Producing the Software that Runs the Most
Powerful Machines in the World

The Inside Story on Cray Software Test and Release

Kelly Marquardt
Director of Engineering

Cray, Inc.
kellym@cray.com

Abstract— Starting from the point when new software featurs
have been coded, a thirteen week process of testitmg fixing,
and release activities kicks into gear to produceigh quality
CLE and SMW releases. This paper will cover the fges of
testing, configurations tested, and related challages addressed
with the goal of providing early adopters with a std
understanding of the newly released system software

(Abstract)

Keywor ds-component; software test, software release, release,
configurations

l. INTRODUCTION

Cray software releases are put through a full softe
testing. The software testing includes focusedctional
testing of new features in the release along with f
regression suites covering the existing feature seén
addition, the release is put through a battery ystesn
focused testing, including stress testing, scalstintg,
performance testing and reliability runs. Stressting
focuses on running multiple test suites concuryeathd
putting a heavy load on the system aimed at find&sges
that might cause node loss or system wide outagésta
evaluate overall system stability

supercomputers and maximize scientific and enginger

application performance.

Guiding principles for Cray software:
» Performance is a key metric of our Market
» Differentiate when strategically sound

* Follow industry standard solutions where they exist

» Collaborate with customers and the community
* Focus on quality in the areas of

0 Timely software releases

0 Updates with no regressions

B. Focus on Quality

Cray's software test and release process suppoigs
focus on quality through a structured release nuktlogy
and rich collection of test suites. The softwaestihg
includes focused functional testing of new featureshe
release along with full regression suites covetirggexisting
feature set. Cray software releases are put thraugattery
of system focused testing with the goal of evahgbverall
stability. System test suites include stress rngstscale
testing, performance testing and reliability runehe focus
of system testing is on evaluating the systemttyabo run
solidly in production at the customer site, to fiady issues
that might cause node loss or system wide outages,to

Challenges include testing at scale, handling thgncover problems that only occur with extendedrueti

complexity of configurations, and interfacing wittird party
and community software providers. Partnership$ Wiy
customers are an important component of the ovéeatl
strategy.

This paper will focus on the typical minor or upslat
software release cycle Major releases that inclade
significant update to the base operating systerfoviola
longer schedule to allow for the longer stabilizattime that
is typically required but otherwise follow the sarbasic
process.

Il. TYPES OFTESTING

Cray's software test approach uses a wide variéty
testing activities with different areas of focughe following
table describes the purpose and focus of the sittesating
activities. These will be described in more dettiér when
the overall release process is discussed.

TABLE I. TYPES OFTESTING

—

Type Definition

Feature Testing Functional testing of a new software featufe;

.. . Tested both inside and outside the release branch;
The mission of the Cray HPCS software team is Feature tests are automated so they can be riin in

provide outstanding software products that enable ¢ future regression test suites
customers to harness the extraordinary power ofy CraRegression Testing Automated test suites are run multiple times

A. Guiding Principles

Copyright 2014, Cray Inc.

Stress Testing

Scale Testing

Performance

Testing

Reliability Testing

Exposure Testing

The Cray soft

timeline and process for managing the testing atibro refers to focused functional tests of new feature

activities that are

A. Train Moddl
Cray software

throughout the release cycle and include over happen at defined times and that features thatardy in the
14,000 test cases canvasing /O, Kernel, Systemright timeframe can “get on the train”. Releasdestbnes
Calls, Memory Management, OOM, Threads, gefine when the development and test activities efach

Interconnect, Jitter, Cray-specific Features: ALPS, : .
Core Specialization cOyre pAfﬁnity Node Health . feature need to be done in order for the featukeetmcluded

