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Abstract—In November 2013 the Swiss National Supercom-
puting Centre (CSCS) upgraded the 12 cabinet Cray XC30
system, Piz Daint, to 28 cabinets. Dual-socket Intel Xeon
nodes were replaced with hybrid nodes comprising one Intel
Xeon E5-2670 CPU and one Nvidia K20X GPU. The new
design resulted in several extensions to the system operating
and management environment, in addition to user driven
customisation. These include the integration of elements from
the Tesla Deployment Kit (TDK) for Node Health Check (NHC)
tests and the Nvidia Management Library (NVML). Cray
extended the Resource Usage Reporting (RUR) tool to incor-
porate GPU usage statistics. Likewise, the Power Monitoring
Database (PMDB) incorporated GPU power and energy usage
data. Furthermore, custom configurations are introduced to
the Slurm job scheduling system to support different GPU
operating modes. In collaboration with Cray, we assessed the
Cluster Compatibility Mode (CCM) with Slurm, which in turn
allows for additional GPU usage scenarios, which are currently
under investigation. Piz Daint is currently the only hybrid
XC30 system in production. To support robust operations we
invested in the development of: 1) an holistic regression suite
that tests the sanity of various aspects of the system, ranging
from the development environment to the system hardware;
2) a methodology for screening the live system for complex
transient issues, which are likely to develop at scale.
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I. INTRODUCTION

Piz Daint, the first Petascale hybrid Cray XC30 system,

has been deployed at the Swiss National Supercomputing

Centre (CSCS) during the last quarter of 2013. The system

has a number of unique features, including hybrid node

daughter cards (Intel Xeon CPU and Nvidia Tesla GPU),

a fully provisioned dragonfly interconnect for 28 cabinets,

an adaptive programming and execution environment and

an energy-aware system monitoring and diagnostics infras-

tructure. This report provides an overview of the system

administration tools and configurations that have been ex-

tended for the hybrid Cray XC30 platform. Moreover, we

present solutions that are developed at CSCS to support

robust operations of a unique system at scale.

Piz Daint was installed in two phases. During the first

installation phase (Phase I), multi-core only nodes were in-

stalled in 12 cabinets [1]. The goal of the Phase I installation

was to capture the requirements of user applications with

Figure 1. Piz Daint and its supporting ecosystem including the scratch
and external file systems, resource management and accounting setup.

respect to earlier Cray platforms. Evaluation and comparison

of the Aries interconnect in the Cray XC30 and the Gemini

interconnect in the Cray XE6 and Cray XK7 confirmed

that applications can exploit the high bandwidth intercon-

nect. During Phase I, system management and monitoring

interfaces were evaluated on the Cray XK7 system. Each

node of a Cray XK7 system contains an AMD Interlagos

processor and Nvidia Tesla K20X accelerator. During the

final installation phase (Phase II), hybrid multi-core nodes

with the Nvidia Tesla K20X devices replaced multi-core

nodes. Furthermore, additional optical cables are added in

order to implement a fully provisioned dragonfly network on

28 cabinets (i.e. 14 electrical groups). The resulting system

is the fastest supercomputing platform in Europe (according

to the Top500 list released in November 2013) and the most

energy efficient PetaScale system (Green500 list, November

2013).

Figure 1 gives a high level overview of Piz Daint and

its supporting environment at CSCS, which includes an

internal parallel scratch file system (Sonexion1600), external

login nodes, external and site-wide file systems, a resource

manager (Slurm) and CSCS database accounting as well as

authentication subsystems.

In order to support the additional compute capability of



the Phase II system, several components of the supporting

ecosystem (e.g., the scratch file system, the number of

service node and LNET routers) were augmented; details

will be provided in the subsequent sections. At the same

time the new node design required extension and customiza-

tion of the system management and operating environment:

this involved the integration of elements from the Tesla

Deployment Kit (TDK), for Node Health Check (NHC)

tests, and the Nvidia Management Library (NVML) [2].

