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Abstract—The NCSA Blue Waters supercomputer provides 

users with two 2 PiB filesystems.  Despite RAID mitigating 

data loss for most hardware failures, the only real guarantor of 

data availability is daily, automated backups.  Currently, no 

existing products scale easily to backup filesystems in the 

multi-PiB range.  A few Lustre specific solutions exist; 

however, they depend on access to the underlying hardware, 

which is not only risky, but unnecessarily ties the solution to a 

specific implementation.  A more generic solution is needed.  

Building a successful backup solution requires taking 

advantage of existing filesystem features, namely parallelism.  

By distributing the workload of backups across the many 

nodes already available in the cluster, backups become a 

simple problem of workload management.  NCSA designed 

and prototyped a distributed backup solution that addresses 

these issues. 
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I.  PROBLEM 

The increasing size of disk drives and the advancement 
of data storage technologies have enabled filesystems to 
grow to sizes larges enough that existing backup solutions 
are inefficient.  Filesystems in the PiB range are common 
now and EiB size filesystems are being planned.  Despite 
advanced algorithms to detect and prevent data loss resulting 
from hardware failures, the only real guarantor of data 
availability is a backup.  A backup, at the simplest level, is a 
copy of every file in a different location.  The main problem 
with this is the sheer volume of data to be scanned and 
copied.  It simply is not feasible to copy all the data to a 
remote location in a reasonable amount of time.  Typically, a 
backup should take no longer than 24 hours; thereby 
allowing a backup of user data on a daily basis. 

II. MOTIVATION 

To date, there are a few backup solutions for filesystems 
in the PiB range, however they are tied to a specific 
architecture (ie: IBM GPFS and IBM Tivoli) or they are tied 
to a particular implementation (ie: mount the ext3 filesystem 
that Lustre is built on top of).  These solutions are 
suboptimal as they are tied to a specific version or 

implementation of a filesystem and therefore do not upgrade 
easily or port to other systems or sites. 

III. GOALS 

The primary goal is speed.  The backup solution should 
be fast enough to complete in less than 24 hours to provide 
daily backups.  Additionally, the backup solution should be 
transparent to users of the filesystem, which means it should 
not induce significant load on the filesystem.  The final goal 
is portability to different filesystems and different 
implementations.  To be portable, the solution must not rely 
on any internal features or knowledge of the underlying 
filesystem. The solution should interact with the filesystem 
through either normal user interfaces or programmer APIs. 

IV. APPROACH 

The difference between a pebiscale filesystem and a 
usual desktop backup is size.  Breaking the backup of a 
pebiscale filesystem into many small backups will allow any 
standard backup tool to be used for archival purposes.  The 
main job of the software will be creating and managing 
parallel backup tasks. 

V. CHALLENGES TO PARALLEL BACKUPS 

There are four main challenges to automating parallel 

backups.  The first challenge is to split up the filesystem 

into small chunks that can be backed up in parallel.  Second 

is parallelizing the execution of the individual backups.  The 

third challenge is transferring the backups in parallel to a 

secondary location and the final challenge is dealing with 

full backups. 

A. Splitting Up The Filesystem 

The primary requirement for splitting up the filesystem 
into multiple chunks is that the chunks must not overlap.  
The natural layout of the filesystem into home directories 
and project spaces provides a natural structure of non-
overlapping directories.  Automating the splitting activity is 
accomplished by creating a list of top level directories to 
serve as launching points.  The top level directories, referred 
to as topdirs, are listed manually in a configuration file.  The 
software then scans one layer below each topdir and all 



directories found are recorded as backup targets, referred to 
as basepaths. 

B. Parallel Backups 

With the filesystem splits defined, each basepath must 

be backed up daily.  Performing these backups in parallel is 

a relatively standard exercise in job management.  On a 

typical cluster, it would seem reasonable that the existing 

job scheduler could be utilized for running these backup 

jobs in parallel, but that is not possible since user jobs on a 

cluster typically cannot run as root due to security practices.  

The backup job requires root permission for access to all 

files on the filesystem.  Since the standard scheduler cannot 

be used, a custom solution is needed.  Distribution and 

execution of backup jobs is accomplished using RPyC [1].  

The RPyC python module provides a framework for 

connecting to and running tasks on remote hosts.  The status 

of each basepath is maintained in a file on the shared 

filesystem.  Using a file allows any backup to run from any 

node participating in the backup solution. 