Link Resiliency, Quotas, and many others. Also IN the release.)) _

spans a wide range of programming languages; Software features that will be included in a redease
UPC, Co-Array, Shmem, MPI and others. The identified during the planning phase. In order ek a
suites contain benchmarks, kernels, and full blown release on schedule. features can be moved otetadxt
izzlt'cseﬁ:fe”:are U concurrently T order 1o put a Feease if the development and test completionsiuifes are
heavy load on system. Focus is on how the Systemnot met or if there are crmca! bpgs associatedh whe
holds up under stress feature that cannot be resolved in time for theasé. When
Scale testing involves testing features at highenpd it iSn’t po_55|ble to move the feature to the nelease, then
count scale, application testing and testing the other options are considered. Sometimes laterfesattan be
overall system at large scale. ~Focus is jondelivered as patches or special releases. Ofimasfithe
evaluating the system's ability to run solidly in featre must be in the release and so we mustateathe
production at the customer site isk to th | In looki t late featusk rih
Automated performance tests are run to mea:;urerIS 0 there ea.lse' .n ooking at fate reatu .’r .ere are
node-to-node throughput, ping-pong, multi-pong, SOMe key considerations that are evaluated in niagake
all-to-all, HPCC latency, /0. Focus is on ensuring iSK. The primary concern is around protecting base
that the current release runs at the samefunctionality and stability of the release. Feafuthat touch
performance levels as previous releases key areas such as job launch, file systems, andamem
Syslt,erln ”?"ab"”% runs (Re'E“”S)I are perflorme‘ij management, to name a few, would be consideredrtiigh
multiple times throughout the release cycle an : f . -

involve running the system for an extended pefiod Features that are more; isolated |"n their functltmx_ar those
covering multiple days under heavy load. Focus is that can effectively be “turned off” are more répdiccepted
on finding issues that might cause node loss orlate into the release. In those cases the rigkeofeature is
system wide outages and to evaluate overall systenisolated to early adopters of the feature rathan impacting
stability _ _ the installed base. At times, there are featigestified as
gggﬁz‘g}z running t?jesére'iaosrﬁn:rl‘mﬁsgﬁﬁinareCr”,;;‘/‘d@defining" for the release. This means that if fieature is
including ©S| developers, testers. pragramming Iate_, _the release will _be allowed to run late tolude th_e
environement developers, benchmarking, and deﬂnlng. feature: .ThIS approach is used rarelyabse it
applications. Focus is on exposing the release tomakes it very difficult to stay on the quarterlydeace for
general usage in order to find issues that might no future releases.

be seen by targeted testing .
B. Release Timeline

A typical minor or update software release follows

thirteen week timeline from the time that the featcode for

THERELEASECYCLE the release is completed until the release is abail for
customers. The main testing focus areas duringelease

ware release cycle follows a welliedi cycle are feature testing and system testing. uFedgsting

part of generating a softwatease. functionality. System testing focuses on full syststack
testing, feature interactions, regression testihgreviously
delivered features, stress testing, scale testimg,reliability
runs. The system test cycle is also used to parkystem
releases for CLE and SMW follow #ntra level qualification of new hardware platforms, sasha new

model to produce a new release each quarter. rélgase processor family.
model is structured to support the focus on tinsftware
releases. The concept of the train model is thktases

Key activities by week 12137 a]s]e]7]8]ofwf1a]12]13
Feature Integration 2-3 weeks * All features in branch
Individual Feature Test & Initial Stack Testing 3+ weeks
Feature Validation in release branch [5-7 weeks] Final CCB/Code ffeeze
System Testing 6-8 weeks *
Final Testing/Packaging/Install Test \ 3 weeks Release available

AYAYA

2 wks |2 wks |2 wks |
Test/Fix/Retest Cycle

Figure 1. Release Timeline

Copyright 2014, Cray Inc.

C. Featurelntegration

Cray's source code management methodology uses
main development repository where all developedecizd
stored during development along with release bresmdb
manage the code for a release. As feature catdievisloped
and unit tested, it is checked into the main traikthe
repository, referred to as DEV. Once checked DY, the
feature code gets its first exposure. Feature arstiers
testing often start in DEV when schedules suppgwat &nd
then continue in the release branch.

