, the

perfectly balanced layout Topaware obtains uses only 24

tasks per node, but 726 nodes. Topaware's layout parameters

are:

LX = 11, LY = 3, LZ = 11, NX = 1, NY = 4, NZ = 1, NT =

12

For message sizes ~24 kB, Table IV gives the timings for

halo exchanges run in a node feature with 12 by 4 by 12

geminis. Topaware reduced the communication time by a

factor of more than 4.3 compared to grid_order, although it

used 4/3 more nodes in doing so.

TABLE IV. 4D HALO-EXCHANGE TIMINGS

Placement Time per iter (ms) Max hops

Default 9.65 21

Grid_order 7.46 19

Topaware 1.72 2

D. Real 4D Application: MILC

To quantify the improvement in overall run times when

Topaware is used (rather than grid_order) for a real

application with a 4D virtual topology, we used MILC, a

Lattice Quantum Chromodynamics community code [6].

MILC spends a significant portion of its total run time on

communication operations including halo exchanges and

reductions (All-reduce) when grid_order is used.

We considered a lattice with 84 by 84 by 84 by 144 points,

and divided this grid into 21 by 2 by 21 by 24 partitions

(21168 tasks), so that it could run on 1764 nodes with 12

tasks per node in a node feature with 24 by 2 by 24 geminis.

For grid_order, we chose a per-node layout with 1 by 1 by 1

by 12 partitions so that it matches the Topaware per-node

layout, and therefore any difference in run times must be due

to Topaware's careful placement of neighboring tasks onto

neighboring nodes in the torus, rather than differences in the

node count or even the per-node task layout. Message sizes

range from 2.3 kB to 48 kB. The run times in Table V show

that using Topaware instead of grid_order improves overall

performance by a factor of 2.2X for this test case.

TABLE V. MILC TIMINGS

Placement Run Time (10 iterations)

Grid_order 254.0

Topaware 116.4

E. 2D Virtual Topologies

For 2D virtual topologies, the virtual domain must be

carefully folded into multiple layers (called "supertiles"),

each of which fits into one plane of the selected set of

geminis. The direction in which tasks for each layer are

placed onto the torus is reversed at each fold to ensure that

tasks on either side of the fold in virtual space are on

neighboring nodes of the torus. Communication between

tasks on different layers occurs only at the folds. This

communication travels on the torus in the direction that the

layers are stacked, using only links on the surface of the

selected geminis. Communication between tasks in a given

supertile away from the edges stays within the plane of the

supertile.

Consider a 2D virtual topology with D1 = 110 by D2 = 120

partitions to be placed in a node feature with 12 by 4 by 12

geminis (including service nodes) and no more than 16 tasks

per node. The virtual domain will be folded into supertiles

along x and/or z, and the supertiles will be stacked along the

torus y dimension in this case, because it is the shortest

dimension of the node feature. We require

D1 = LX * NX * (1 + number of folds in x), and

D2 = LZ * NZ * (1 + number of folds in z).

Topaware finds several viable layouts, all with 4 layers:

1) LX = 11, LY = 4, LZ = 10, NX = 5, Nz = 6,

1 fold in z, 1 fold in x

2) LX = 10, LY = 4, LZ = 11, NX = 6, Nz = 5,

1 fold in z, 1 fold in x

3) LX = 11, LY = 4, LZ = 10, NX = 10, Nz = 3,

3 folds along z

4) LX = 10, LY = 4, LZ = 11, NX = 3, Nz = 10,

3 folds along x

For messages of size 4000 B, Table VI shows iteration times

in ms. Communication for the best-performing Topaware

layout is over 1.3X faster than it is for the grid_order run.

We also note that the maximum hop count is not a strong

predictor of performance for the Topaware runs.

