
Figure 1. Blue Waters service geminis (yellow spheres) 
and XK geminis (red spheres). 
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Abstract—Multiple sites having Cray systems with a Gemini 

network in a 3D torus configuration have reported inconsistent 

application run times as a consequence of task placement and 

application interference on the torus. In 2013, a collaboration 

between Adaptive Computing, NCSA (Blue Waters project), 

and Cray was begun, which includes Adaptive’s plan to 

incorporate topology awareness into the Moab scheduler 

product to mitigate this problem. In this paper, we describe the 

new scheduler features, tests and results that helped shape its 

design, and enhancements of the Topaware node selection and 

task placement tool that enable users to best exploit these new 

capabilities. We also discuss multiple alternative mitigation 

strategies implemented on Blue Waters that have shown 

success in improving application performance and consistency. 

These include predefined optimally-shaped groups of nodes 

that can be targeted by jobs, and custom modifications of the 

ALPS node order scheme. 

I. INTRODUCTION 

Large, massively parallel supercomputers with 

multidimensional torus interconnection networks have been 

around for many years, including some of the most capable 

systems in production today (Cray XT/XE/XK, Blue Gene 

P/Q). The largest Cray XT/XE/XK systems including Blue 

Waters and Titan have 3-dimensional torus interconnects in 

which most of the nodes are devoted to running user jobs 

(i.e., compute nodes), but some nodes are service nodes 

performing various duties including IO, MOM, boot, internal 

login, etc. (see [1]).  Fig. 1 shows the current Blue Waters 

interconnect topology, which consists of 24 by 24 by 24 

gemini routers.  The service nodes are depicted as yellow 

spheres, the XK nodes by red spheres, and the XE nodes by 

small gray spheres.  Since the torus wraps around each 

dimension, the XK region is in reality a contiguous block of 

15 by 6 by 24 geminis.  It is well known that as the size of 

systems with such interconnects increases, if jobs are 

scheduled without regard to topology considerations, the run 

time for an application that performs a fixed amount of work 

on a specified number of nodes can vary significantly from 

one batch job to the next due to the locations of the nodes 

allocated to run the job, as well as contention for 

interconnect resources from other jobs on the system.  Jobs 

that spend a greater fraction of their run time on 

communication tend to exhibit the most variability, 

especially at larger scales [2].  After startup on a large 

system whose scheduling policy allows non-contiguous node 

allocation strategies, as many different-sized jobs of different 

length run and complete, the sets of nodes allocated to new 

jobs tend to become more fragmented (i.e., each new large 

allocation consists of many non-contiguous groups of nodes 

scattered throughout the system, increasing contention for 



bandwidth on links between nodes [3]. 

 

The Cray ALPS software provides the scheduler with a list 

of the compute nodes in an order designed to help improve 

bisection bandwidth while reducing hop counts compared to 

allocations selected from a node list with torus x,y,z ordering 

or random ordering [4].  While the ordering used with most 

large XE/XK systems today helps improve application 

performance somewhat, it does not do enough to ensure that 

allocations are contiguous, nor does it use information about 

an application's virtual process topology to provide an 

optimal layout on the torus.  On the other hand, the current 

ALPS node ordering scheme has little impact on utilization, 

since its node order does not depend on whether the compute 

nodes are idle or busy running jobs. 

 

Efforts to determine an optimal layout of an application's 

tasks onto a 3D torus network are stymied by poor allocation 

shape.  The libTopoMap tool of Hoeffler, et al, is capable of 

reducing communication times by as much as 45% when 

mapping irregular communication graphs onto (idle) 3D 

torus networks [5], but much larger (1.9X) improvements in 

overall application run times have been demonstrated for 4D 

Cartesian mesh virtual topologies (e.g., for MILC [6], a 

lattice QCD application) when the Topaware node selection 

and task placement tool is utilized on a dedicated system [7].  

Such large communication performance improvements 

require compact rectangular prism-shaped allocations, and 

therefore enhancements to the scheduler that provide prism-

shaped node allocations are required in order to make using 

Topaware practical in a production environment. 

 

Compact prism-shaped allocations help reduce contention, 

but inevitably impact system utilization to some degree, 

since jobs must wait longer for contiguous blocks of nodes to 

become available.  An important goal in this work is to 

develop an interconnect-topology-aware scheduler that 

produces very favorable node allocation shapes, which 

improve application performance at least enough to 

compensate for any decrease in utilization and thereby 

increase overall system throughput.  According to [8], for 

realistic workloads, if contiguous allocations are enforced, 

the applications need to run about 25-30% faster in order to 

make up for the reduction in system utilization. 

 

The links along the x and z dimensions on gemini networks 

are at least 2X faster than the slowest links in the y 

dimension [9].  This has implications for which prism shapes 

are best in terms of bisection bandwidth per node.  In 

particular, slabs of gemini hubs of aspect ratio 2:1:2 

maximize bisection bandwidth per node and equalize 

bandwidth along each of the 3 torus dimensions, provided no 

slab dimension spans more than half the nodes in that 

direction on the torus. 

 

Torus wrap-around also can play a role in determining 
the best prism shapes, given the routing scheme (shortest 
path in x, then y, then z) and the torus dimensions.  If a prism 
of geminis spans more than half of the torus along a given 
dimension, messages between geminis on either end of the 
prism along that dimension will pass through nodes outside 
of the prism to reach their destinations.  Thus, to avoid 
contending for bandwidth on links outside of a prism-shaped 
node allocation, the prism should span either less than or 
equal to half of the full torus dimension, or else it should 
span the full torus in any given dimension.  The largest 
allocation size with optimal bisection bandwidth per node on 
Blue waters has 24 by 6 by 24 geminis.  If a job requires 
more than half but less than all of the nodes on the system, 
some application communication is likely to traverse links 
outside the prism.  For more discussion of considerations 
relating to the bisection bandwidth per node, see [10]. 

II. RUN TIME CONSISTENCY AND MITIGATION 

STRATEGIES 

A. Application Run Time Variability 

Early in the production phase of the Blue Waters project, 

large run-to-run variations in performance were observed 

for a number of applications, particularly those whose 

communication times comprise a significant fraction (i.e., of 

order 50%) of their overall run time.  One such application 

is PSDNS, a Computational Fluid Dynamics application that 

uses pseudo-spectral methods, requiring frequent global 

array transposes for 3-dimensional FFTs [11].  The most 

time-consuming communication pattern in PSDNS consists 

of 16 concurrent All-to-All operations, each of which 

involves sets of M tasks, where M is the number of nodes in 

the job.  Each of the 16 tasks on a node participates in a 

different All-to-All operation. 