The workhorse of the system test cycle is the lyiiig
tgsting, or “RelRun” as it is referred to withina@r The
goal of the RelRun is to put a sustained load enstystem
for an extended period of time, typically 48-72 tmuin
order to ensure that the system is stable and réady
production use. The RelRun workload is designed to
simulate a demanding customer workload. Duringpécal
release cycle, RelRuns are performed approximatedyry
other weekend. This cadence allows for bugs found
RelRun to be triaged, fixes to be implemented axubsed

Source code for releases is managed with a relead® DEV, and then the mods to be promoted to theassl

branch of the repository. During the release cythe
release branch is managed by a change control HC&8)

ranch so that the next RelRun will not hit the sam
problems. Before spending the machine time to do a

that meets weekly to make decisions about whiche codRelIRun, there must be a critical mass of fixesew feature

changes, referred to as mods, are promoted toeflease
branch. The release branch for a major releaseragne
branches directly from DEV, while update releasesy m
branch from an earlier release branches, with fogmi
merges of new feature code from DEV. The branchiag
for specific releases varies depending on the eabfirthe
features of the release.

During the feature integration phase, feature cixe
integrated into the release branch according tosptaeated
to manage the level of instability in the code basas
portions of functionality are integrated, featured ssystem
level testing is done to evaluate the initial leokstability of
the branch. Once all feature code for the releaseerged to
the release branch, the feature integration plsasamplete.

D. Individual Feature Test and Initial Stack Testing

Individual feature testing happens both in DEV anthe
release branch while feature integration is undgrwaitial
stack testing happens during this phase as wdills f€sting
is the first time that all layers of the candidatdease
software are tested together along with third padftware
such as work load managers. The goal of thealrstack
testing is establishing a base level of stabilitpd a
functionality to go forward with the release.

E. Feature Validation inthe Release Branch

Feature testing in the release branch is donesorerthat
newly developed feature functionality is working as
intended. Tests cover the functionality acrossftiierange
of use cases, including error cases as well asgruksi
interactions with other features. As part of depilg
feature tests, the tests are automated so that dheybe
included in the regression suites for feature cayerin
future releases.

F. System Testing

System testing of a release includes many differgres
of testing. System testing is looking to find iatetion issues
with features, interactions with system hardwarsaftware,
edge cases, usability, and system issues that caiter
extended uptime. System testing
regression testing of feature functionality exigtin the code
base. Also included are stress testing, performaesting,
scale testing, and reliability runs.

includes automated

functionality available.

RelRuns are generally performed on our largestablei
machines. One of the measurements tools for thRRUReS
its achieved level of testing. This level indicateow well
the RelRun kept the system busy, the job mix acuewn
the system and the size of applications used & dfstem
mix. The level of a RelRun is described by using th
following 3 elements and adding them together ttaioba
RelRun level. The best possible RelRun level winglch 15.
System Load: The system shall have an average
compute node utilization of 80%. Example of things
that can decrease this number; job launch issiles, f
system being slow, jobs not exiting, system being
down for extended periods of time, and others.
Desired level: 5
Job Mix: Containing all possible feature tests,
benchmarks, applications, and OS and /O jobs.
Example of things that can decrease this number;
having to disable tests due to system issues,résatu
not working or being available, system components
not being available (like data virtualization seevi
(DVS), Cluster compatibility mode (CCM), or
Lustre for example) Desired level: 5
Application Size: A range of application sizes from
1 core to approximately 1/3 of the machine size.
Example of things that can decrease this number;
Attempting to do a reltun on only a 1 cabinet syste
jobs not working at desired size, or job being fedi
because of system issues. Desired level: 5

During the system testing phase, release metries ar
gathered and evaluated on a weekly or biweeklysbasi
These metrics show performance against the goalshé
release and are used to measure progress.

Relsass Criterla Description
[Reun Level [Descnoes load,
ik and size. Se= below for
[escnption)

Longesl System Uptime
Complts Node Lass

| Releass Criteria | Attempled For This Run| Actual

12

AT

1

- -
0.56 comguts
ondesganineinay: |
0

Same 3s release crleda
]
1]

System Iniemapts
Service Node Loss

o

Figure 2. RelRun Metrics

Copyright 2014, Cray Inc.

