
Copyright 2014, Cray Inc.

Producing the Software that Runs the Most
Powerful Machines in the World

The Inside Story on Cray Software Test and Release

Kelly Marquardt
Director of Engineering

Cray, Inc.
kellym@cray.com

Abstract— Starting from the point when new software features
have been coded, a thirteen week process of testing, bug fixing,
and release activities kicks into gear to produce high quality
CLE and SMW releases. This paper will cover the types of
testing, configurations tested, and related challenges addressed
with the goal of providing early adopters with a solid
understanding of the newly released system software.

(Abstract)

Keywords-component; software test, software release, release,
configurations

I. INTRODUCTION

Cray software releases are put through a full suite of
testing. The software testing includes focused functional
testing of new features in the release along with full
regression suites covering the existing feature set. In
addition, the release is put through a battery of system
focused testing, including stress testing, scale testing,
performance testing and reliability runs. Stress testing
focuses on running multiple test suites concurrently and
putting a heavy load on the system aimed at finding issues
that might cause node loss or system wide outages and to
evaluate overall system stability

Challenges include testing at scale, handling the

complexity of configurations, and interfacing with third party
and community software providers. Partnerships with key
customers are an important component of the overall test
strategy.

This paper will focus on the typical minor or update

software release cycle Major releases that include a
significant update to the base operating system follow a
longer schedule to allow for the longer stabilization time that
is typically required but otherwise follow the same basic
process.

A. Guiding Principles

The mission of the Cray HPCS software team is to
provide outstanding software products that enable our
customers to harness the extraordinary power of Cray

supercomputers and maximize scientific and engineering
application performance.

Guiding principles for Cray software:
• Performance is a key metric of our Market
• Differentiate when strategically sound
• Follow industry standard solutions where they exist
• Collaborate with customers and the community
• Focus on quality in the areas of

o Timely software releases
o Updates with no regressions

B. Focus on Quality

Cray’s software test and release process supports this
focus on quality through a structured release methodology
and rich collection of test suites. The software testing
includes focused functional testing of new features in the
release along with full regression suites covering the existing
feature set. Cray software releases are put through a battery
of system focused testing with the goal of evaluating overall
stability. System test suites include stress testing, scale
testing, performance testing and reliability runs. The focus
of system testing is on evaluating the system's ability to run
solidly in production at the customer site, to find any issues
that might cause node loss or system wide outages, and to
uncover problems that only occur with extended uptime.

II. TYPES OF TESTING

Cray’s software test approach uses a wide variety of
testing activities with different areas of focus. The following
table describes the purpose and focus of the software testing
activities. These will be described in more detail later when
the overall release process is discussed.

TABLE I. TYPES OF TESTING

Type

Definition

Feature Testing Functional testing of a new software feature;
Tested both inside and outside the release branch;
Feature tests are automated so they can be run in
future regression test suites

Regression Testing Automated test suites are run multiple times

Copyright 2014, Cray Inc.

throughout the release cycle and include over
14,000 test cases canvasing I/O, Kernel, System
Calls, Memory Management, OOM, Threads,
Interconnect, Jitter, Cray-specific Features: ALPS,
Core Specialization, Core Affinity, Node Health,
Link Resiliency, Quotas, and many others. Also
spans a wide range of programming languages;
UPC, Co-Array, Shmem, MPI and others. The
suites contain benchmarks, kernels, and full blown
applications

Stress Testing Test suites are run concurrently in order to put a
heavy load on system. Focus is on how the system
holds up under stress

Scale Testing Scale testing involves testing features at high node
count scale, application testing and testing the
overall system at large scale. Focus is on
evaluating the system's ability to run solidly in
production at the customer site

Performance
Testing

Automated performance tests are run to measure
node-to-node throughput, ping-pong, multi-pong,
all-to-all, HPCC latency, I/O. Focus is on ensuring
that the current release runs at the same
performance levels as previous releases

Reliability Testing System reliability runs (RelRuns) are performed
multiple times throughout the release cycle and
involve running the system for an extended period
covering multiple days under heavy load. Focus is
on finding issues that might cause node loss or
system wide outages and to evaluate overall system
stability

Exposure Testing Systems running the release in progress are made
available to the user community within Cray
including OS developers, testers, programming
environement developers, benchmarking, and
applications. Focus is on exposing the release to
general usage in order to find issues that might not
be seen by targeted testing

III. THE RELEASE CYCLE

The Cray software release cycle follows a well-defined

timeline and process for managing the testing and other
activities that are part of generating a software release.

A. Train Model

Cray software releases for CLE and SMW follow a train
model to produce a new release each quarter. This release
model is structured to support the focus on timely software
releases. The concept of the train model is that releases

happen at defined times and that features that are ready in the
right timeframe can “get on the train”. Release milestones
define when the development and test activities for each
feature need to be done in order for the feature to be included
in the release.