 

PSDNS wall clock times for one time step have been 

observed to vary by more than a factor of two within a 

single batch job, and even larger variations (on the order of 

4X) were noted from one batch job to the next. Experiments 

on a dedicated system indicated that PSDNS 

communication performance is sensitive to node allocation 

shape, favoring those with higher bisection bandwidth per 

node.  On the initial Blue Waters configuration with 23 by 

24 by 24 geminis, dedicated runs made in a node allocation 

with 6x24x24 geminis took 1.64X more time per step than a 

run made in a node allocation with 23x6x24 geminis [10]. 

 

A second application exhibiting large job to job 

performance variability is MILC [6], a Lattice Quantum 

Chromodynamics community code whose 4-dimensional 

lattice requires communication involving 4D halo 

exchanges as well as frequent reduction (All-reduce) 

operations.  Although the halo exchanges in principle entail 

only nearest-neighbor communication in its 4D Cartesian 

grid virtual topology, in typical use the job's tasks are not 

carefully mapped onto the 3D torus to ensure 



communicating tasks are placed onto nearby nodes.  The 

current practice is to use Cray's grid_order utility to produce 

custom rank orders that minimize off-node traffic without 

attempting to place neighboring tasks on nearby nodes in the 

torus. Thus, for typical batch jobs that do not use special 

task placement, the effective communication pattern is 

between random pairs of nodes, resulting in much higher 

contention for inter-nodal bandwidth, even if no other jobs 

happen to be running on the system.  We therefore 

anticipate better MILC performance in node allocation 

shapes having higher bisection bandwidth per node, for the 

same reason that such shapes improve All-to-All 

communication performance in PSDNS. 

B. Mitigation Strategies 

1) Node sets (“features”): In order to improve node 

allocation shapes for the science teams in the Blue Waters 

production environment, we used the ability of Adaptive 

Computing's Moab scheduler to assign groups of selected 

nodes to node sets, which we refer to here as "node 

features".  For example, one series of node features 

configured on Blue Waters is comprised of sets of nodes 

with 24x6x24 geminis, each spanning a different set of 6 

geminis in the torus y dimension.  Users can target any one 

of these features using the following directive 

 

#PBS -l nodeset=ONEOF:FEATURE:s1_6700n:s2_6700n: 

s3_6700n:s4_6700n:s5_6700n:s6_6700n:s7_6700n: 

s8_6700n:s9_6700n:s10_6700n:s11_6700n:s12_6700n:s13_

6700n 

 

The scheduler will run the job in the first node feature in the 

list to have sufficiently many idle compute nodes.  Note 

that, as currently configured on Blue Waters, it is quite 

possible for jobs that do not explicitly target a particular 

node feature to run on some nodes in that feature anyway, if 

they are available.  Thus, to avoid long queue wait times, 

the "high" priority queue (which consumes service units at a 

higher rate) is often used for jobs that require nodes in a 

node feature. 

 

These features contain a total of from 6724 to 6760 compute 

nodes when all nodes are up, since the number of service 

nodes varies somewhat with location in the torus.  Users are 

advised to allow for several nodes to be down when 

submitting jobs, so they should request no more than 6720 

nodes if they want to allow the job to run in any of these 

features. 

 

We have observed significant performance improvements or 

at least substantial reductions in run time variation for most 

applications when run in node features.  We obtained 30-

50% performance improvements when using node features 

with PSDNS on up to 8192 nodes.  Users of NWChem (a 

computational chemistry code based on the Global Arrays 

library with an irregular communication pattern, see [12]) 

always target node features in production runs.  Among the 

more communication-intensive applications, an NWChem 

benchmark requiring 1000 nodes ran between 32% and 38% 

faster in node features with 12 by 4 by 12 geminis than it 

did when submitted without any restriction on node 

allocation.  A 6700 node NAMD (molecular dynamics code, 

see [13]) benchmark ran 17% faster in a 24 by 6 by 24 

gemini feature than it did in a run without restricting the 

allocation to any features, in which the allocation bounding 

box was 8 by 24 by 24 geminis. 

 

When an application runs inside a node feature whose shape 

is such that it either spans the entire torus in a given 

dimension, or it spans up to half of that dimension, no 

application communication ever leaves the feature it is 

using, which prevents that communication from interfering 

with other jobs using links between geminis outside of the 

feature.  However, for any dimension not spanned by the 

feature, it is possible for the scheduler to assign another job 

to groups of nodes on either end of the feature, allowing 

job-job interference due to other jobs using links inside the 

prism, although they are running on nodes outside of the 

prism.  

2) Node Ordering Schemes: On Blue Waters, we 

observed that with the Cray ALPS standard node ordering 

scheme "-O2" described in [4], node allocations for large 

jobs on a dedicated system were full yz slabs whose extent 

in the x torus dimension was four geminis.  Since xz slabs 

have higher bisection bandwidth per node than yz slabs of 

the same aspect ratio, We tried the existing "-OY" option, 

which favors xz planes of geminis, but found that this 

strategy has the disadvantage of assigning small allocations 

in a single y plane.  Consequently, small jobs were given an 

allocation with relatively low bisection bandwith per node 

and a relatively large maximum hop count.  

 

NCSA and C. Albing collaborated on modifying the "-OY" 

node ID ordering scheme to order the nodes in 4 by 2 by 8 

gemini blocks, first filling the torus along z, then along x, 

and then along y.  This change ensures that the xz slabs 

assigned to jobs are at least 2 geminis thick along y (one 

blade).  A refinement added in this work reverses the 

direction (c.f., Peano curves) in which the blocks fill the 

torus after jumping to the next set of x (or y) values to help 

provide a more contiguous node list in which neighboring 

nodes are closer together on the torus.  Further changes help 

the scheduler deal with the fact that the XK region on Blue 

Waters does not span the full torus in the x direction. 

 

We used a synthetic workload that included a suite of seven 

real applications to evaluate the impact of the node ordering 

scheme on run times.  The applications in this suite are: 

MILC, NWChem, PSDNS, Changa (collisionless N-body 

solver for astrophysics, [14]), NAMD, WRF (Weather 

Research and Forecasting, [15]), CESM (climate modeling, 



Figure 3. Job placement for Nov. 11 2Y node ordering. 

Figure 2. Job placement for baseline node ordering scheme. 

Figure 4. Job placement for Nov. 11 4Y node ordering. 

[16]), and DNS_distuf (Computational Fluid Dynamics, 

spectral method, [17]).  

 

Three different node ordering schemes where compared 

using this application suite.  Allocations for the default or 

baseline scheme ("-O2") are depicted in Fig. 2.  The geminis 

in each allocation are represented by a set of spheres of a 

unique color.  It is evident that this scheme favors yz slabs 

that are 4 geminis thick along the x direction of the torus (y 

is up, z is toward the viewer).  Fig. 3 shows allocations for 

"Nov.11_2Y", a scheme that favors xz slabs that are 2 

geminis thick along y, while Fig. 4 shows allocations for 

"Nov.11_4Y", a scheme that favors xz slabs that are 4 

geminis thick along y. 

