
Clearing the Obstacles to Backup Pebibyte Size Filesystems

Automating Backups On A 4 Pebibyte Filesystem

Andy Loftus, Alex Parga

National Center for Supercomputing Applications

University of Illinois

Urbana, USA

Email: aloftus@illinois.edu

Email: aparga@illinois.edu

Abstract—The NCSA Blue Waters supercomputer provides

users with two 2 PiB filesystems. Despite RAID mitigating

data loss for most hardware failures, the only real guarantor of

data availability is daily, automated backups. Currently, no

existing products scale easily to backup filesystems in the

multi-PiB range. A few Lustre specific solutions exist;

however, they depend on access to the underlying hardware,

which is not only risky, but unnecessarily ties the solution to a

specific implementation. A more generic solution is needed.

Building a successful backup solution requires taking

advantage of existing filesystem features, namely parallelism.

By distributing the workload of backups across the many

nodes already available in the cluster, backups become a

simple problem of workload management. NCSA designed

and prototyped a distributed backup solution that addresses

these issues.

Keywords-backup, disater recovery, Lustre, parallel

filesystem

I. PROBLEM

The increasing size of disk drives and the advancement
of data storage technologies have enabled filesystems to
grow to sizes larges enough that existing backup solutions
are inefficient. Filesystems in the PiB range are common
now and EiB size filesystems are being planned. Despite
advanced algorithms to detect and prevent data loss resulting
from hardware failures, the only real guarantor of data
availability is a backup. A backup, at the simplest level, is a
copy of every file in a different location. The main problem
with this is the sheer volume of data to be scanned and
copied. It simply is not feasible to copy all the data to a
remote location in a reasonable amount of time. Typically, a
backup should take no longer than 24 hours; thereby
allowing a backup of user data on a daily basis.

II. MOTIVATION

To date, there are a few backup solutions for filesystems
in the PiB range, however they are tied to a specific
architecture (ie: IBM GPFS and IBM Tivoli) or they are tied
to a particular implementation (ie: mount the ext3 filesystem
that Lustre is built on top of). These solutions are
suboptimal as they are tied to a specific version or

implementation of a filesystem and therefore do not upgrade
easily or port to other systems or sites.

III. GOALS

The primary goal is speed. The backup solution should
be fast enough to complete in less than 24 hours to provide
daily backups. Additionally, the backup solution should be
transparent to users of the filesystem, which means it should
not induce significant load on the filesystem. The final goal
is portability to different filesystems and different
implementations. To be portable, the solution must not rely
on any internal features or knowledge of the underlying
filesystem. The solution should interact with the filesystem
through either normal user interfaces or programmer APIs.

IV. APPROACH

The difference between a pebiscale filesystem and a
usual desktop backup is size. Breaking the backup of a
pebiscale filesystem into many small backups will allow any
standard backup tool to be used for archival purposes. The
main job of the software will be creating and managing
parallel backup tasks.

V. CHALLENGES TO PARALLEL BACKUPS

There are four main challenges to automating parallel

backups. The first challenge is to split up the filesystem

into small chunks that can be backed up in parallel. Second

is parallelizing the execution of the individual backups. The

third challenge is transferring the backups in parallel to a

secondary location and the final challenge is dealing with

full backups.

A. Splitting Up The Filesystem

The primary requirement for splitting up the filesystem
into multiple chunks is that the chunks must not overlap.
The natural layout of the filesystem into home directories
and project spaces provides a natural structure of non-
overlapping directories. Automating the splitting activity is
accomplished by creating a list of top level directories to
serve as launching points. The top level directories, referred
to as topdirs, are listed manually in a configuration file. The
software then scans one layer below each topdir and all

directories found are recorded as backup targets, referred to
as basepaths.

B. Parallel Backups

With the filesystem splits defined, each basepath must

be backed up daily. Performing these backups in parallel is

a relatively standard exercise in job management. On a

typical cluster, it would seem reasonable that the existing

job scheduler could be utilized for running these backup

jobs in parallel, but that is not possible since user jobs on a

cluster typically cannot run as root due to security practices.