Cray extended the Resource Utilization Reporting (RUR)

tool to incorporate GPU usage statistics. Likewise, the Power

Monitoring Database (PMDB) incorporated GPU power and

energy usage data [3]. Furthermore, custom configurations

were introduced to the Slurm job scheduling system to

support different GPU operating modes [4]. In collaboration

with Cray we assessed Cluster Compatibility Mode (CCM)

[5] in conjunction with Slurm, which in turn allows for

additional GPU usage scenarios that are currently under

investigation. At the time of writing, Piz Daint is the

only hybrid XC30 system in production. To support robust

operations we invested in the development of:

1) A holistic regression suite that tests the sanity of

various aspects of the system, ranging from the de-

velopment environment to the system hardware;

2) A methodology for screening the live system for

complex transient issues, which are likely to develop

at scale.

The organization of the paper is as follows: Section II

provides system configuration details and compares and

contrasts Phase I and Phase II configurations. Section III

lists the key extensions to the system management tools

and interfaces: Tesla Deployment Kit (TDK), analysis of

logs, Resource Usage Reporting (RUR), Power Management

Database (PMDB) and counters, GPU operations modes,

and Cluster Compatibility Mode (CCM) extension to Slurm.

Details on the CSCS regression suite and motivation are

provided in Section IV. A case study will be presented

in Section V that highlights how complex problems – for

example, transient at-scale issues at the driver level – can be

investigated and verified. A summary of features and plans

for extensions is provided in Section VI.

II. SYSTEM CONFIGURATION

The main system is composed of 5,272 compute nodes,

each with a single Intel Xeon Sandy Bridge 8-core processor,

an Nvidia Tesla K20X GPU and 32 GBytes of memory.

The hybrid blade layout is shown in Figure 2. There are 26

service blades (which equates to 52 service nodes) and these

are distributed to optimally distribute parallel file system

traffic. The scratch file system is hosted by a Sonexion1600

storage appliance comprised of 24 Scalable Storage Units

(SSUs) and one Metadata Management Unit (MMU). The

file system is built around Lustre Server v2.1+ and is

connected to the XC30 service nodes via a dedicated FDR

Figure 2. Piz Daint compute blade design in the two phases of installation.
Two types of memory are available in Phase II: CPU DDR3-1600 (32
GBytes per node) and GPU GDDR5 memory.

InfiniBand fabric to 34 Service Nodes within the XC30.

There are 5 external Login nodes (esLogin) and we use the

Slurm scheduling system. For pre-installation and testing, a

16-compute node, self-contained TDS system was available

with its own Sonexion1600 storage and external login node.

Tables I to IV provide an overview of system configura-

tion details at each of the two distinct phases of the system.

Table I summarises the compute node characteristics and as

can be seen the Phase II system delivers over 10x double-

precision floating-point performance. Furthermore, the per

node compute capability and memory bandwidth is increased

by a factor of 4.

Table II compares the network characteristics. The Phase

II system has a fully provisioned optical network and as

Table I
COMPARISON OF NODE CHARACTERISTICS DURING THE TWO PHASES

OF INSTALLATION.
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Table II
COMPARISON OF HIGH-SPEED DRAGONFLY NETWORK

CHARACTERISTICS DURING THE TWO PHASES OF INSTALLATION.

Table III
COMPARISON OF SYSTEM ADMIN AND STORAGE CHARACTERISTICS

DURING THE TWO PHASES OF INSTALLATION.

a result, the per-node global bandwidth and the bisection

bandwidth of the system are increased by factors of 4 and

8, respectively.

System administration components of the system are listed

in Table III together with the storage configuration. With

the additional storage capacity there is a relative increase

in the aggregate storage bandwidth. Similarly, additional

service nodes are included to support additional servers for

specific operations, for example, DVS, Slurm and login.

RSIP services are added for Slurm CCM, which will be

explained in the next section.

Table IV lists some of the features of the programming

and execution environment. These are included here because

they impact to some extent the configuration of certain

system management and monitoring tools, especially the

Slurm job scheduler. For instance, the support of GPU

operating modes required customization of Slurm. Moreover,

RUR and CCM are only introduced in Phase II.

Table IV
COMPARISON OF PROGRAMMING AND EXECUTION ENVIRONMENTS

CHARACTERISTICS DURING THE TWO PHASES OF INSTALLATION.