 

Table I gives the speedups for each application for which 

we obtained timing information when using the "2Y" and 

"4Y" node ordering schemes  Two separate test runs were 

performed on two different dates, corresponding to the 

"Nov.11" and "Nov.4" prefixes in the table.  Although some 

applications running in certain allocations performed better 

in the allocation provided by the older "-O2" scheme, on 

average the speedups were between 1.14 and 1.25.  If we 

had been able to collect data for Changa, WRF, and CESM 

for all tests and they had exhibited little or no benefit from 

either new ordering scheme, the averages would be reduced 

to a range from 1.12 to 1.19, which is still a very substantial 

improvement over the baseline "-O2" scheme.  The tests 

indicate that the 4Y scheme gives slightly better overall 

performance than the 2Y scheme.  However, 2Y was 

ultimately selected to be the default because the applications 

showing the strongest 4Y benefit (skewing the averages to 

4Y favor) were typically being run inside a pre-defined node 

feature anyway, and would therefore not suffer from 2Y as 

the default. 

 



C. I/O and Job-Job Interference 

As the Lustre file system is currently designed, I/O 

operations can use any of the IO service nodes scattered 

throughout the system, and therefore IO traffic from other 

jobs would remain a source of job-job interference even if 

all jobs were running in favorable prism-shaped allocations.  

This type of interference is not addressed in this work, but 

may potentially be greatly reduced by enabling applications 

to use only the service nodes within their allocation prism 

when writing new files [18].  This strategy would not help 

when reading a restart dump from a prior run, unless the job 

happened to be assinged to the same node feature as the 

prior run.  However, typical batch jobs write much more 

data then they read, mostly in the form of solution snapshots 

and checkpoints.  However, this IO strategy may also 

significantly reduce IO throughput for a given job, since its 

IO operations could use only a fraction of the full system's 

IO nodes, and therefore only a fraction of the Lustre file 

system's OST resources.  

TABLE I.  APPLICATION SPEEDUPS FOR XZ ORDERING 

SCHEMES 

App Nodes Nov.11 

2Y 

Nov.11 

4Y 

Nov.4 

2Y 

Nov.4 

4Y 

MILC 1372 1.00 1.02 1.15 0.91 

MILC 2744 1.52 1.47 1.43 1.31 

NWChem 3000 1.34 1.22 1.32 1.39 

PSDNS 1024 1.09 1.15 1.22 1.74 

Changa 1024 -- -- 1.00 0.95 

NAMD 1368 1.62 1.77 0.91 0.91 

WRF 1386 -- -- 1.01 1.01 

CESM 600 1.01 1.00 -- -- 

DNS_distuf 512 1.13 1.13 1.05 0.98 

AVERAGE  1.24 1.25 1.14 1.19 

 

III. ADAPTIVE/CRAY/NCSA COLLABORATION 

In 2013, a collaboration between Adaptive Computing, 

NCSA (Blue Waters project), and Cray was begun in order 

to address run time consistency issues by helping to improve 

application communication performance and reduce job-job 

interference through scheduling policies that take into 

account the characteristics of both the interconnect and the 

applications.  These capabilities are expected to be included 

in a production release of the scheduler by the third quarter 

of 2014. 

A. Goals and Design Considerations 

The overarching goal of this collaboration is to add 
topology awareness to the Moab job scheduler for Cray 
systems with the gemini interconnect.  However, the 
foundational changes implemented in Moab for this purpose 
will facilitate topology-aware scheduling capabilities for 
systems with other types of interconnects in the future. 

 
The main objectives to be achieved by the new scheduler 

are to:  

 Improve application performance through better-
localized job placement.  

 Improve application run-time consistency by 
eliminating job-job interference due to 
communication.  

 Improve system throughput and maintain reasonably 
high utilization. 

 Provide relevant configuration tools for users and 
administrators. 

 Provide monitoring and diagnostic information to 
help users and administrators understand how jobs 
are being scheduled on the system. 

 
In order to meet the first two objectives, we designed a 

series of tests (described below) to quantify the effect of 
node allocation shape and job-job interference for a set of 
representative applications running on Blue Waters. 

 
Regarding the third objective, defining overall system 

throughput in a production environment is a non-trivial task.  
One might choose to measure throughput in terms of the 
number of floating point operations (FLOP) devoted to 
science and engineering applications running on the system 
over a fixed amount of time.  However, we must account for 
the fact that different applications can achieve very different 
FLOP rates even on a dedicated system.  Therefore, as 
described later, we use a synthetic workload with job sizes 
and run times derived from actual Blue Waters production 
workloads. 

 
Given a representative workload, we can define the total 

system efficiency as the product of the scheduling efficiency 
and the average application efficiency, where the latter term 
is calculated as the production usage distribution weighted 
by application efficiency.  The application efficiency is 
defined as the ratio between the measured run time and the 
run time obtained for the same benchmark problem on a 
dedicated system with the best possible mapping of tasks to 
nodes.  For example, suppose 20% of the production 
workload is application A, 50% is application B, and 30% is 
application C.  Suppose further that we examine application 
run times during a scheduler test, and find that application A 
is 93% efficient, application B is 87% efficient, and 
application C is 74% efficient.  Then the average application 
efficiency "E_AVE" is  

 
E_AVE = 0.20 * 0.93 + 0.50 * 0.87 + 0.30 * 0.74 = 0.84 
 
If the measured scheduling efficiency is 88%, then the 

total system efficiency is 74.2%.  This metric can be 
compared for different versions of the scheduler running the 
same workload in order to determine whether increased 
application performance due to well-shaped allocations 
compensates for decreased utilization. 

 
In the initial implementation of the new scheduler, a strict 

policy prohibiting job-job interference due to application 
communication is enforced.  In order to do so, Moab chooses 



only node allocations which guarantee that intra-job 
communication would not be routed over links used by any 
other job.  Preliminary results gathered from the system-wide 
throughput test run on Mar 21, 2014 indicated that this strict 
enforcement of non-interference resulted in highly consistent 
job run times, with measured variations of only 1 to 4% for 
jobs run with the same prism dimensions.  This strict policy 
is expected to have a relatively high impact on utilization, 
however. 

 
Subsequent implementations may enable user-specified 

indications of communication sensitivity (the degree to 
which the application slows down when communication 
from other jobs shares the same links) and communication 
intensiveness (the degree to which the application saturates 
the links it uses).  This information would allow the 
scheduler to more aggressively pack workloads that include 
applications that have low sensitivity and/or are less 
communication intensive via allocations that result in some 
link sharing.  Such an approach would increase scheduling 
efficiency at the cost of possibly reduced application 
performance.  Studies are planned to allow better workload 
characterization to determine the viability of this approach. 