C. Parallel Transfers To Long Term Storage 

A successful backup yields an archive file, which must 
be transferred to a secondary location.  Many existing 
solutions are available to efficiently transfer numerous, large 
files.  Blue Waters makes use of Globus [2], which is already 
configured for both the online filesystem and the nearline 
archive system.  Globus is a third party file transfer service 
that connects to predefined endpoints and initiates a transfer 
directly between the endpoints on behalf of the requesting 
user.  Automated usage of the service is possible through use 
of the provided software APIs. 

D. Handling Full Backups 

When backups run for the first time, every basepath will 
need a full backup so all data will necessarily have to be 
scanned and transferred.  There is no way around this; 
fortunately, it only has to be done once.  However, with a 
policy in place that dictates a full backup every 30 days, the 
problem turns into a recurring issue.  This problem is 
addressed using a scheme of rolling full backups.  The idea 
behind rolling full backups is to spread out the load of full 
backups over the total cycle length of 30 days, so only a few 
full backups run each day.  The implementation involves 
assigning a distinct integer identifier to each basepath 
(basepath-id).  Using the modulus operation on the basepath-
id and the cycle length determines what cycle day the 
particular basepath receives a full backup.  The current cycle 
day is calculated by modding the day of year (julien date) 
with the cycle length.  For each basepath, the decision for 
which type of backup to do is then given by: 

 

The reason for a policy of new fulls every 30 days is to 
avoid complex restores requiring many, potentially costly, 
archive retrievals from long term storage. 

VI. AUTOMATING BACKUPS 

The next step in automating backups is to design 
software to implement the proposed solutions to each of the 
challenges.  The main job of the software is to parallelize 
backups.  Parallelizing backups is accomplished by 
distributing the work among many nodes, therefore the 
software must be fault tolerant of problems such as network 
outages, filesystem outages, and node failures.  To meet the 
overall goal of portability, the software must be also scalable 
and flexible.  

VII. SOFTWARE DESIGN GOALS 

A. Fault Tolerance 

Fault tolerance is addressed through two features: 
basepath status files and small, restartable tasks.  A task here 
refers to any piece of work that is requested of a worker 
node.  When a worker node receives a task request, the 
worker node checks if the task has been started.  The check 
is facilitated by a status file saved on the filesystem.  If this is 
a new task, then a new file, or entry in the file, is created and 
the task proceeds.  If the task was previously started, but 
interrupted, the task is either restarted, or if possible, 
resumed.  When the task is completed, the status file is 
updated accordingly.  Since the filesystem is shared any node 
has access to the status file.  Any worker node can be 
assigned any task.  Lockfiles are used to prevent 
simultaneous access to status files.  This is sufficient to 
handle network failures and node failures.  Monitors and 
timeouts are used to halt non-progressing tasks when there 
are filesystem failures.  Tasks are either resumed or restarted 
when the filesystem failure is remedied. 

B. Scalability 

Scalability refers to adding more nodes to handle larger 
filesystems and improving performance.  One goal of 
scalability is to ensure that the addition of more worker 
nodes does not significantly increase network traffic.  This 
goal is met through both the use of the command and proxy 
design patterns and the core design of an event driven 
architecture.  In an event driven architecture, the events are 
an implementation of the command design pattern.  The 
remote services on each node are instances of the proxy 
design pattern.  These will be discussed in more detail later, 
but the main issue is that network traffic is limited to simple 
message passing.  The messages are either task requests from 
the manager to a worker node or a task result passed from a 
worker node to the manager.  A second goal of scalability is 
that a new node should require minimal setup and 
configuration.  The software must be copied or accessible on 
the new node and an accessible IP address must be added to 
the software configuration file.  It is implied that the new 
node has access to the shared filesystem.  Storing the 
software on the shared filesystem eliminates the need to 
install any software on worker nodes. 

backup_type = INCR 

full_cycle_day = basepath_id % cycle_length 

today_cycle_day = day_of_year % cycle_length 

if full_cycle_day == today_cycle_day : 
    backup_type = FULL 



C. Flexibility 

The goal of software flexibility derives directly from the 
overall goal of portability.  Portability requires that the 
software does not rely on any internal feature or specific 
implementation of the filesystem.  That does not mean that it 
cannot or should not utilize filesystem specific features that 
are useful to backups.  Here, the point is that any part of the 
software that uses specific features should be modular so that 
the software part can be easily replaced or removed.  
Modularity in software design is a well-known and widely 
accepted best practice.  The major advantages of a modular 
software design are simplicity of design and ease of 
understanding, debugging and maintenance.  These 
advantages promote an event driven architecture, but they 
are not the primary reason it was chosen. 