Software features that will be included in a release are
identified during the planning phase. In order to keep a
release on schedule, features can be moved out to the next
release if the development and test completion milestones are
not met or if there are critical bugs associated with the
feature that cannot be resolved in time for the release. When
it isn’t possible to move the feature to the next release, then
other options are considered. Sometimes late features can be
delivered as patches or special releases. Other times, the
feature must be in the release and so we must evaluate the
risk to the release. In looking at late feature risk, there are
some key considerations that are evaluated in managing the
risk. The primary concern is around protecting the base
functionality and stability of the release. Features that touch
key areas such as job launch, file systems, and memory
management, to name a few, would be considered high risk.
Features that are more isolated in their functionality or those
that can effectively be “turned off” are more readily accepted
late into the release. In those cases the risk of the feature is
isolated to early adopters of the feature rather than impacting
the installed base. At times, there are features identified as
“defining” for the release. This means that if the feature is
late, the release will be allowed to run late to include the
defining feature. This approach is used rarely because it
makes it very difficult to stay on the quarterly cadence for
future releases.

B. Release Timeline

A typical minor or update software release follows a
thirteen week timeline from the time that the feature code for
the release is completed until the release is available for
customers. The main testing focus areas during the release
cycle are feature testing and system testing. Feature testing
refers to focused functional tests of new feature
functionality. System testing focuses on full system stack
testing, feature interactions, regression testing of previously
delivered features, stress testing, scale testing, and reliability
runs. The system test cycle is also used to perform system
level qualification of new hardware platforms, such as a new
processor family.

Key activities by week 1 2 3 4 5 6 7 8 9 10 11 12 13

Feature Integration

Individual Feature Test & Initial Stack Testing

Feature Validation in release branch

System Testing

Final Testing/Packaging/Install Test

2 wks 2 wks 2 wks

Test/Fix/Retest Cycle

Release available

Final CCB/Code freeze

All features in branch

6-8 weeks

3 weeks

3+ weeks

2-3 weeks

5-7 weeks

Release available

Final CCB/Code freeze

All features in branch

6-8 weeks

3 weeks

3+ weeks

2-3 weeks

5-7 weeks

Figure 1. Release Timeline

Copyright 2014, Cray Inc.

C. Feature Integration

Cray’s source code management methodology uses a
main development repository where all developed code is
stored during development along with release branches to
manage the code for a release. As feature code is developed
and unit tested, it is checked into the main trunk of the
repository, referred to as DEV. Once checked into DEV, the
feature code gets its first exposure. Feature and system
testing often start in DEV when schedules support that and
then continue in the release branch.

Source code for releases is managed with a release
branch of the repository. During the release cycle, the
release branch is managed by a change control board (CCB)
that meets weekly to make decisions about which code
changes, referred to as mods, are promoted to the release
branch. The release branch for a major release generally
branches directly from DEV, while update releases may
branch from an earlier release branches, with significant
merges of new feature code from DEV. The branching plan
for specific releases varies depending on the nature of the
features of the release.

During the feature integration phase, feature code is
integrated into the release branch according to plans created
to manage the level of instability in the code base. As
portions of functionality are integrated, feature and system
level testing is done to evaluate the initial level of stability of
the branch. Once all feature code for the release is merged to
the release branch, the feature integration phase is complete.

D. Individual Feature Test and Initial Stack Testing

Individual feature testing happens both in DEV and in the
release branch while feature integration is underway. Initial
stack testing happens during this phase as well. This testing
is the first time that all layers of the candidate release
software are tested together along with third party software
such as work load managers. The goal of the initial stack
testing is establishing a base level of stability and
functionality to go forward with the release.

E. Feature Validation in the Release Branch

Feature testing in the release branch is done to ensure that
newly developed feature functionality is working as
intended. Tests cover the functionality across the full range
of use cases, including error cases as well as designed
interactions with other features. As part of developing
feature tests, the tests are automated so that they can be
included in the regression suites for feature coverage in
future releases.

F. System Testing

System testing of a release includes many different types
of testing. System testing is looking to find interaction issues
with features, interactions with system hardware or software,
edge cases, usability, and system issues that occur after
extended uptime. System testing includes automated
regression testing of feature functionality existing in the code
base. Also included are stress testing, performance testing,
scale testing, and reliability runs.

The workhorse of the system test cycle is the reliability
testing, or “RelRun” as it is referred to within Cray. The
goal of the RelRun is to put a sustained load on the system
for an extended period of time, typically 48-72 hours, in
order to ensure that the system is stable and ready for
production use. The RelRun workload is designed to
simulate a demanding customer workload. During a typical
release cycle, RelRuns are performed approximately every
other weekend. This cadence allows for bugs found in a
RelRun to be triaged, fixes to be implemented and exposed
in DEV, and then the mods to be promoted to the release
branch so that the next RelRun will not hit the same
problems. Before spending the machine time to do a
RelRun, there must be a critical mass of fixes or new feature
functionality available.

