May 8, 2014

BLUE WATERS SUSTAINED PETASCALE COMPUTING

Toward Understanding the Impact of I/O Patterns on Congestion Protection Events on Blue Waters

Rob Sisneros, Kalyana Chadalavada

Why?

- Size != Super
- HSN == Super

- Fast food philosophy
 - What the hell does *super size* mean?

Why? Less Congestion is Better

- Really?
 - Maybe more congestion means higher utilization
 - Do you have proof?
- Proof: deployed safeguards against congestion

Congestion Protection Events

- Triggered during network congestion
- Throttles network reducing injection bandwidth
- Everyone suffers (short term)

Reducing Congestion

- Obvious: all things equal, less congestion is better
- Otherwise: avoiding congestion protection events at least has a positive impact on *perceived* user experience

An Issue with This Title

- "Toward Understanding the Impact of I/O Events On Congestion Protection Events on Blue Waters"
- Big assumption: we understand I/O patterns
- We don't.

Toward Fixing the Title: "Toward..."

- Groundwork needed to understand/identify HSN network traffic patterns
- Hypothesis: understanding this requires ability to conceptualize system-wide traffic patterns
- We need vis.
 - BW network is 3D torus
 - How to visualize that?
 - We spent a lot of time on this, so...

A Better Title

"Toward Understanding HSN Traffic Patterns on Blue Waters via Visual Analytics"

"and Congestion Protection"

HSN Visualization Difficulties

• 3D is 4D

- Method: map topological coordinates directly to 3D grid
 - Deployed at BW
 - People are happy!

The Problems with 3D Mapping

- Distances represented incorrectly
- Visual occlusion
- Boundary conditions (torus wrap-around) ignored
- Still
 - Great for general sense of job layout
 - Could be used for limited traffic visualization (on a small subset of the torus)

Our Layout: An Aside

- Is Blue Waters' HSN really a 3D Torus?
- Well:
 - Yes, the machine room is a magical place that utilized 4 spatial dimensions
 - Kind of yes, a *practical* 3D torus, after some simplifying assumptions
- Either way:
 - A photograph of the machine is a very effective 2D representation of a 3D torus
 - Let's use something like that!

Our Torus Layout

- Blue Waters cabinets are mapped to 2D corresponding to their layout on the machine room floor
- This X&Y space is widened so that the Z dimension (throughout a cabinet) can be flattened into this space

Creating Vis: Another Aside

- For once, we are the vis developers and the targeted user group!!!
- And we want clarity.

NCSA

Clarity in X

Clarity in Y and Z

Y at X=0:

Z at X=0, Y=0:

Clarity Continued: A Trip Around the Torus

Clarity Continued: A Job Layout

The End of Clarity: 352 Running Jobs

You get everything, maybe nothing

You get something, just not everything

................

Finally Seeing Network Traffic

- Implemented an infrastructure to read and draw communications
- Communications are, timestamp, start node, end node, and message size
- The full path through the torus is calculated for each communication
- This is accumulated across all communications for a single image

Example: Hops from (5,15,6) to (23,6,7)

			ł,		
			÷	•	
				<u> </u>	

Clarity Returns

Are We Looking in the Right Place?

- Viewing communications requires significant additional code profiling
- We have no way to leverage historical data to analyze several logged significant events
- But we want to.

More on Congestion Protection Events

- When a congestion protection event occurs
 - Traffic into each node is logged
 - Nodes are ranked by traffic
 - The compute nodes with most traffic are mapped back to their jobs to suggest contributors
 - Service nodes are ignored

Ignoring Service Nodes

• Our initial motivation:

"The top 50 nodes with highest traffic are service nodes, guess there is a lot of I/O going on."

- The confusion
 - I/O traffic routes through compute nodes
 - MPI traffic routes through service nodes

Can MPI Traffic Elevate Service Nodes?

- Experiment: simulate worst case scenario during actual time period of a congestion protection event that had heavy service node traffic
- The Event
 - March 25, 2014 at 7:46 AM
 - 32 jobs running
 - Service nodes had heaviest traffic

32 Jobs

The Worst Case Scenario

- All to all communications
- Rough heuristic to calculate all to all
 - Take upper triangle of the matrix of all possible communications among nodes of a job
 - Calculate for each job
 - Accumulate across the system

Easing Into It: A Single Job

CRAY

Easing Into It: A Single Job

Proof of Concept – Nice!

All to All for 32 CPE Jobs

BLUE WATERS SUSTAINED PETASCALE COMPUTING

NESA

- Not surprising that this message pattern floods the system
- Is surprising that some service nodes remain distinguishable from compute nodes while others do not
- Ignoring nodes may be good practical idea, but may also be the wrong direction for best potential analysis

The Possibilities

- Implement different communication patterns for simulation with historical data
- Refinement
 - Use actual implementation for communications rather than rough heuristics
 - Implement code-specific patterns
- Deploy traffic viewer
 - Increased I/O profiling
 - Real-time via OVIS data

- OVIS data?
 - Yes!
 - Solves problem of requiring advanced profiling
 - Does *not* solve problem understanding traffic
 - Easy to pinpoint which nodes have heavy traffic
 - Still not easy to find which nodes are actually responsible for it
 - System must still be modeled to find

Questions

- Now? Ask away.
- Later?
 - sisneros@illinois.edu
 - kalyan@illinois.edu