III. EXTENSIONS TO THE SYSTEM TOOLS AND

INTERFACES

As mentioned in the previous section, system management

and monitoring interfaces, and some diagnostics tools, have

been extended to support a robust operation of the hybrid

Cray XC30 platform. Moreover, in order to improve the

productivity of the end users of the hybrid system, custom

configurations have been introduced to the Slurm scheduling

environment to allow for different GPU operating modes and

to fully support the Nvidia CUDA SDK. Note that Cray’s

ALPS scheduling interface is quite robust for mapping MPI

processes and OpenMP threads on multi-core platforms.

However ALPS currently does not contain similar extensions

for the hybrid platform.

A side-by-side comparison of system tools and interfaces

are shown in Figure 3. Some new features, for example,

RUR and PMDB, are not specific to the GPU. During the

first phase of installation, these features were unavailable on

the Cray XC30 platform.

A. Integration of the Tesla Deployment Kit (TDK)

The Tesla Deployment Kit (TDK), which has recently

been renamed the GPU Deployment Kit, is composed of

a set of tools and APIs that enable users and/or system

administrators to control and configure GPU devices. There

are two main components of TDK: nvidia-healthmon

and Nvidia Management Library (NVML) API.

nvidia-healthmon is a system administrator tool for

detecting and troubleshooting common problems affecting

Nvidia Tesla GPUs in a high performance computing (HPC)

environment, i.e., a GPGPU-accelerated cluster. Hence, the

nvidia-healthmon contains limited hardware diagnos-

tic capabilities and focuses on software and system config-

uration issues and is designed to:
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Figure 3. System monitoring and diagnostics stacks for two installation
phases. Red items show that the features are available for multi-core or
CPU components. Green items are specific to the GPU devices.

• Discover common problems that affect a GPU’s ability

to run a compute job including:

– Software configuration issues;

– System configuration issues;

– System assembly issues, like loose cables;

– A limited number of hardware issues.

• Provide troubleshooting help;

• Easily integrate into Cluster Scheduler and Cluster

Management applications;

• Reduce downtime and failed GPU jobs.

Currently nvidia-healthmon cannot detect all known

GPU issues that can be uncovered by the Nvidia hardware

field diagnostics (fielddiag) tests. Moreover, it is a

completely passive tool in the sense that it cannot offer a

resolution to a known problem or fix it.

Nonetheless, the nvidia-healthmon tool was in-

corporated as part of the Cray Node Health Check

(NHC) prologue. For this integration into the NHC con-

figuration we wrote a simple shell script that calls the

nvidia-healthmon command with its configuration file.

The NHC script was written following Cray’s guidelines

([6]), and uses the following files:

• Configuration file: /etc/opt/cray/nodehealth/

nodehealth.conf

• Custom script: /apps/daint/system/

nodehealth/NHC_nvidia-healthmon.sh

A sample output from the nvidia-healthmon test is

shown in Figure 4.

Loading Config: SUCCESS

Global Tests

Black-Listed Drivers: SUCCESS

Load NVML: SUCCESS

NVML Sanity: SUCCESS

...

NVML Sanity: SUCCESS

InfoROM: SUCCESS

Multi-GPU InfoROM: SKIPPED

ECC: SUCCESS

PCIe Maximum Link Generation: SUCCESS

PCIe Maximum Link Width: SUCCESS

CUDA Sanity: SUCCESS

PCI Bandwidth: SUCCESS

Memory: SUCCESS

...

Figure 4. Sample output from nvidia-healthmon.

The Nvidia Management Library (NVML) is a C-based

programming interface for monitoring and managing various

states within Nvidia GPU devices. It is intended to be a

platform for building third-party applications and is also the

underlying library for the Nvidia-supported nvidia-smi

tool.

The NVML API is divided into five categories:

• Support Methods:

– Initialization and Cleanup

• Query Methods:

– System Queries

– Device Queries

– Unit Queries

• Control Methods:

– Device Commands

– Unit Commands

• Event Handling Methods:

– Event Handling

• Error Reporting Methods:

– Error Reporting

The nvidia-smi has a set of privileged and non-

privileged commands, but the majority of query methods

are available to the users. However, some control methods,

particularly those that can change the unit or device configu-

ration or operating modes, can only be used in the privileged

mode. Conveniently a couple of privileged-mode options can

be enabled via the Slurm epilogue and prologue extensions.