RelRuns are generally performed on our largest available
machines. One of the measurements tools for the RelRun is
its achieved level of testing. This level indicates how well
the RelRun kept the system busy, the job mix achieved on
the system and the size of applications used in this system
mix. The level of a RelRun is described by using the
following 3 elements and adding them together to obtain a
RelRun level. The best possible RelRun level would be a 15.

• System Load: The system shall have an average
compute node utilization of 80%. Example of things
that can decrease this number; job launch issues, file
system being slow, jobs not exiting, system being
down for extended periods of time, and others.
Desired level: 5

• Job Mix: Containing all possible feature tests,
benchmarks, applications, and OS and I/O jobs.
Example of things that can decrease this number;
having to disable tests due to system issues, features
not working or being available, system components
not being available (like data virtualization service
(DVS), Cluster compatibility mode (CCM), or
Lustre for example) Desired level: 5

• Application Size: A range of application sizes from
1 core to approximately 1/3 of the machine size.
Example of things that can decrease this number;
Attempting to do a reltun on only a 1 cabinet system,
jobs not working at desired size, or job being limited
because of system issues. Desired level: 5

During the system testing phase, release metrics are

gathered and evaluated on a weekly or biweekly basis.
These metrics show performance against the goals for the
release and are used to measure progress.

Figure 2. RelRun Metrics

Copyright 2014, Cray Inc.

G. Scale Testing

Testing of Cray’s software releases at the extreme scale
of our customer’s systems is always a challenge. Two
aspects of scale are important. First, we look for
functionality at scale – does the system and all the software
operate as intended at extreme node counts? The second
aspect of scale is somewhat more subtle and is focused on
issues that occur very rarely. These types of issues can be
hard to see until a very large system is deployed and they
start occurring frequently enough to be noticed and pursued
and so are considered an aspect of scale testing.

We use several strategies to cover scale testing.
Extensive testing is done on our in-house scale systems.
Stress testing is done with the goal of mimicking the load of
a larger machine. Simulators are also used to provide scale
coverage. An example of this is a simulator that was built
for use in testing the hardware supervisory system (HSS)
software during the Cascade development timeframe. This
simulator allows for the simulation of a range of system
configurations from a few densely populated cabinets up to
200 sparsely populated cabinets. This capability has proven
invaluable for finding software scaling bugs prior to
deployment of the software on internal or customer systems.
There are also opportunities for Cray R&D to do scale
testing on customer machines in house during the
manufacturing timeframe, which is very valuable for proving
operation at scale before large machines get to the field.

Finally, Cray R&D works with Cray and customer field
service personnel to do early testing of software releases on
customer systems. This is often done in partnership with
customers who have a special interest in a new feature, such
as a particular Lustre version. Pre-releases can be made
available after code freeze for this type of testing. Planning
for this type of testing is done strategically based on
customer interest and the risk of significant new features
operating at scale. These cooperative testing experiences
have been mutually beneficial to both Cray and the
customers involved.

H. Release Readiness, Final CCB, and Code Freeze

A few days before the final CCB meeting and code
freeze date, a release readiness review is conducted to review
the status of the release against plans and determine if the
release will freeze on the planned date. The release readiness
review looks at the final set of metrics, the list of release
critical bugs and plans for fixes, feature deferments, if there
are any, along with other release criteria, such as the status of
documentation, plans for installation testing, and so on. The
outcome of a successful release readiness review is approval
to freeze the release on the planned date.

I. Final Testing, Packaging and Installation Testing

After code freeze, final system testing is done. This
testing typically includes a final RelRun, along with
whatever other specific testing is needed to verify fixes for
release critical bug fixes that went in at the final CCB. Final
steps are taken to create the release packages and then
installation testing is performed. Installation testing covers
fresh installs and the most typical upgrade paths and includes

coverage for standard features such as Lustre, DVS, CCM,
boot, and system database (SDB) node failover as well as
any new features in the release. While exhaustive
installation testing is very time consuming, Cray’s
installation testing is as extensive as possible to ensure
customers will not encounter issues with their upgrades.

IV. MACHINES, MACHINES, MACHINES

One of the most challenging aspects of developing,
testing, and delivering new features is managing the use of
our internal machines. This has become increasingly
challenging in the last several years as new Cray software
features have been introduced that require unique machine
configurations, such as high availability SMWs and support
for a collection of workload managers, across an assortment
of processor types and SKUs, different cabinet types, along
with a variety of storage options. The goal of machine
configuration and usage management is to maximize
development, test and data center access to all of these
configurations and combinations within the bounds of data
center limitations.