 
Most jobs do not fit perfectly into a cuboid or rectangular 

prism which is required to guarantee non-overlapping 
communication.  Service and down nodes within a given 
prism tend to complicate this further, making 'perfectly 
matching' fits difficult to locate.  Consequently, in most 
cases, some nodes within the bounding box of the prism will 
not actually be allocated to the job.  Moab will attempt to 
utilize these 'internal' idle nodes by launching small jobs on 
them which are guaranteed to not interfere with the main job 
running in the same prism.  Because of this optimization and 
the potential that all idle nodes could be subsequently 
allocated, Moab may charge the main job only for the nodes 
in the prism which are allocated and utilized, not for all 
nodes within the prism.  Constraints on the small jobs 
utilizing the internal idle nodes could include limits on the 
run time, communication intensiveness, and/or requiring 
them to be pre-emptible, so that the system can signal them 
write a final application-level checkpoint and terminate 
shortly after the main job completes.  In return for obeying 
these constraints, such small jobs could be charged at 
compellingly low rates.  

B. Workload Test and Results 

The purpose of this test is to create an environment which 

reproduces to the extent possible the target production 

environment, while allowing reasonable measurement of 

both scheduling efficiency and application performance.  

Consequently, the following steps were taken: 

 

 use test resources that match the production 

resources in terms of 

o scale 

o architecture 

o mix of GPU and non-GPU nodes 

o topology  

o create test workload that matches the 

production workload in terms of 

o backlog size/depth 

o job submission timing distribution 

o job size distribution 

o job duration distribution (scaled down in 

time to fit test time window) 

o job walltime accuracy distribution 

o mix of applications including 

representative communication patterns 

o mix of node types required 

 use scheduler configuration that matches the 

production scheduler, including policies, priorities, 

and limitations 

 create starting state via reservations that match the 

steady state fragmentation of the production 

environment 

 

To get the starting state for both the topology-aware 

scheduler and the older one, we measure a typical steady 

state in a long-running simulation of a system with a realistic 

workload and a topology-aware scheduler.  This state is less 

fragmented than the one which the steady-state simulation 

would provide in the non-topology-aware environment. 

TABLE II.  SYNTHETIC WORKLOAD CODES AND PARAMETERS 

 

With such a test environment created, the following 

performance metrics were collected: 

 

 overall steady state scheduling efficiency 

 overall application efficiency 

Application Node 

count/type 

Time limit (m) 

Changa 1024 XE 60 

Chroma 768 XK 50 

DNS-DISTUF 512 XE 10 

MILC 324, 576, 1372, 

4116 XE 

30 

NAMD 1, 2, 4, 8, 16, 32, 

64, 100, 128, 

256, 456, 640, 

1368 XE and 

XK; 2000, 3272 

XE 

60 

NWChem 400 XK; 1000, 

7000 XE 

30-45 

PSDNS 3072 XE 30 

QMCPACK 700 XK; 4800 

XE 

30 

SpecFEM3D_Globe 5419 XE 60 

WRF 456, 1386, 3298 

XE 

30 



 
Figure 5. Utilization and backlog for Topology-aware 

scheduler test 

 
Figure 6. CoV for application run times during 

topology-aware scheduler test. 

 per application runtime consistency and 

performance for each allocation shape and 

orientation 

 

Table II lists the applications, node counts, and requested 

times for the synthetic workload used to test the scheduler on 

Blue Waters. SpecFEM3D_Globe [19] is a seismic wave 

propagation application whose unstructured computational 

grid discretizes the entire planet.  Chroma [20] is a lattice 

QCD application based on the QUDA [21] library to utilize 

GPUs. Finally, QMCPACK [22, 23] is an electronic 

structure application based on Quantum Monte Carlo 

techniques. 

 

In the workload, which is tailored to represent the actual set 

of job sizes run on Blue Waters in recent months (although 

the actual mix of applications is somewhat different from the 

synthetic workload), multiple instances of each job are 

submitted at different times.  There are a much larger 

number of jobs with small node counts than large node 

counts, but the vast majority of the total service units 

delivered are consumed by jobs using 512 or more nodes. 

Many of the requested run times are the same (30 minutes), 

which reflects the maximum time limit imposed by the site. 

We reduced the lengths of the jobs in the workload 

compared to the real jobs so that we could complete a 

scheduler test in 3 hours which represents about 6 days of 

typical production.  

 

Fig. 5 shows the backlog and utilization for the final 30 

Moab scheduling iterations in a test of the topology-aware 

scheduler that was truncated after 2 hours due to a Gemini 

failure, which was corrected later via a warm swap 

operation.  Each iteration took 3-4 minutes of wall clock 

time, which is not significantly greater than the time for a 

typical iteration of the old scheduler.  In the test, groups of 

jobs are submitted together in multiple waves, corresponding 

to the spikes in backlog. Soon after the rise in backlog, the 

scheduler allocates nodes for many of the jobs, the backlog 

drops, and utilization increases somewhat. However, 

utilization tends to improve even more whenever the 

scheduler is able to start one of the largest jobs in the 

workload.  Although the desired steady-state statistics were 

not obtained after only 2 hours, averaged over the last 10 

iterations utilization was a respectable 71%. 

 

We found that the scheduler ran multiple instances of a given 

job (i.e., application and node count) in allocations with only 

1-2 different shapes, although the location of an allocation of 

a given shape often varied from run to run.  Fig. 6 shows the 

coefficient of variance for the run times of several 

applications for both shapes, and for each shape individually 

(QMCPACK ran in only one shape).  Even though there 

were two different shapes with similar node counts for most 

of these applications, the largest CoV value is < 2%. As 

expected, for a given job, the CoV of run times for a given 

shape is substantially less than the CoV for two different 

shapes. 

 

Comparing typical run times for PSDNS on 3072 nodes in 

production under the old scheduler to typical run times in our 

test of the topology-aware scheduler, we observed a 2.4X 

improvement with the new scheduler due to the favorable 

prism shape and elimination of job-job interference. For 

MILC, using grid_order even in the test of the new 

scheduler, the speedup on 324 nodes was 1.5X, while on 

4116 nodes the speedup was 1.8X.  The MILC run time  

CoV decreased from 18% with the old scheduler to 5% with 

the new scheduler. As we describe in the next section, a large 

(~2X or more) additional total run time improvement can be 

obtained for MILC when the Topaware tool is used to 

provide  a near-optimal task layout. 

 



 
 

Figure 7. Topaware node selection algorithm 

Based on our preliminary results for the larger applications 

in the workload, we estimate an average performance 

improvement of roughly 40%.  Anticipating a reduction in 

utilization of around 20% compared to the old scheduler, we 

expect an overall improvement in system throughput of 

approximately 20% for the topology-aware scheduler, which 

represents a very significant benefit for the Blue Waters 

science teams. 