TABLE VI. TIMINGS FOR 2D HALO EXCHANGES

Placement w/Stagger w/o Stagger Max hops

Default 0.2743 0.2745 15

Grid_order 0.2149 0.2153 18

Topaware #1 0.1638 0.1624 3

Topaware #2 0.1597 0.1597 5

Topaware #3 0.1671 0.1676 2

Topaware #4 0.1863 0.1868 3

The layouts (#1 and #2) with folds along both virtual

dimensions tend to give better performance, probably

because of the smaller aspect ratio of the per node-pair

partition layout, which reduces the amount of off-node

communication. For these layouts, some links at the folds

are used by multiple pairs of communicating layers. There

seems to be sufficient bandwidth for this not to be a

bottleneck, despite the fact that the links between layers are

the slower y links.

Table VI presents the results of two different batch jobs, one

in which for Topaware layouts #1 and #2 we attempt to

Figure 9. 2D Layout with staggering.

Figure 8. 2D Layout with no staggering.

reduce the loads on the y links between the four layers by

staggering pairs of communicating supertiles by one gemini

in x, as proposed in [7] (Fig. 8), and one batch job in which

this staggering was disabled (Fig. 9). Since the two sets of

run times are practically the same, it appears to be better to

avoid the use of staggering, since it enlarges the bounding

box of the selected geminis with little or no improvement in

communication time. Interestingly, the maximum hop

counts are the same for the layouts with and without

staggering, indicating that adding an additional hop along x

for the some pairs of xz planes does not necessarily affect the

longest paths, which are presumably along the z-pencils with

the most unavailable node pairs. The two sets of timings for

the rest of the layouts show that the variation from one run to

another (in this case in the same node features) is within <

1%.

We observe much smaller improvements when using

Topaware for 2D virtual topologies compared to 4D,

probably because the 4D communication pattern is more

intensive (messages are sent to twice as many neighbors as

they are for 2D), and therefore the links are driven closer to

capacity.

F. Unbalanced Layouts

The Topaware layouts presented above are perfectly

balanced, since each node has the same number of active

ranks. However, virtual topologies often have a partition

count along one or more dimensions that does not factor into

the product of an integer number of geminis that fits onto the

torus and an integer number of partitions per node pair.

Topaware was recently enhanced to allow unbalanced

layouts in order to handle such cases and to enable a much

larger number of near-optimal layouts for a given virtual

topology on a given system.

An unbalanced layout is a layout in which one or more

dimensions does not satisfy D = L * N. Instead, we set L

equal to the smallest integer value that satisfies L * N > D

for a proposed value of N. Again consider the 3D example

with 32 by 32 by 32 partitions (32768 tasks). Topaware

finds the following eight layouts including the balanced one

presented above (as #1):

1) LX = 8, LY = 8, LZ = 8, NX = 4, NY = 4, NZ = 4

2) LX = 11, LY = 6, LZ = 11, NX = 3, NY = 6, NZ = 3

3) LX = 11, LY = 8, LZ = 8, NX = 3, NY = 4, NZ = 4

4) LX = 8, LY = 8, LZ = 11, NX = 4, NY = 4, NZ = 3

5) LX = 11, LY = 7, LZ = 8, NX = 3, NY = 5, NZ = 4

6) LX = 8, LY = 7, LZ = 11, NX = 4, NY = 5, NZ = 3

7) LX = 11, LY = 8, LZ = 7, NX = 3, NY = 4, NZ = 5

8) LX = 7, LY = 8, LZ = 11, NX = 5, NY = 4, NZ = 3

Note that the unbalanced layouts allocate more tasks than are

needed by the virtual topology. For example, layout #3 has

33 by 32 by 32 partitions instead of the required 32 by 32 by

32. Most node pairs will have 3 partitions in x, but the node

pairs in the 11th yz plane of the selected geminis containing

the logical grid (i.e., the node pairs on the boundary of the

selected geminis) are assigned only 2 partitions in x. Thus,

these boundary node pairs have 2/3 of the workload of the

rest of the node pairs. Since the most heavily loaded node

pairs govern the rate of progress of a parallel application,

having a modest fraction of nodes with a lighter load has no

effect on the overall run time.