This will be explained in the next section.

NVML query methods can be used through the API or

using a python interface called pyNVML [7]. On the hybrid

Cray XC30 platform, GPU accounting data, namely the

GPU usage and GPU memory usage, is reported in Cray’s

Resource Usage and Reporting (RUR) tool, and this too is

4



explained in the subsequent section. Users can also query

additional information about the GPU devices such as ECC

setting, clock speed, and so on.

B. Enabling Various GPU Operating modes

Users often like to request a number of privileged com-

mands. For example, OpenCL applications may want to

request the default operating mode to allow for multiple MPI

tasks per GPU. This is available to CUDA and OpenACC

applications in a setting called Multi Process Mode (MPS).

Another instance is clock frequency boost. One applica-

tion, namely GROMACS, showed a speedup of 10-15%

by increasing the clock frequency of the GPU, which is a

privileged-mode option.

We have enabled a small subset of these options via

the Slurm constraint mechanism. The steps involved as

described as follows:

1) /opt/slurm/default/etc/slurm.conf

a) Include a definition of the slurm

control daemon (slurmctld)

prologue and epilogue scripts thus:

PrologSlurmctld=/opt/slurm/default/

etc/prologslurmctld.sh

EpilogSlurmctld=/opt/slurm/default/

etc/epilogslurmctld.sh

b) Include a definition of the

“Feature” supported by Slurm:

Feature="UNKNOWN,gpumodedefault,

aclock,startx"

Gres=gpu_mem:6144,gpu:1

2) The prologSlurmctld script interprets the re-

quested “Features” and, usually via nvidia-smi

command, sets the desired mode of the GPU.

A user can request a predefined feature in a job script. Re-

sources are allocated to the user according to the constraints

and returned to the system in default mode. For example, by

default, all GPU devices are set in the “Exclusive Operating

Mode”. However when the user of an OpenCL application

specifies -C gpumodedefault in their job script, the

GPU devices assigned to the users job are configured in

the privileged “GPU Mode Default” mode. After job exe-

cution the device is reconfigured to the default “Exclusive

Operating Mode.”

A similar mechanism has been adopted for boosting the

clock frequency of the GPU. The following options are used

within the prologSlurmctld script:

• Show Supported Clock Frequencies:

– nvidia-smi -q -d SUPPORTED_CLOCKS

• Set Memory and Graphics Clock Frequency:

– nvidia-smi -ac <MEM clock,

Graphics clock>

• Show current mode:

– nvidia-smi -q -d CLOCK

• Reset all clocks:

– nvidia-smi -rac

• Allow non-root to change clocks:

– nvidia-smi -acp 0

C. Resource Usage and Reporting (RUR)

Cray’s Resource Utilization Reporting (RUR) is a tool

for gathering statistics on how system resources are being

used by applications. RUR is enabled on Piz Daint. With

the default setting, outputs are recorded in ~/rur.jobid.

Users can customize the output in a number of

ways. Firstly, the RUR output can be redirected to

a user-defined location as specified the redirect file

~/.rur/user_output_redirect.

The contents of this file must be a single line that specifies

the absolute path (or relative path within the user’s $HOME)

to the directory where the RUR output is to be written. If the

redirect file does not exist, or if it points to a path that does

not exist or to which the user does not have write permission,

then the output is written to $HOME. Users who do not wish

to collect RUR output data can simply set the redirect path

to /dev/null.

Additionally, the user may override the default

report type by specifying a valid report type in

~/.rur/user_output/report_type. Valid report

types are apid, jobid, or single, resulting in the user’s RUR

data being written to one file per application, one file per

job, or a single file, respectively. If the report type file is

empty or contains an invalid type, the default report type,

as defined in the configuration file, is created.

The default output of RUR after a job completes shows

the taskstats, gpustat and energy information. For

each one of these entries, the following data is listed:

• user ID (uid)

• ALPS ID of the job (apid)

• Slurm job ID (jobid)

• name of the executable (cmdname)

The taskstats record provides basic process account-

ing similar to that provided by Unix process accounting or

getrusage. This includes the system and user CPU time,

maximum memory used, and the amount of file input and

output from the application. These values are sums across all

nodes, except for the memory used, which is the maximum

value across all nodes.