VIII. EVENT DRIVEN ARCHITECTURE 

The primary reason an event driven architecture was 
chosen is because it easily fits the model of distributed 
computing.  As tasks are farmed out to remote hosts, they 
will complete at different times. A central manager must be 
notified and follow-up steps will need to be scheduled as 
each task is completed.  The completion of a task is 
encapsulated in a software representation as an event.  The 
event is sent to the central manager, where it is processed 
and may in turn generate one or more new events.  All 
notifications, requests and responses are events. 

A. Event Manager 

The core piece of event driven architecture is the event 
manager.  The event manager operates like a post office.  It 
receives events and delivers them to the appropriate software 
modules.  The modules, upon receiving notification of an 
event, perform whatever action is appropriate for that event, 
and if any new events are generated as a result of the action, 
send those new events to the event manager.  The event 
manager has four responsibilities: accept events, notify 
modules of events, accept module registrations, and process 
events.  The first two responsibilities have already been 
discussed.  A module registration is the way a module 
informs the event manager which events it needs to know 
about.  The event manager does not know ahead of time 
which modules will need to know about which events.  This 
is an important point as it allows new modules to be added 
without any modification to the event manager.  It also 
allows new events to be created simply by defining them.  
The event manager also does not know which events or 
modules exist.  It simply accepts events as they are posted 
and looks in a table of registrations for which modules to 
notify, if any.  The last responsibility of the event manager is 
processing events.  This is mostly straight-forward, except 
for special consideration to ensure events are processed in 
the correct order when successive events are spawned from 
an initial event.  Event processing is initiated by a special 
ticker event.  The timer module generates ticker events at 
regular intervals that cause the event queue to be processed.  
Events are processed from the queue until the queue is 
empty.  Events arriving after the queue is emptied are held 

until the next ticker event is received, upon which the whole 
process is repeated.  The design of the event manager is 
based on a model described in “sjbrown’s Guide To Writing 
Games” [3].  As mentioned earlier, the events are an 
implementation of the command software design pattern.  
The event manager does not know any detailed information 
about the event, it just passes the event to all modules that 
requested notification.  Any specific information relating to 
the event is encapsulated inside the event. 

B. Distributed Computing With RPyC 

RPyC is a python module that provides a framework 
allowing transparent access to remote hosts as if they are 
local.  RPyC defines a service class, from which a custom 
class can be derived.  This new custom class will encapsulate 
the methods that define the tasks for worker nodes.  These 
methods include: scanning a topdir for new and deleted 
basepaths, scanning a topdir for basepaths that need a 
backup, and performing a backup for a particular basepath.  
The service module is an example of the proxy software 
design pattern that was referred to earlier, since it provides a 
simple interface to request the tasks without requiring 
detailed knowledge of the tasks themselves. 

IX. STEPS OF A BACKUP 

As all the main parts of the backup system have been 
defined, the backup process itself can be demonstrated.  
When the software starts, various initializations occur.  
Eventually, the topdirs are scanned for new basepaths and if 
any are found, a start-backup event is generated.  The event 
will contain information indicating the basepath name and 
the type of backup, a full backup in this case.  A full backup 
will also occur if the rolling full check succeeds or if the last 
full backup is older than the cycle length.  Outside of these 
instances, the start-backup event will indicate an incremental 
backup.  The event manager passes the event to a job 
scheduler module, which will find an available worker node 
and pass the task to that worker node.  The worker host will 
then begin the backup.  After verifying that no other backups 
are in progress or were previously interrupted, the backup 
can be started.  The actual backup processing is done using 
dar [4].  Dar scans the basepath for changed files and copies 
them to an archive file.  When completed, dar then extracts a 
catalog (index of files in the archive) to a separate file.  It 
should be noted that these two steps are separate from each 
other and if catalog creation is interrupted, it can be restarted 
without having to rerun the archive step.  This is part of the 
fault tolerance built into the design.  At the end of 
processing, the status file is updated.  A backup-completed 
event is created and sent to the event manager.  In processing 
the backup-completed event, another module will generate a 
start-transfer event, which is sent to the appropriate module 
for communicating with Globus to transfer the archive file to 
long term storage.  Likewise, when the transfer is completed, 
an event will be generated to cause the cleanup activity to 
start.  Cleaning up consists of removing temporary and lock 
files and finalizing the status in the status file.  If an error 
occurs at any point during the process, an appropriate event 
is generated to cause a new action to occur. 