The backup job requires root permission for access to all

files on the filesystem. Since the standard scheduler cannot

be used, a custom solution is needed. Distribution and

execution of backup jobs is accomplished using RPyC [1].

The RPyC python module provides a framework for

connecting to and running tasks on remote hosts. The status

of each basepath is maintained in a file on the shared

filesystem. Using a file allows any backup to run from any

node participating in the backup solution.

C. Parallel Transfers To Long Term Storage

A successful backup yields an archive file, which must
be transferred to a secondary location. Many existing
solutions are available to efficiently transfer numerous, large
files. Blue Waters makes use of Globus [2], which is already
configured for both the online filesystem and the nearline
archive system. Globus is a third party file transfer service
that connects to predefined endpoints and initiates a transfer
directly between the endpoints on behalf of the requesting
user. Automated usage of the service is possible through use
of the provided software APIs.

D. Handling Full Backups

When backups run for the first time, every basepath will
need a full backup so all data will necessarily have to be
scanned and transferred. There is no way around this;
fortunately, it only has to be done once. However, with a
policy in place that dictates a full backup every 30 days, the
problem turns into a recurring issue. This problem is
addressed using a scheme of rolling full backups. The idea
behind rolling full backups is to spread out the load of full
backups over the total cycle length of 30 days, so only a few
full backups run each day. The implementation involves
assigning a distinct integer identifier to each basepath
(basepath-id). Using the modulus operation on the basepath-
id and the cycle length determines what cycle day the
particular basepath receives a full backup. The current cycle
day is calculated by modding the day of year (julien date)
with the cycle length. For each basepath, the decision for
which type of backup to do is then given by:

The reason for a policy of new fulls every 30 days is to
avoid complex restores requiring many, potentially costly,
archive retrievals from long term storage.

VI. AUTOMATING BACKUPS

The next step in automating backups is to design
software to implement the proposed solutions to each of the
challenges. The main job of the software is to parallelize
backups. Parallelizing backups is accomplished by
distributing the work among many nodes, therefore the
software must be fault tolerant of problems such as network
outages, filesystem outages, and node failures. To meet the
overall goal of portability, the software must be also scalable
and flexible.

VII. SOFTWARE DESIGN GOALS

A. Fault Tolerance

Fault tolerance is addressed through two features:
basepath status files and small, restartable tasks. A task here
refers to any piece of work that is requested of a worker
node. When a worker node receives a task request, the
worker node checks if the task has been started. The check
is facilitated by a status file saved on the filesystem. If this is
a new task, then a new file, or entry in the file, is created and
the task proceeds. If the task was previously started, but
interrupted, the task is either restarted, or if possible,
resumed. When the task is completed, the status file is
updated accordingly. Since the filesystem is shared any node
has access to the status file. Any worker node can be
assigned any task. Lockfiles are used to prevent
simultaneous access to status files. This is sufficient to
handle network failures and node failures. Monitors and
timeouts are used to halt non-progressing tasks when there
are filesystem failures. Tasks are either resumed or restarted
when the filesystem failure is remedied.

B. Scalability

Scalability refers to adding more nodes to handle larger
filesystems and improving performance. One goal of
scalability is to ensure that the addition of more worker
nodes does not significantly increase network traffic. This
goal is met through both the use of the command and proxy
design patterns and the core design of an event driven
architecture. In an event driven architecture, the events are
an implementation of the command design pattern. The
remote services on each node are instances of the proxy
design pattern. These will be discussed in more detail later,
but the main issue is that network traffic is limited to simple
message passing. The messages are either task requests from
the manager to a worker node or a task result passed from a
worker node to the manager. A second goal of scalability is
that a new node should require minimal setup and
configuration. The software must be copied or accessible on
the new node and an accessible IP address must be added to
the software configuration file. It is implied that the new
node has access to the shared filesystem. Storing the
software on the shared filesystem eliminates the need to
install any software on worker nodes.

backup_type = INCR

full_cycle_day = basepath_id % cycle_length

today_cycle_day = day_of_year % cycle_length

if full_cycle_day == today_cycle_day :
 backup_type = FULL

C. Flexibility

The goal of software flexibility derives directly from the
overall goal of portability. Portability requires that the
software does not rely on any internal feature or specific
implementation of the filesystem. That does not mean that it
cannot or should not utilize filesystem specific features that
are useful to backups. Here, the point is that any part of the
software that uses specific features should be modular so that
the software part can be easily replaced or removed.
Modularity in software design is a well-known and widely
accepted best practice. The major advantages of a modular
software design are simplicity of design and ease of
understanding, debugging and maintenance. These
advantages promote an event driven architecture, but they
are not the primary reason it was chosen.