IV. TOPAWARE NODE SELECTION AND TASK PLACEMENT 

To facilitate more effective use of topology-aware task 
mapping tools developed by Cray, new capabilities were 
added to Moab which allow the user to request a minimum 
required number of geminis (each with two available 
compute nodes) along each z-pencil through a prism.  This 
enables near-optimal assignment of tasks to nodes for 
applications with primarily nearest-neighbor communication 
patterns.  With this new capability, Moab takes into account 
any service or down nodes in each potential prism under 
consideration and rejects or adjusts the size of the prism as 
needed to provide the specified number of nodes in each z-
pencil. 

A. Topaware Algorithm  

The Topaware node selection and task placement tool [7] 

provides near-optimal mappings of tasks to nodes in systems 

having gemini networks for applications with 2D, 3D, or 4D 

Cartesian grid process topologies.  Its node selection strategy 

can be illustrated via an example for a 3D virtual topology 

with D1 by D2 by D3 partitions in each virtual dimension.  

In the absence of unavailable nodes, Topaware would map 

the tasks onto a prism of LX by LY by LZ geminis, and the 

pair of nodes attached to each gemini would have NX by NY 

by Nz partitions, such that 

 

D1 = LX * NX 

D2 = LY * NY  

D3 = LZ * NZ 

 

(Note that the 3 virtual dimensions can be aligned with any 

permutation of the 3 torus dimensions, and Topaware 

determines which permutation to use.)   

 

The values of NX, NY, NZ are constrained by the 

requirement that their product be no larger than the desired 

number of tasks per node pair (often equal to the number of 

cores).  The NX, NY, NZ and LX, LY, LZ values are further 

constrained by the dimensions of the region of the torus in 

which the search for usable nodes is conducted.  

 

As an example, a virtual topology with 32 by 32 by 32 

partitions can be mapped to a logical grid of 8 by 8 by 8 

geminis, provided 4 by 4 by 4 partitions are placed on each 

pair of nodes attached to each gemini.  If we chose instead to 

run the job with 8 tasks per node, we could use, for example, 

a prism with 16 by 16 by 8 geminis and 2 by 2 by 4 

partitions per node pair.  However, we could not use 8 tasks 

per node with 32 by 8 by 8 geminis and 1 by 4 by 4 

partitions per node pair, since the Blue Waters torus has only 

24 geminis along each dimension. 

 

In the presence of unavailable nodes in the system, 

Topaware selects (from within a specified region of the 

system) a regular prism of geminis that has LY xz planes, 

each xz plane having LX pencils along z that all have at least 

LZ geminis with available compute node pairs.  This "logical 

grid" of geminis is constructed by scanning the z-pencils 

beginning at the "leftmost" end of the search region and 

continuing until LZ available compute node pairs are 

identified, skipping over any geminis with one or more 

unavailable nodes.  Fig. 7 illustrates the selection process for 

a single xz search plane of the torus with 8 by 9 geminis 

including service nodes (green squares without numbers).  

Here, the desired logical grid is 8 by 8 by 8 geminis, and we 

are able to obtain an xz plane of this logical grid in this 

region because all 8 z-pencils through the search plane have 

at least 8 available compute node pairs (numbered white 

squares). 

 

The actual set of geminis to be used by the application (the 

"selected geminis") often has an irregular surface normal to z 

at both ends, but especially on the rightmost side, since most 

z-pencils can be expected to have one or more unavailable 

nodes somewhere along their length.  The skipped node pairs 

add an extra hop or two along the torus z direction for 

nearest-neighbor communication paths in their vicinity, 

which increases the load on the local z links somewhat.  

However, the increased contention due to the skipped node 

pairs is usually much less than the contention arising from 

placing groups of tasks that should be neighbors onto the 

torus in a non-conforming pattern, which is nearly always the 

case when using the grid_order tool. 

 

Topaware can be allowed to construct logical grids whose 



selected geminis have a non-contiguous set of xz planes or 

some z pencils that are left completely idle in order to use as 

many nodes as possible in a single benchmark run.  

However, in a production environment, if the search region 

is such that the selected geminis have any idle internal xz 

planes or z-pencils, it would be better to reject that layout or 

try a different search region.  We therefore expect that in 

production, the selected geminis will always have LY xz 

planes with LX z-pencils. 

 
If n is the largest number of unavailable node pairs along 

any z-pencil, then the selected nodes fit within a bounding 
box of LX by LY by PZ geminis (including those with 
unavailable node pairs), where PZ = LZ + n.  Since the 
number of service nodes and down nodes is (normally) a 
small fraction of the number of available compute nodes, the 
value of n is typically between 1 and 3, depending on the 
size of the logical grid and the region of the torus being 
searched.  The IO service node pairs are scattered more or 
less at random throughout the system, but other unavailable 
node pairs may be clustered together. 

B. Results for 3D Halo Exchanges 

In order to compare nearest-neighbor communication times 

for 2D, 3D, or 4D Cartesian grid virtual topologies, we 

developed a synthetic application that performs halo 

exchanges, i.e., point-to-point message passing between 

adjacent partitions along each virtual dimension.  This code 

uses the Cray rca library to obtain the node ID and torus 

coordinates of each task, so that it can determine the actual 

path on the interconnect that each message takes.  We submit 

a batch job that targets a node feature whose shape allows 

Topaware to obtain a near optimal layout.  In the same batch 

job, we also run the halo-exchange code using the custom 

rank order generated by grid_order.  The nodes used by the 

grid_order run are the first M nodes in the allocation, whose 

node order is determined by ALPS using the new scheme 

described in section 2.  The Topaware run uses the M 

selected nodes that provide the logical grid of geminis 

required for the near-optimal mapping.  A third run in the 

same batch job uses the default (SMP) rank order on the first 

M nodes in the ALPS list, in order to quantify the benefit of 

using grid_order. 

 

For the 3D virtual topology in the example above with 32 by 

32 by 32 partitions and 32 tasks per node running in a node 

feature with 12 by 8 by 12 geminis, Table III shows the 

averaged slowest (over all tasks) timings for halo exchanges. 

Here, non-blocking MPI send and receive operations are 

performed, and all messages are initiated at the same time, in 

order to avoid requiring the messages to arrive in any 

particular order and to potentially enable overlap of various 

operations such as copying data to/from cache/memory with 

the transmission of message packets across links between 

node pairs.  The message size was 32 kB. 