The balanced layout (#1 above) has 32 tasks per node, while

the unbalanced layouts have 24, 27, or 30 tasks per node.

Since there are fewer tasks per node than there are available

cores for the unbalanced layouts, we can use Cray's "core

specialization" feature to assign OS and other tasks to an idle

core on each node. This also enables communication

overlap via the Asynchronous Progress Engine, so that the

non-blocking send and receive operations can be overlapped

with each other and with other overhead, such as copying

data to/from message buffers. With fewer tasks per node, we

also get more memory bandwidth per task, since the memory

bandwidth per node is fixed and limits the rate of the copy

operations. These benefits can be seen in Table VII, which

presents the full set of timings for 3D halo exchanges using

all 8 Topaware layouts.

TABLE VII. 3D HALO EXCHANGES (W/UNBALANCED LAYOUTS)

Placement Iter time (ms) Max hops

Default 11.315 9

Grid_order 7.722 16

Topaware #1 2.771 2

Topaware #2 1.287 2

Topaware #3 1.147 2

Topaware #4 1.214 2

Topaware #5 1.782 2

Topaware #6 1.737 2

Topaware #7 1.580 2

Topaware #8 1.690 2

The best performing layout (#3) is unbalanced. This run is

over 2.4X faster than the balanced Topaware layout and

nearly 10X faster than the grid_order layout at the cost of

using 32/24 = 4/3 more nodes than the balanced layouts. It

definitely seems worth exploring the use of layouts with

fewer than 32 tasks per Cray XE node, and fewer than 16

tasks per Cray XK node, even without using Topaware,

especially if the application uses non-blocking

communication operations and initiates all of them at once.

As a second example with unbalanced layouts, consider a 2D

virtual topology with 168 by 132 partitions that is to run in a

node feature with 12 by 8 by 12 geminis using no more than

16 tasks per node. Topaware proposes both balanced and

unbalanced layouts:

1) LX = 11, LY = 8, LZ = 11, NX = 6, Nz = 4,

1 fold in x, 3 folds in z

2) LX = 11, LY = 8, LZ = 11, NX = 3, Nz = 8,

3 folds in x, 1 fold in z

3) LX = 12, LY = 6, LZ = 11, NX = 7, Nz = 4,

1 fold in x, 2 folds in z

4) LX = 11, LY = 6, LZ = 12, NX = 4, Nz = 7,

2 folds in x, 1 fold in z

5) LX = 11, LY = 6, LZ = 11, NX = 4, Nz = 8,

2 folds in x, 1 fold in z

6) LX = 12, LY = 6, LZ = 11, NX = 14, Nz = 2, 5 folds in z

7) LX = 11, LY = 6, LZ = 12, NX = 2, Nz = 14, 5 folds in x

8) LX = 11, LY = 8, LZ = 11, NX = 12, Nz = 2, 7 folds in z

9) LX = 11, LY = 6, LZ = 11, NX = 2, Nz = 16, 7 folds in x

Topaware was unable to obtain sets of selected geminis that

span 12 geminis in z, since the node feature in which the job

ran spans only 12 geminis in z and there were some

unavailable nodes in the allocation. This eliminated two of

the balanced layouts, #4 and #7. The staggering technique

was not used; it would have eliminated the two remaining

balanced layouts, #3 and #6. We obtained the timings for 2D

halo exchanges shown in Table VIII for 8 kB messages.