VIII. EVENT DRIVEN ARCHITECTURE

The primary reason an event driven architecture was
chosen is because it easily fits the model of distributed
computing. As tasks are farmed out to remote hosts, they
will complete at different times. A central manager must be
notified and follow-up steps will need to be scheduled as
each task is completed. The completion of a task is
encapsulated in a software representation as an event. The
event is sent to the central manager, where it is processed
and may in turn generate one or more new events. All
notifications, requests and responses are events.

A. Event Manager

The core piece of event driven architecture is the event
manager. The event manager operates like a post office. It
receives events and delivers them to the appropriate software
modules. The modules, upon receiving notification of an
event, perform whatever action is appropriate for that event,
and if any new events are generated as a result of the action,
send those new events to the event manager. The event
manager has four responsibilities: accept events, notify
modules of events, accept module registrations, and process
events. The first two responsibilities have already been
discussed. A module registration is the way a module
informs the event manager which events it needs to know
about. The event manager does not know ahead of time
which modules will need to know about which events. This
is an important point as it allows new modules to be added
without any modification to the event manager. It also
allows new events to be created simply by defining them.
The event manager also does not know which events or
modules exist. It simply accepts events as they are posted
and looks in a table of registrations for which modules to
notify, if any. The last responsibility of the event manager is
processing events. This is mostly straight-forward, except
for special consideration to ensure events are processed in
the correct order when successive events are spawned from
an initial event. Event processing is initiated by a special
ticker event. The timer module generates ticker events at
regular intervals that cause the event queue to be processed.
Events are processed from the queue until the queue is
empty. Events arriving after the queue is emptied are held

until the next ticker event is received, upon which the whole
process is repeated. The design of the event manager is
based on a model described in “sjbrown’s Guide To Writing
Games” [3]. As mentioned earlier, the events are an
implementation of the command software design pattern.
The event manager does not know any detailed information
about the event, it just passes the event to all modules that
requested notification. Any specific information relating to
the event is encapsulated inside the event.

B. Distributed Computing With RPyC

RPyC is a python module that provides a framework
allowing transparent access to remote hosts as if they are
local. RPyC defines a service class, from which a custom
class can be derived. This new custom class will encapsulate
the methods that define the tasks for worker nodes. These
methods include: scanning a topdir for new and deleted
basepaths, scanning a topdir for basepaths that need a
backup, and performing a backup for a particular basepath.
The service module is an example of the proxy software
design pattern that was referred to earlier, since it provides a
simple interface to request the tasks without requiring
detailed knowledge of the tasks themselves.

IX. STEPS OF A BACKUP

As all the main parts of the backup system have been
defined, the backup process itself can be demonstrated.
When the software starts, various initializations occur.
Eventually, the topdirs are scanned for new basepaths and if
any are found, a start-backup event is generated. The event
will contain information indicating the basepath name and
the type of backup, a full backup in this case. A full backup
will also occur if the rolling full check succeeds or if the last
full backup is older than the cycle length. Outside of these
instances, the start-backup event will indicate an incremental
backup. The event manager passes the event to a job
scheduler module, which will find an available worker node
and pass the task to that worker node. The worker host will
then begin the backup. After verifying that no other backups
are in progress or were previously interrupted, the backup
can be started. The actual backup processing is done using
dar [4]. Dar scans the basepath for changed files and copies
them to an archive file. When completed, dar then extracts a
catalog (index of files in the archive) to a separate file. It
should be noted that these two steps are separate from each
other and if catalog creation is interrupted, it can be restarted
without having to rerun the archive step. This is part of the
fault tolerance built into the design. At the end of
processing, the status file is updated. A backup-completed
event is created and sent to the event manager. In processing
the backup-completed event, another module will generate a
start-transfer event, which is sent to the appropriate module
for communicating with Globus to transfer the archive file to
long term storage. Likewise, when the transfer is completed,
an event will be generated to cause the cleanup activity to
start. Cleaning up consists of removing temporary and lock
files and finalizing the status in the status file. If an error
occurs at any point during the process, an appropriate event
is generated to cause a new action to occur.