 

 

 

 

 

TABLE III.  3D HALO-EXCHANGE TIMINGS 

Placement  Iter time (ms) Max hops 

Default 11.315 9 

Grid_order 7.722 16 

Topaware #1 2.771 2 

 

The default rank order places 32 consecutive tasks on the 

first node in the allocation, the next 32 tasks on the second 

node, etc.  Since there are 32 tasks in each virtual dimension, 

this placement eliminates off-node communication for an 

entire dimension.  For the grid_oder run, the per task layout 

was 4 by 2 by 4 partitions, which helps to decrease the 

communication time by reducing the amount of off-node 

communication compared to default placement.  The halo-

exchange code counted a maximum of 16 hops for messages 

in the grid_order run, but a maximum of 9 hops for default 

placement.  The default task placement actually resulted in a 

smaller maximum for the hop count, and yet the 

communication time was nearly 1.5X shorter for grid_order 

placement.  For Topaware placement, the largest hop count 

was only 2 and communication times are reduced by a factor 

of nearly 2.8 compared to grid_order placement.  Ideally, the 

maximum hops count would be 1, but the presence of 

unavailable nodes precludes achieving such a perfect layout.  

Evidently, there are no z-pencils through the selected nodes 

with more than one unavailable node in this particular 

experiment. 

C. 4D Virtual Topologies 

For 4D virtual topologies, we constrain the partitions of the 

4th dimension (called "T" for time) to fit on each node pair, 

and treat the remaining 3 dimensions in the manner 

described above for 3D virtual topologies.  For example, a 

virtual topology with 8 partitions in each dimension can be 

mapped onto the system in several ways with 16 tasks per 

node: 

 

1) LX = 8, LY = 4, LZ = 4, NX = 1, NY = 2, NZ = 2, NT = 8 

2) LX = 4, LY = 4, LZ = 8, NX = 2, NY = 2, NZ = 1, NT = 8 

3) LX = 8, LY = 2, LZ = 8, NX = 1, NY = 4, NZ = 1, NT = 8 

 

All of these layouts have NT = 8 to place all 8 T partitions on 

each node pair (4 T partitions per node). 

 

A second 4D example has 11 by 12 by 11 by 12 partitions 

(17424 tasks), which will run on 545 nodes with 32 tasks per 

node using default placement or grid_order (although some 

nodes will have fewer than 32 tasks).  In contrast, the 

perfectly balanced layout Topaware obtains uses only 24 

tasks per node, but 726 nodes.  Topaware's layout parameters 

are: 

 



LX = 11, LY = 3, LZ = 11, NX = 1, NY = 4, NZ = 1, NT = 

12 

 

For message sizes ~24 kB, Table IV gives the timings for 

halo exchanges run in a node feature with 12 by 4 by 12 

geminis.  Topaware reduced the communication time by a 

factor of more than 4.3 compared to grid_order, although it 

used 4/3 more nodes in doing so. 

 

TABLE IV.  4D HALO-EXCHANGE TIMINGS 

Placement Time per iter (ms) Max hops 

Default 9.65 21 

Grid_order 7.46 19 

Topaware 1.72 2 

 

D. Real 4D Application: MILC 

To quantify the improvement in overall run times when 

Topaware is used (rather than grid_order) for a real 

application with a 4D virtual topology, we used MILC, a 

Lattice Quantum Chromodynamics community code [6].  

MILC spends a significant portion of its total run time on 

communication operations including halo exchanges and 

reductions (All-reduce) when grid_order is used. 

 

We considered a lattice with 84 by 84 by 84 by 144 points, 

and divided this grid into 21 by 2 by 21 by 24 partitions 

(21168 tasks), so that it could run on 1764 nodes with 12 

tasks per node in a node feature with 24 by 2 by 24 geminis.  

For grid_order, we chose a per-node layout with 1 by 1 by 1 

by 12 partitions so that it matches the Topaware per-node 

layout, and therefore any difference in run times must be due 

to Topaware's careful placement of neighboring tasks onto 

neighboring nodes in the torus, rather than differences in the 

node count or even the per-node task layout.  Message sizes 

range from 2.3 kB to 48 kB.  The run times in Table V show 

that using Topaware instead of grid_order improves overall 

performance by a factor of 2.2X for this test case. 

TABLE V.  MILC TIMINGS 

Placement Run Time (10 iterations) 

Grid_order 254.0 

Topaware 116.4 

 

E. 2D Virtual Topologies 

For 2D virtual topologies, the virtual domain must be 

carefully folded into multiple layers (called "supertiles"), 

each of which fits into one plane of the selected set of 

geminis.  The direction in which tasks for each layer are 

placed onto the torus is reversed at each fold to ensure that 

tasks on either side of the fold in virtual space are on 

neighboring nodes of the torus.  Communication between 

tasks on different layers occurs only at the folds.  This 

communication travels on the torus in the direction that the 

layers are stacked, using only links on the surface of the 

selected geminis.  Communication between tasks in a given 

supertile away from the edges stays within the plane of the 

supertile. 

 

Consider a 2D virtual topology with D1 = 110 by D2 = 120 

partitions to be placed in a node feature with 12 by 4 by 12 

geminis (including service nodes) and no more than 16 tasks 

per node.  The virtual domain will be folded into supertiles 

along x and/or z, and the supertiles will be stacked along the 

torus y dimension in this case, because it is the shortest 

dimension of the node feature.  We require 

 

D1 = LX * NX * (1 + number of folds in x), and 

D2 = LZ * NZ * (1 + number of folds in z). 

 

Topaware finds several viable layouts, all with 4 layers: 

 

1) LX = 11, LY = 4, LZ = 10, NX =  5, Nz =  6,  

1 fold in z, 1 fold in x 

2) LX = 10, LY = 4, LZ = 11, NX =  6, Nz =  5,  

1 fold in z, 1 fold in x 

3) LX = 11, LY = 4, LZ = 10, NX = 10, Nz =  3,  

3 folds along z 

4) LX = 10, LY = 4, LZ = 11, NX =  3, Nz = 10,  

3 folds along x 

 

For messages of size 4000 B, Table VI shows iteration times 

in ms.  Communication for the best-performing Topaware 

layout is over 1.3X faster than it is for the grid_order run.  

We also note that the maximum hop count is not a strong 

predictor of performance for the Topaware runs. 

TABLE VI.  TIMINGS FOR 2D HALO EXCHANGES 

Placement w/Stagger w/o Stagger Max hops 

Default 0.2743 0.2745 15 

Grid_order 0.2149 0.2153 18 

Topaware #1 0.1638 0.1624 3 

Topaware #2 0.1597 0.1597 5 

Topaware #3 0.1671 0.1676 2 

Topaware #4 0.1863 0.1868 3 

 

The layouts (#1 and #2) with folds along both virtual 

dimensions tend to give better performance, probably 

because of the smaller aspect ratio of the per node-pair 

partition layout, which reduces the amount of off-node 

communication.  For these layouts, some links at the folds 

are used by multiple pairs of communicating layers.  There 

seems to be sufficient bandwidth for this not to be a 

bottleneck, despite the fact that the links between layers are 

the slower y links. 

 

Table VI presents the results of two different batch jobs, one 

in which for Topaware layouts #1 and #2 we attempt to 



Figure 9. 2D Layout with staggering. 