TABLE VIII. 2D HALO EXCHANGES (W/UNBALANCED LAYOUTS)

Placement Iter time (ms) Max hops

Default 0.5743 7

Grid_order 0.3343 10

Topaware #1 0.2364 4

Topaware #2 0.2312 4

Topaware #3 0.2523 4

Topaware #5 0.2583 4

Topaware #6 0.2732 2

Topaware #8 0.2365 2

Topaware #9 0.2823 2

All runs in this series used core specialization. The default

and grid_order runs used 16 tasks per node, while the

Topaware runs used from 12 to 16. The Topaware layouts

that use more nodes (12 tasks per node) tend to have roughly

1.2X better run times than the Topaware layouts that use 16

tasks per node, but that does not quite make up for their

using 1.33X more nodes. The slowest Topaware layout (#9)

performs nearly 1.2X better than the grid_order run, and it

uses the same number of node as the grid_order run. The

most efficient layout appears to be #5, an unbalanced one,

since it uses 16 tasks per node and is nearly 1.3X faster than

the grid_order run.

Note that we launch these jobs using a Cray aprun command

that creates the same number of tasks on each node, since it

would be tedious to determine which boundary nodes get

what number of tasks and launch a job in MPMD mode in

order to create only the minimum number of tasks required

for the virtual topology. In order to use an unbalanced layout

conveniently, the halo exchange application was modified to

leave tasks idle that are unused by the virtual topology.

Topaware orders the tasks so that the first N MPI ranks are

the N tasks required by the virtual topology. The application

must be modified to split the MPI_COMM_WORLD

communicator into a new one with only the first N ranks,

and to use the new communicator in place of

MPI_COMM_WORLD throughout the rest of the code.

This should be a straightforward procedure in real

applications, although this would require a thorough

examination of the code.

G. Integration of Topaware and Scheduler

Topaware was originally designed as a tool for

benchmarkers running jobs on a dedicated system, where it

could select an optimal set of nodes for a benchmark

requiring, say, ~25% of all compute nodes without

restrictions. The new scheduler developed in this work that

provides prism-shaped node allocations makes it much more

practical for ordinary users to benefit from Topaware in a

production environment. Without this new scheduler

capability, the only way to get prism-shaped node allocations

is to target the existing node features, which limits the choice

of virtual topologies for which Topaware can obtain near-

optimal layouts. In addition, in many cases one must ask for

significantly more nodes than are necessary to run the job, so

that the allocation includes nearly all nodes in the feature.

Otherwise, there may not be sufficiently many available

node pairs in each z-pencil through the allocation, and

therefore a near-optimal layout will not be obtainable.

The new scheduler developed in this work allows the user to

request an allocation with specified numbers of geminis

along each torus dimension. This is all that is needed for

applications with irregular or All-to-All communication

patterns. For applications with Cartesian grid topologies, in

order to make the best use of Topaware, the new scheduler

can provide prism-shaped allocations with at least the

requested number of available compute node pairs along

each z-pencil through the allocation, ensuring that Topaware

can obtain the desired logical grid of geminis within in the

allocation for the application's tasks.

Topaware was recently enhanced as part of this work to

enable it to be used routinely in tandem with the new

scheduler. The user typically wants to run a simulation of a

particular size (e.g., a fixed number of cells in a global grid,

and a fixed number of grid cells per processing element

based on available memory or scaling considerations) and

chooses the desired number of compute nodes to use on that

basis. The user can invoke Topaware, describing only the

desired number of partitions in each virtual dimension and a

target value for the number of tasks per node, and Topaware

will determine multiple viable layouts that will fit within the

specified region of the torus (i.e., a feature, a bounding box,

the current allocation in a batch job, or the full system

without restrictions). Topaware completes its work after

only a second or two, including checking for down nodes

and generating node lists and rank order files for all valid

layouts that can be obtained within the specified torus region.

This list of viable layouts is output as a string that can be

passed to the new scheduler, which can search for prisms of

available nodes that match any one of these layouts. This

added flexibility in scheduling such jobs helps to shorten

queue wait times and improve system throughput.
.

V. CONCLUSIONS

We set out to address the problem of widely varying

application run times on large Cray systems with 3D torus

interconnects. Before changes were made to the scheduler to

provide prism-shaped node allocations, we changed Cray’s

ALPS node ordering scheme to favor allocations whose

shapes tend to be flattened along the direction of the slowest

links. This improved the performance of a representative

Blue Waters workload by 12-19% without decreasing

utilization. However, job-job interference is not eliminated

by this scheme, and task layouts remain less than optimal for

applications with nearest-neighbor communication patterns.