A. Advantages of Dar

The dar tool was chosen for its external cataloging
feature. The external catalog contains the metadata of a
backup archive file and can be used as the reference for an
incremental backup. The catalog file is much smaller than
its base archive and can be saved on disk allowing the large
archive file to be transferred off the filesystem. The catalog
files are also used for restores, since they can be scanned to
determine the minimum set of archive files to be retrieved
from long term storage for a particular restore. Additional
features of dar include cache directory tagging [5] support
for excluding entire directories and xattr support.

X. RESULTS

The current implementation of the software shows that,
on a 4PiB filesystem with 683 basepaths and 1.6PiB used,
daily backups finish, on average, in 9.6 hours. 28 worker
nodes are currently in use with one of them doubling as the
manager node. The worker nodes have 192 GiB of RAM
and run a patched version of the Lustre 2.3.0 client. The
worker nodes also double as Globus endpoints for the Lustre
filesystem and may be running one or more gridftp transfers
at any given time. The filesystem is hosted on a Cray
Sonexion 1600 running a patched version of the Lustre 2.1.0
server with 36 SSUs fully populated with 2TB SATA drives.
Table 1 shows additional relevant statistics.

XI. FUTURE ENHANCEMENTS

Possible future enhancements include multiple files per
Globus task, automated deep scan of basepaths, multiple
tasks per worker node, and using the changelog to generate
filelists for backup.

A. Multiple Files Per Globus Task

The most significant performance bottleneck at this time
is the assignment of a single dar archive file per Globus task.
The Globus transfer service is intended to transfer multiple
files in a single task and only allows a few tasks per user.
This results in a low level of parallelism and more time spent
waiting for new task slots.

TABLE I. CURRENT STATISTICS

Average time to complete daily backups 9.6 hours

Average full backup time 2.41 hours

Average incremental backup time 9 minutes

Average number of inodes scanned daily 404.5 million

Average number of inodes backup up daily 51.3 million

Number of topdirs 10

Number of basepaths 683

B. Automated Deep Scan Of Basepaths

The existing scheme for splitting the filesystem into

small parts works well when the basepaths reference

directories limited in size, such as user home directories,

which are quota limited to 1TiB. Some project directories,

however, have grown to 50TiB and larger, which take

multiple days to complete a full backup and more prone to

failure from filesystem problems. One solution is to scan

the basepath to split it into multiple backups based on size

thresholds. These multiple backups could then run in

parallel.

C. Multiple Tasks per Worker Node

Allowing multiple tasks per worker node could increase

performance of the backups and possibly reduce the number

of physical worker nodes required to complete backups in

24 hours. Since the NCSA worker nodes are also Globus

transfer nodes, the software could use current system stats

such as system load or size of free RAM to dynamically

determine if another task should be allowed on a given

node.

D. Use Changelog To Generate Backup Filelist

Using a changelog provides multiple advantages. First,

a predetermined filelist provides the obvious benefit of

precluding a scan of the basepath to determine which files

have changed. This is significant since scanning requires a

stat of every file and since every basepath is scanned each

day, the entire filesystem is scanned each day. Second, the

list of files could be used to estimate the resulting size of the

dar archive and determine if the backup should be split into

multiple parts for parallel execution. A potential problem

with this enhancement is that cache directory tagging for

excluding directories would no longer be effective, since dar

would not be scanning the basepath and thus would not find

any cache directory tag special files. Another problem with

changelog is that it necessarily ties the solution to a specific

filesystem.

REFERENCES

[1] http://rpyc.readthedocs.org

[2] http://www.globus.org

[3] http://ezide.com/games/writing-games.html

[4] http://dar.linux.free.fr/

[5] http://www.brynosaurus.com/cachedir/