Figure 8.  2D Layout with no staggering. 

reduce the loads on the y links between the four layers by 

staggering pairs of communicating supertiles by one gemini 

in x, as proposed in [7] (Fig. 8), and one batch job in which 

this staggering was disabled (Fig. 9).  Since the two sets of 

run times are practically the same, it appears to be better to 

avoid the use of staggering, since it enlarges the bounding 

box of the selected geminis with little or no improvement in 

communication time.  Interestingly, the maximum hop 

counts are the same for the layouts with and without 

staggering, indicating that adding an additional hop along x 

for the some pairs of xz planes does not necessarily affect the 

longest paths, which are presumably along the z-pencils with 

the most unavailable node pairs.  The two sets of timings for 

the rest of the layouts show that the variation from one run to 

another (in this case in the same node features) is within < 

1%.  

 

We observe much smaller improvements when using 

Topaware for 2D virtual topologies compared to 4D, 

probably because the 4D communication pattern is more 

intensive (messages are sent to twice as many neighbors as 

they are for 2D), and therefore the links are driven closer to 

capacity. 

F. Unbalanced Layouts 

The Topaware layouts presented above are perfectly 

balanced, since each node has the same number of active 

ranks.  However, virtual topologies often have a partition 

count along one or more dimensions that does not factor into 

the product of an integer number of geminis that fits onto the 

torus and an integer number of partitions per node pair.  

Topaware was recently enhanced to allow unbalanced 

layouts in order to handle such cases and to enable a much 

larger number of near-optimal layouts for a given virtual 

topology on a given system. 

 

An unbalanced layout is a layout in which one or more 

dimensions does not satisfy D = L * N.  Instead, we set L 

equal to the smallest integer value that satisfies L * N > D 

for a proposed value of N.  Again consider the 3D example 

with 32 by 32 by 32 partitions (32768 tasks).  Topaware 

finds the following eight layouts including the balanced one 

presented above (as #1): 

 

1) LX =  8, LY =  8, LZ =  8, NX = 4, NY = 4, NZ = 4 

2) LX = 11, LY =  6, LZ = 11, NX = 3, NY = 6, NZ = 3 

3) LX = 11, LY =  8, LZ =  8, NX = 3, NY = 4, NZ = 4 

4) LX =  8, LY =  8, LZ = 11, NX = 4, NY = 4, NZ = 3 

5) LX = 11, LY =  7, LZ =  8, NX = 3, NY = 5, NZ = 4 

6) LX =  8, LY =  7, LZ = 11, NX = 4, NY = 5, NZ = 3 

7) LX = 11, LY =  8, LZ =  7, NX = 3, NY = 4, NZ = 5 

8) LX =  7, LY =  8, LZ = 11, NX = 5, NY = 4, NZ = 3 

 

Note that the unbalanced layouts allocate more tasks than are 

needed by the virtual topology.  For example, layout #3 has 

33 by 32 by 32 partitions instead of the required 32 by 32 by 

32.  Most node pairs will have 3 partitions in x, but the node 

pairs in the 11th yz plane of the selected geminis containing 

the logical grid (i.e., the node pairs on the boundary of the 

selected geminis) are assigned only 2 partitions in x.  Thus, 

these boundary node pairs have 2/3 of the workload of the 

rest of the node pairs.  Since the most heavily loaded node 

pairs govern the rate of progress of a parallel application, 

having a modest fraction of nodes with a lighter load has no 

effect on the overall run time.  

 

The balanced layout (#1 above) has 32 tasks per node, while 

the unbalanced layouts have 24, 27, or 30 tasks per node.  

Since there are fewer tasks per node than there are available 

cores for the unbalanced layouts, we can use Cray's "core 

specialization" feature to assign OS and other tasks to an idle 



core on each node.  This also enables communication 

overlap via the Asynchronous Progress Engine, so that the 

non-blocking send and receive operations can be overlapped 

with each other and with other overhead, such as copying 

data to/from message buffers.  With fewer tasks per node, we 

also get more memory bandwidth per task, since the memory 

bandwidth per node is fixed and limits the rate of the copy 

operations.  These benefits can be seen in Table VII, which 

presents the full set of timings for 3D halo exchanges using 

all 8 Topaware layouts. 

TABLE VII.  3D HALO EXCHANGES (W/UNBALANCED LAYOUTS) 

Placement Iter time (ms) Max hops 

Default 11.315 9 

Grid_order 7.722 16 

Topaware #1 2.771 2 

Topaware #2 1.287 2 

Topaware #3 1.147 2 

Topaware #4 1.214 2 

Topaware #5 1.782 2 

Topaware #6 1.737 2 

Topaware #7 1.580 2 

Topaware #8 1.690 2 

 

The best performing layout (#3) is unbalanced.  This run is 

over 2.4X faster than the balanced Topaware layout and 

nearly 10X faster than the grid_order layout at the cost of 

using 32/24 = 4/3 more nodes than the balanced layouts.  It 

definitely seems worth exploring the use of layouts with 

fewer than 32 tasks per Cray XE node, and fewer than 16 

tasks per Cray XK node, even without using Topaware, 

especially if the application uses non-blocking 

communication operations and initiates all of them at once. 

 

As a second example with unbalanced layouts, consider a 2D 

virtual topology with 168 by 132 partitions that is to run in a 

node feature with 12 by 8 by 12 geminis using no more than 

16 tasks per node.  Topaware proposes both balanced and 

unbalanced layouts: 

 

1) LX = 11, LY = 8, LZ = 11, NX =  6, Nz =  4,  

1 fold  in x, 3 folds in z 

2) LX = 11, LY = 8, LZ = 11, NX =  3, Nz =  8,  

3 folds in x, 1 fold  in z 

3) LX = 12, LY = 6, LZ = 11, NX =  7, Nz =  4,  

1 fold  in x, 2 folds in z 

4) LX = 11, LY = 6, LZ = 12, NX =  4, Nz =  7,  

2 folds in x, 1 fold  in z 

5) LX = 11, LY = 6, LZ = 11, NX =  4, Nz =  8,  

2 folds in x, 1 fold  in z 

6) LX = 12, LY = 6, LZ = 11, NX = 14, Nz =  2, 5 folds in z 

7) LX = 11, LY = 6, LZ = 12, NX =  2, Nz = 14, 5 folds in x 

8) LX = 11, LY = 8, LZ = 11, NX = 12, Nz =  2, 7 folds in z 

9) LX = 11, LY = 6, LZ = 11, NX =  2, Nz = 16, 7 folds in x 

 

Topaware was unable to obtain sets of selected geminis that 

span 12 geminis in z, since the node feature in which the job 

ran spans only 12 geminis in z and there were some 

unavailable nodes in the allocation.  This eliminated two of 

the balanced layouts, #4 and #7.  The staggering technique 

was not used; it would have eliminated the two remaining 

balanced layouts, #3 and #6.  We obtained the timings for 2D 

halo exchanges shown in Table VIII for 8 kB messages. 