Prism-shaped node allocations improve run times for many

types of applications by optimizing communication

bandwidth, decreasing hop counts, and significantly reducing

job-job interference. The new scheduler developed in this

work places jobs in prism-shaped node allocations. It

chooses the best prism shapes for each job based on various

metrics, taking into account asymmetrical link speeds, torus

dimensions, how completely the requested node count fills

the prism, fragmentation of unused resources, etc., in order

to maintain reasonably high utilization. The new scheduler

enables different sites to find the best balance between

application efficiency and utilization to optimize overall

throughput for their workload.

Putting all of these improvements together, in a preliminary

throughput test with a realistic synthetic workload on Blue

Waters, the new scheduler exhibited a total system

throughput that is roughly 20% higher than that of the

baseline scheduler. Moreover, both application performance

and run time variations were significantly improved

compared to the old scheduler.

Using the Topaware node selection and task placement tool

with applications having nearest-neighbor communication

patterns can lead to substantial reductions in overall run

times. Results for MILC (4D virtual topology) demonstrate

a 2.2X overall run time improvement when using Topaware

instead of grid_order on the same set of nodes with the same

per-node task layout. Support recently added to Topaware

for unbalanced layouts enables near-optimal task placement

for a much wider choice of virtual topologies on any given

system with a torus interconnect. The new scheduler makes

using Topaware in a production environment practical,

because the scheduler locates the first available set of nodes

that accommodates one of the near-optimal task layouts

generated by Topaware for the application’s problem-

specific virtual topology.

An additional workload test using the old scheduler and then

the new scheduler with Topaware enabled for the MILC jobs

is planned. These results will improve our estimates of the

improvements in system utilization, application performance,

and overall system throughout for the new scheduler.

ACKNOWLEDGMENT

We wish to thank Cray's Carl Albing for his work in
developing a modified version of the ALPS node ordering
scheme that improves upon the existing "-OY" option.

REFERENCES

[1] Blue Waters System Description,
 https://bluewaters.ncsa.illinois.edu/user-guide.

[2] Abhinav Bhatele, I-Hsin Chung and Laxmikant V. Kale,
"Automated Mapping of Structured Communication Graphs
onto Mesh Interconnects", Computer Science Research and
Tech Reports http://hdl.handle.net/2142/15407, April 2010.

[3] I. V. Lo, K. J. Windisch, Wanqian Liu, and B. Nitzberg,
“Noncontiguous processor allocation algorithms formesh-
connected multicomputers,” IEEE Transactionson Parallel
and Distributed Systems, vol. 8, no. 7, pp. 712-726, Jul. 1997.

[4] Carl Albing, Norm Troullier, Stephen Whalen, Ryan Olson,
Joe Glenski, Howard Pritchard and Hugo Mills, "Scalable
Node Allocation for Improved Performance in Regular and
Anisotropic 3D Torus Supercomputers", Lecture Notes in
Computer Science, Volume 6960, Recent Advances in the
Message Passing Interface, Pages 61-70, 2011.

[5] T. Hoefler and M. Snir, “Generic Topology Mapping
Strategies for Large-scale Parallel Architectures”,CS’11,
May 31 – June 4, 2011, Tuscon, Arizona, USA,
http://www.unixer.de/publications/img/hoefler_snir_topology
_mapping.pdf.

[6] MIMD Lattice Computation (MILC) Collaboration code
page, http://physics.indiana.edu/~sg/milc.html.

[7] R. Fiedler and S. Whalen, “Improving task placement for
applications with 2D, 3D, and 4D virtual Cartesian topologies
on 3D torus networks with service nodes”, CUG 2013, May
6-9, 2013, Napa, CA, USA.