G. ScaleTesting
Testing of Cray's software releases at the extreoade

of our customer’s systems is always a challengevo T a0y new features i , ; .
First. we look fofnstallation testing is very time consuming, Cray's

aspects of scale are important.
functionality at scale — does the system and allsthitware

coverage for standard features such as Lustre, @I,
boot, and system database (SDB) node failover disase
in the release. While exhaustive

installation testing is as extensive as possibleetgure

operate as intended at extreme node counts? Timdsec customers will not encounter issues with their aggs.

aspect of scale is somewhat more subtle and isséocon
issues that occur very rarely. These types ofessian be
hard to see until a very large system is deployedl they
start occurring frequently enough to be noticed pasued
and so are considered an aspect of scale testing.

IV. MACHINES, MACHINES, MACHINES

One of the most challenging aspects of developing,
testing, and delivering new features is managimgube of
our internal machines. This has become increasingl

We use several strategies to cover scale testinghallenging in the last several years as new Codtyvare

Extensive testing is done on our in-house scal¢esys
Stress testing is done with the goal of mimickihg bbad of
a larger machine. Simulators are also used toigecscale
coverage. An example of this is a simulator thas Wuilt
for use in testing the hardware supervisory sys(el8S)
software during the Cascade development timefraifiagis
simulator allows for the simulation of a range gbktem
configurations from a few densely populated calsingt to
200 sparsely populated cabinets. This capability froven
invaluable for finding software scaling bugs prito
deployment of the software on internal or custosystems.

eatures have been introduced that require unigaehine
configurations, such as high availability SMWs augbport
for a collection of workload managers, across a@oranent
of processor types and SKUs, different cabinet 2yaéong
with a variety of storage options. The goal of hiae
configuration and usage management is to maximize
development, test and data center access to athesfe
configurations and combinations within the bounfisiata
center limitations.

Cray has a significant investment in internal systdor
development and testing. The figure below shows our

There are also opportunities for Cray R&D to dolesca internal XC30 machines, their primary purpose, wieasion
testing on customer machines in house during the€f software they run, their storage and any special

manufacturing timeframe, which is very valuable gooving
operation at scale before large machines get tbetue
Finally, Cray R&D works with Cray and customer diel
service personnel to do early testing of softwateases on
customer systems. This is often done in partngrsliih
customers who have a special interest in a newr@asuch
as a particular Lustre version. Pre-releases cammaéde
available after code freeze for this type of tegtifPlanning
for this type of testing is done strategically lhsen
customer interest and the risk of significant nesatdires
operating at scale. These cooperative testing rexpes

configurations in place
Cray uses a three stage strategy for deploying ynewl

developed software on internal machines. The gdal
carefully controlling deployment is to minimize tirapacts
of problems with new code and especially to prevébst
larger machines with a broad user group from beogmi
disabled by problems with the new code. New maoddiest
exposed and tested on DEV platforms. The DEV @iats
are small, typically between four and twelve corepubdes,
and have a limited user community. Regression tegtsun
nightly on DEV systems to find any regressions edusy

have been mutually beneficial to both Cray and théew mods. Once mods have been in DEV for a weel, th

customers involved.
H. Release Readiness, Final CCB, and Code Freeze

are eligible to be promoted to the release bramchtte
release that is in progress.
On a weekly basis the CCB meets to approve mots to

A few days before the final CCB meeting and codepromoted into the weekly release branch for buitdl a

freeze date, a release readiness review is cortitecteview

the status of the release against plans and dekerifnthe

release will freeze on the planned date. The relesediness
review looks at the final set of metrics, the lidtrelease
critical bugs and plans for fixes, feature defertagii there

are any, along with other release criteria, sudhastatus of
documentation, plans for installation testing, ancdn. The
outcome of a successful release readiness reviappi®val

to freeze the release on the planned date.