 

 

TABLE VIII.  2D HALO EXCHANGES (W/UNBALANCED LAYOUTS) 

Placement Iter time (ms) Max hops 

Default 0.5743 7 

Grid_order 0.3343 10 

Topaware #1 0.2364 4 

Topaware #2 0.2312 4 

Topaware #3 0.2523 4 

Topaware #5 0.2583 4 

Topaware #6 0.2732 2 

Topaware #8 0.2365 2 

Topaware #9 0.2823 2 

 

All runs in this series used core specialization.  The default 

and grid_order runs used 16 tasks per node, while the 

Topaware runs used from 12 to 16.  The Topaware layouts 

that use more nodes (12 tasks per node) tend to have roughly 

1.2X better run times than the Topaware layouts that use 16 

tasks per node, but that does not quite make up for their 

using 1.33X more nodes.  The slowest Topaware layout (#9) 

performs nearly 1.2X better than the grid_order run, and it 

uses the same number of node as the grid_order run.  The 

most efficient layout appears to be #5, an unbalanced one, 

since it uses 16 tasks per node and is nearly 1.3X faster than 

the grid_order run.  

 

Note that we launch these jobs using a Cray aprun command 

that creates the same number of tasks on each node, since it 

would be tedious to determine which boundary nodes get 

what number of tasks and launch a job in MPMD mode in 

order to create only the minimum number of tasks required 

for the virtual topology.  In order to use an unbalanced layout 

conveniently, the halo exchange application was modified to 

leave tasks idle that are unused by the virtual topology.  

Topaware orders the tasks so that the first N MPI ranks are 

the N tasks required by the virtual topology.  The application 

must be modified to split the MPI_COMM_WORLD 

communicator into a new one with only the first N ranks, 

and to use the new communicator in place of 

MPI_COMM_WORLD throughout the rest of the code.  

This should be a straightforward procedure in real 

applications, although this would require a thorough 

examination of the code. 



G. Integration of Topaware and Scheduler 

Topaware was originally designed as a tool for 

benchmarkers running jobs on a dedicated system, where it 

could select an optimal set of nodes for a benchmark 

requiring, say, ~25% of all compute nodes without 

restrictions.  The new scheduler developed in this work that 

provides prism-shaped node allocations makes it much more 

practical for ordinary users to benefit from Topaware in a 

production environment.  Without this new scheduler 

capability, the only way to get prism-shaped node allocations 

is to target the existing node features, which limits the choice 

of virtual topologies for which Topaware can obtain near-

optimal layouts.  In addition, in many cases one must ask for 

significantly more nodes than are necessary to run the job, so 

that the allocation includes nearly all nodes in the feature.  

Otherwise, there may not be sufficiently many available 

node pairs in each z-pencil through the allocation, and 

therefore a near-optimal layout will not be obtainable. 

 

The new scheduler developed in this work allows the user to 

request an allocation with specified numbers of geminis 

along each torus dimension.  This is all that is needed for 

applications with irregular or All-to-All communication 

patterns.  For applications with Cartesian grid topologies, in 

order to make the best use of Topaware, the new scheduler 

can provide prism-shaped allocations with at least the 

requested number of available compute node pairs along 

each z-pencil through the allocation, ensuring that Topaware 

can obtain the desired logical grid of geminis within in the 

allocation for the application's tasks. 

 

Topaware was recently enhanced as part of this work to 

enable it to be used routinely in tandem with the new 

scheduler.  The user typically wants to run a simulation of a 

particular size (e.g., a fixed number of cells in a global grid, 

and a fixed number of grid cells per processing element 

based on available memory or scaling considerations) and 

chooses the desired number of compute nodes to use on that 

basis.  The user can invoke Topaware, describing only the 

desired number of partitions in each virtual dimension and a 

target value for the number of tasks per node, and Topaware 

will determine multiple viable layouts that will fit within the 

specified region of the torus (i.e., a feature, a bounding box, 

the current allocation in a batch job, or the full system 

without restrictions).  Topaware completes its work after 

only a second or two, including checking for down nodes 

and generating node lists and rank order files for all valid 

layouts that can be obtained within the specified torus region.  

This list of viable layouts is output as a string that can be 

passed to the new scheduler, which can search for prisms of 

available nodes that match any one of these layouts.  This 

added flexibility in scheduling such jobs helps to shorten 

queue wait times and improve system throughput. 
. 

V. CONCLUSIONS 

We set out to address the problem of widely varying 

application run times on large Cray systems with 3D torus 

interconnects.  Before changes were made to the scheduler to 

provide prism-shaped node allocations, we changed Cray’s 

ALPS node ordering scheme to favor allocations whose 

shapes tend to be flattened along the direction of the slowest 

links.  This improved the performance of a representative 

Blue Waters workload by 12-19% without decreasing 

utilization.  However, job-job interference is not eliminated 

by this scheme, and task layouts remain less than optimal for 

applications with nearest-neighbor communication patterns.  

 

Prism-shaped node allocations improve run times for many 

types of applications by optimizing communication 

bandwidth, decreasing hop counts, and significantly reducing 

job-job interference.  The new scheduler developed in this 

work places jobs in prism-shaped node allocations. It 

chooses the best prism shapes for each job based on various 

metrics, taking into account asymmetrical link speeds, torus 

dimensions, how completely the requested node count fills 

the prism, fragmentation of unused resources, etc., in order 

to maintain reasonably high utilization.  The new scheduler 

enables different sites to find the best balance between 

application efficiency and utilization to optimize overall 

throughput for their workload. 

 

Putting all of these improvements together, in a preliminary 

throughput test with a realistic synthetic workload on Blue 

Waters, the new scheduler exhibited a total system 

throughput that is roughly 20% higher than that of the 

baseline scheduler.  Moreover, both application performance 

and run time variations were significantly improved 

compared to the old scheduler. 

 

Using the Topaware node selection and task placement tool 

with applications having nearest-neighbor communication 

patterns can lead to substantial reductions in overall run 

times.  Results for MILC (4D virtual topology) demonstrate 

a 2.2X overall run time improvement when using Topaware 

instead of grid_order on the same set of nodes with the same 

per-node task layout.  Support recently added to Topaware 

for unbalanced layouts enables near-optimal task placement 

for a much wider choice of virtual topologies on any given 

system with a torus interconnect.  The new scheduler makes 

using Topaware in a production environment practical, 

because the scheduler locates the first available set of nodes 

that accommodates one of the near-optimal task layouts 

generated by Topaware for the application’s problem-

specific virtual topology. 

 

An additional workload test using the old scheduler and then 

the new scheduler with Topaware enabled for the MILC jobs 

is planned.  These results will improve our estimates of the 

improvements in system utilization, application performance, 

and overall system throughout for the new scheduler. 
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