[8] Jose Antonio Pascual, Jose Miguel-Alonso, "Effects of Job
Placement on Scheduling Performance", Actas de las XIX
Jornadas de Paralelismo, pp. 393-398, 2008.

[9] R. Alverson, D. Roweth, and L. Kaplan, "The gemini system
interconnect," in International Symposium on High
Performance Interconnects, Aug. 2010, pp. 83-87.

[10] R. Fiedler, N. Wichmann, S. Whalen, and D. Pekurovsky,
“Improving the performance of the PSDNS pseudo-spectral
turbulence application on Blue Waters using coarray Fortran
and task placement”, CUG 2013, May 6-9, 2013, Napa, CA,
USA.

[11] D. A. Donzis, P. K. Yeung, & D. Pekurovsky, “Turbulence
simulations on O(10,000) processors”. In TeraGrid 2008
Conference Proceedings, Las Vegas, NV, USA.

[12] M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P.
Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, E. Apra,
T.L. Windus, W.A. de Jong, "NWChem: a comprehensive
and scalable open-source solution for large scale molecular
simulations" Comput. Phys. Commun. 181, 1477 (2010).

[13] C. Mei, Y. Sun, G. Zheng, E. J. Bohm, L. V. Kale, J. C.
Phillips, and C. Harrison, “Enabling and scaling biomolecular
simulations of 100 million atoms on petascale machines with
a multicore-optimized message-driven runtime,” in
Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis,
SC ’11, (New York, NY, USA), pp. 61:1–61:11, ACM, 2011.

[14] Changa home page,
http://www-hpcc.astro.washington.edu/tools/changa.htm.l

[15] W. C. Skamarock, et al, ”A description of the Advanced
Research WRF version 3“, NCAR Technical Note TN-
475+STR, June 2008,
http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.

[16] Community Earth System Model (CESM),
http://www2.cesm.ucar.edu/

[17] Lucci, F., Ferrante, A. and Elghobashi, S. E. “Modulation of
isotropic turbulence by particles of Taylor-lengthscale size",
J. Fluid Mechanics, Vol. 650, pp. 5-55, 2010.

[18] K. Chadalavada and R. Sisneros, "Analysis of the Blue
Waters File System Architecture for Application I/O
Performance", CUG 2013, May 6-9, 2013, Napa, CA, USA.

[19] L. Carrington, D. Komatitsch, M. Laurenzano, M. M. Tikir,
D. Michea, N. Le Goff, A. Snavely, and J. Tromp, ``High-
frequency simulations of global seismic wave propagation
using specfem3d_globe on 62k processors,'' in Proceedings of
the 2008 ACM/IEEE conference on Supercomputing, SC '08,
Piscataway, NJ, USA, IEEE Press, 2008.

[20] R. G. Edwards (LHPC Collaboration), B. Joó (UKQCD
Collaboration), "The Chroma Soft ware System for Lattice QCD",
arXiv:hep-lat/0409003, Proceedings of the 22nd International
Symposium for Lattice Field Theory (Lattice2004), Nucl. Phys B1 40
(Proc. Suppl) p832, 2005.

[21] M. A. Clark, R. Babich, K. Barros, R. C. Brower, C. Rebbi, Solving
Lattice QCD systems of equations using mixed precision solvers on
GPUs arXiv:0911.3191v1 [hep-lat]

[22] J. Kim, K. P. Esler, J. McMinis, M. A. Morales, B. K. Clark, L.
Shulenburger, and D. M. Ceperley, “Hybrid algorithms in quantum
monte carlo,” Journal of Physics: Conference Series, vol. 402, no. 1,
p. 012008, 2012.

[23] K. P. Esler, J. Kim, L. Shulenburger, and D. M. Ceperley, “Fully
accelerating quantum monte carlo simulations of real materials on
gpu clusters,” Computing in Science and Engineering, vol. 14, p. 40,
2012.

http://arxiv.org/abs/hep-lat/0409003
http://arxiv.org/abs/0911.3191