I. Final Testing, Packaging and Installation Testing

After code freeze, final system testing is donehisT
testing typically includes a final RelRun, along tiwi
whatever other specific testing is needed to vdikgs for
release critical bug fixes that went in at thelfi@&B. Final
steps are taken to create the release packageshend
installation testing is performed. Installatiorstteg covers
fresh installs and the most typical upgrade patissiacludes

deployment. Once mods are in the release brahef,will
then get installed onto the test machines thatuaesl for
testing the release in progress. These machiretaager,
typically around a single cabinet, and have a wider
assortment of blade types, more storage types émer o
configuration options. The release branch mactanesised
for both feature and system testing throughout dpee.
The full regression suites are run at least weekiythese
machines, so mods in the release branch get ggoesson
exposure within a week.

The third level of deployment is to Cray’s interrtta
center. Data center machines are the largest mexhhat
Cray has for internal use. The data center is
independently from the R&D organization, with a aege
administrative team. This separation is desigoett@ate an
environment similar to that of our customers andgjit@ us
an independent view of the usability and readinets
software releases. These machines are used exnbiv

run

Copyright 2014, Cray Inc.

Devl Dev2 Dev3 Dev4

SC-AC Cabinet SC-AC Cabinet SC-AC Cabinet SC-AC Cabinet

* General DEV Platform < Lustre & 39 party deve| < Accelerator Dev Platforn « DEV & Rel Checkout Pla:form

< Three partitions dedicated to < Three partitions % GPU &KNC PDCs < Blades of every type E E
priority features < Xeon Platform < Runs DEV « Runs DEV & RB

*+ CLFS & FC DAL < CLFS, FC DAL < No shared FS « CLFS

HWTest1, 2, 3
(3) Blade Testers

“ HSS &HW Val. Platforms

Dev5 Dev6

' Dev7 Dev8 XC-LC Cabinet
SC-AC Cabinet SC-AC Cabinet SC-AC Cabinet % General dev & rel testing
< General Dev Platform <+ General DEV Platform < PE deyv, test and performance « Xeon Platform
% Xeon, GPU & KNC PDCs < All Xeon Platform < AllPDC types % Runs SMW DEV and
< Runs DEV «» SAS DAL “ FCXFS & FC DAL CLE DEV & RB
% No shared FS % Sonexion, XFS, HA SMW Sq| sq
DC3
(2) SC-AC Cabinets
All Xeon Platform
< Field Support Platform
“ Runs release-in-the-field
g xd i Bl xd xc|Bl xd xc|B
Testl DC2
. Test2 . DC1
(1) XC-LC Cabinet (1) XC-LC Cabinet (1) XC-LC Cabinet) (4) XC-LC Cabinets
% Primary XC Test Platform % XC Test Platform «+ Accelerator Scale testing + Scale testing & benchmarking
':: g" PDCltypes_ % All PDC types %bz\;r&m;m‘ncg PDC < All Xeon Platform)
> uns release-in-progress < Runs release-in-progress M Des « Runs release-in-progress
< Sonexion, IB DAL, HA SM\V, + CLFS Runs release-in-progress < Sonexion, CLFS, GPFS
Boot & SDB node failover y % DAL, XFS, y ' '

Figure 3. Internal XC30 Machines

the R&D test team but are also used by a wider conityyn ~ environment. While testing at the extreme scaleCody

within Cray, including benchmarking and application systems is always challenging, the use of our sktenin-

engineers. The data center machines generallytman house systems, stress testing, and the use ofetorailare

release in progress and deploy the latest releaseto code some of the ways that Cray meets this challengestifig at

a week after it has been exposed on the test nmexchin scale is enhanced by partnerships with intereatstbmers.
The process and test strategies that Cray useorsumyr

V. CONCLUSIONS commitment to software quality.
Cray’s software test and release process suppaoits o
focus on software quality and timely releases tghoa
structured release methodology and rich collectibrtest ACKNOWLEDGMENT

suites. The rigorous system testing methodologyg fatus The author thanks Janet Lebens, Dennis Arasony Larr
on system stability and suitability for a produatio Kaplan and many others who contributed to this pape

Copyright 2014, Cray Inc.