Cray has a significant investment in internal systems for
development and testing. The figure below shows our
internal XC30 machines, their primary purpose, what version
of software they run, their storage and any special
configurations in place

Cray uses a three stage strategy for deploying newly
developed software on internal machines. The goal of
carefully controlling deployment is to minimize the impacts
of problems with new code and especially to prevent the
larger machines with a broad user group from becoming
disabled by problems with the new code. New mods are first
exposed and tested on DEV platforms. The DEV platforms
are small, typically between four and twelve compute nodes,
and have a limited user community. Regression tests are run
nightly on DEV systems to find any regressions caused by
new mods. Once mods have been in DEV for a week, they
are eligible to be promoted to the release branch for the
release that is in progress.

On a weekly basis the CCB meets to approve mods to be
promoted into the weekly release branch for build and
deployment. Once mods are in the release branch, they will
then get installed onto the test machines that are used for
testing the release in progress. These machines are larger,
typically around a single cabinet, and have a wider
assortment of blade types, more storage types and other
configuration options. The release branch machines are used
for both feature and system testing throughout the cycle.
The full regression suites are run at least weekly on these
machines, so mods in the release branch get good regression
exposure within a week.

The third level of deployment is to Cray’s internal data
center. Data center machines are the largest machines that
Cray has for internal use. The data center is run
independently from the R&D organization, with a separate
administrative team. This separation is designed to create an
environment similar to that of our customers and to give us
an independent view of the usability and readiness of
software releases. These machines are used extensively by

Copyright 2014, Cray Inc.

the R&D test team but are also used by a wider community
within Cray, including benchmarking and applications
engineers. The data center machines generally run the
release in progress and deploy the latest release branch code
a week after it has been exposed on the test machines.

V. CONCLUSIONS

Cray’s software test and release process supports our
focus on software quality and timely releases through a
structured release methodology and rich collection of test
suites. The rigorous system testing methodology puts focus
on system stability and suitability for a production

environment. While testing at the extreme scale of Cray
systems is always challenging, the use of our extensive in-
house systems, stress testing, and the use of simulators are
some of the ways that Cray meets this challenge. Testing at
scale is enhanced by partnerships with interested customers.
The process and test strategies that Cray uses support our
commitment to software quality.

ACKNOWLEDGMENT

The author thanks Janet Lebens, Dennis Arason, Larry
Kaplan and many others who contributed to this paper.

SC

Dev1
SC-AC Cabinet
� General DEV Platform
� Three partitions dedicated to
priority features
� CLFS & FC DAL

Dev8 XC-LC Cabinet
� General dev & rel testing
� Xeon Platform
� Runs SMW DEV and
CLE DEV & RB
� Sonexion, XFS, HA SMW

XCBL

SC SC

DC3
(2) SC-AC Cabinets
All Xeon Platform
� Field Support Platform
� Runs release-in-the-field

SC

Dev2
SC-AC Cabinet
� Lustre & 3rd party devel
� Three partitions
� Xeon Platform
� CLFS, FC DAL

SC

Dev6
SC-AC Cabinet
� General DEV Platform
� All Xeon Platform
� SAS DAL

SC

Dev7
SC-AC Cabinet
� PE dev, test and performance
� All PDC types
� FC XFS & FC DAL

SC

Dev3
SC-AC Cabinet
� Accelerator Dev Platform
� GPU & KNC PDCs
� Runs DEV
� No shared FS

XCBL

DC2
(1) XC-LC Cabinet
� Accelerator Scale testing
& benchmarking
� GPU & KNC PDCs
� Runs release-in-progress
� DAL, XFS,

HWTest1, 2, 3
(3) Blade Testers
� HSS & HW Val. Platforms

BT BT BT

SC

Dev4
SC-AC Cabinet
� DEV & Rel Checkout Platform
� Blades of every type
� Runs DEV & RB
� CLFS

SC

Dev5
SC-AC Cabinet
� General Dev Platform
� Xeon, GPU & KNC PDCs
� Runs DEV
� No shared FS

XCBL

Test2
(1) XC-LC Cabinet
� XC Test Platform
� All PDC types
� Runs release-in-progress
� CLFS

XCBL

Test1
(1) XC-LC Cabinet
� Primary XC Test Platform
� All PDC types
� Runs release-in-progress
� Sonexion, IB DAL, HA SMW,
Boot & SDB node failover

DC1
(4) XC-LC Cabinets
� Scale testing & benchmarking
� All Xeon Platform
� Runs release-in-progress
� Sonexion, CLFS, GPFS

XCXCXCXC BLBL BL

Figure 3. Internal XC30 Machines