 

A. Advantages of Dar 

The dar tool was chosen for its external cataloging 
feature.  The external catalog contains the metadata of a 
backup archive file and can be used as the reference for an 
incremental backup.  The catalog file is much smaller than 
its base archive and can be saved on disk allowing the large 
archive file to be transferred off the filesystem.  The catalog 
files are also used for restores, since they can be scanned to 
determine the minimum set of archive files to be retrieved 
from long term storage for a particular restore.  Additional 
features of dar include cache directory tagging [5] support 
for excluding entire directories and xattr support. 

X. RESULTS 

The current implementation of the software shows that, 
on a 4PiB filesystem with 683 basepaths and 1.6PiB used, 
daily backups finish, on average, in 9.6 hours.  28 worker 
nodes are currently in use with one of them doubling as the 
manager node.  The worker nodes have 192 GiB of RAM 
and run a patched version of the Lustre 2.3.0 client.  The 
worker nodes also double as Globus endpoints for the Lustre 
filesystem and may be running one or more gridftp transfers 
at any given time.  The filesystem is hosted on a Cray 
Sonexion 1600 running a patched version of the Lustre 2.1.0 
server with 36 SSUs fully populated with 2TB SATA drives.  
Table 1 shows additional relevant statistics. 

XI. FUTURE ENHANCEMENTS 

Possible future enhancements include multiple files per 
Globus task, automated deep scan of basepaths, multiple 
tasks per worker node, and using the changelog to generate 
filelists for backup. 

A. Multiple Files Per Globus Task 

The most significant performance bottleneck at this time 
is the assignment of a single dar archive file per Globus task.  
The Globus transfer service is intended to transfer multiple 
files in a single task and only allows a few tasks per user.  
This results in a low level of parallelism and more time spent 
waiting for new task slots. 

TABLE I.  CURRENT STATISTICS 

Average time to complete daily backups 9.6 hours 

Average full backup time 2.41 hours 

Average incremental backup time 9 minutes 

Average number of inodes scanned daily 404.5 million 

Average number of inodes backup up daily 51.3 million 

Number of topdirs 10 

Number of basepaths 683 

 

B. Automated Deep Scan Of Basepaths 

The existing scheme for splitting the filesystem into 

small parts works well when the basepaths reference 

directories limited in size, such as user home directories, 

which are quota limited to 1TiB.  Some project directories, 

however, have grown to 50TiB and larger, which take 

multiple days to complete a full backup and more prone to 

failure from filesystem problems.  One solution is to scan 

the basepath to split it into multiple backups based on size 

thresholds.  These multiple backups could then run in 

parallel. 

 

C. Multiple Tasks per Worker Node 

Allowing multiple tasks per worker node could increase 

performance of the backups and possibly reduce the number 

of physical worker nodes required to complete backups in 

24 hours.  Since the NCSA worker nodes are also Globus 

transfer nodes, the software could use current system stats 

such as system load or size of free RAM to dynamically 

determine if another task should be allowed on a given 

node. 

 

D. Use Changelog To Generate Backup Filelist 

Using a changelog provides multiple advantages.  First, 

a predetermined filelist provides the obvious benefit of 

precluding a scan of the basepath to determine which files 

have changed.  This is significant since scanning requires a 

stat of every file and since every basepath is scanned each 

day, the entire filesystem is scanned each day.  Second, the 

list of files could be used to estimate the resulting size of the 

dar archive and determine if the backup should be split into 

multiple parts for parallel execution.  A potential problem 

with this enhancement is that cache directory tagging for 

excluding directories would no longer be effective, since dar 

would not be scanning the basepath and thus would not find 

any cache directory tag special files.  Another problem with 

changelog is that it necessarily ties the solution to a specific 

filesystem. 
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