The gpustat record provides utilization statistics for

Nvidia GPUs on Cray systems. It reports both the GPU

compute time and the memory used summed across all

nodes as well as the maximum GPU memory used by the

application across all nodes.

The energy record prints the total energy used, mea-

sured in Joules, by all nodes participating in the running of
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Figure 5. RUR sample output for a GPU enabled application on Piz Daint.

the job. Note that the figure does not include the Aries ASIC

or cabinet blowers.

Figure 5 illustrates a sample output of a GPU accelerated

application called acc_exe. Two GPU statistics are high-

lighted: the sum of memory across all GPU devices that

are used for the execution of the code and the maximum

memory per GPU device. These data were in turn gathered

by NVML GPU accounting interface.

D. Power Management Database (PMDB) and

pm_counters

System power usage is available in the PMDB where

data can be queried at multiple levels. There are cab-

inet level sensors, blade level sensors and node level

sensors. Node level information is also available in

/sys/cray/pm_counters:

• accel_energy

• accel_power_cap

• power

• accel_power

• energy

• power_cap

Details of CSCS’s PMDB configuration are presented in

a CUG 2014 publication [8]. Note that multi-core only Cray

XC30 platforms do not have any “accel” counters.

E. CCM Extensions to Slurm

On Piz Daint, Slurm has been extended to support Clus-

ter Compatibility Mode (CCM). Conventionally, CCM is

enabled at Cray sites to run ISV applications, but our

motivation is different – namely, to facilitate the use of the

graphical profiling tool Nvidia Visual Profiler (nvvp), which

can not run natively through the ALPS aprun command.

With CCM, a user is able to launch the application by

logging into the compute node with X11 forwarding.

CCM is tightly coupled to the workload management

system. We are using a patch for the Slurm version 2.5.4,

which is written by Bright Computing in collaboration with

Cray. Enabling CCM was done following Cray’s procedures

(documented in [9]) with the optional step regarding the

Realm Specific Internet Protocol (RSIP) configuration. This

step is necessary to allow the compute nodes to reach the

Kerberos and LDAP servers which sit on the CSCS data-

centre network (external to the system) for user authentica-

tion and authorisation.

Enabling CCM involves the following files:

> salloc -N 1 -p ccm

> module load ccm

> export PBS_JOBID=$SLURM_JOBID

> ccmlogin -V

> hostname

nid02542

> module load craype-accel-nvidia35

> nvvp &

Figure 6. Launching nvvp on a compute node of Piz Daint.

1) /etc/ldap.conf in the shared root (default)

2) /etc/nsswitch.conf in the shared root (default)

Three CCM RSIP servers are configured to support this

mode on the Piz Daint system. There are some outstanding

bugs that need to be resolved, especially for multiple MPI

tasks.

Step-by-step instructions for launching nvvp are shown

in Figure 6.

With the CCM solution, the entire Nvidia CUDA SDK is

available to the users of Piz Daint.

IV. HOLISTIC REGRESSION SUITE

The Cray Node Health Check (NHC) and

nvidia-healthmon tools are useful for the early

detection of a small subset of already known hardware

issues. These tools, however, provide information only at

the level of the node, and thus cannot provide a good

assessment of the sanity of the system as a whole. For this

reason, CSCS has developed a regression suite for Piz Daint

that provides an overview of the system health over a much

broader range of metrics, including both the hardware and

the software configurations. The regression suite consists of

a range of unit/component tests alongside user applications.

The full regression suite has been added as a final step in

the regular monthly maintenance workflow, and its modular

design means that specific tests can also be run while the

machine is in production.

The regression suite enables us to provide feedback to

Cray on pre-release versions of the CLE and PE as well

as intermediate patches. The regression suite is capable of

reporting on functional as well as performance bugs on the

entire system as well as individual nodes.

As novel GPU usage scenarios are explored on the system

in the development of CPU/GPU-hybrid codes, we have

found that faults can be missed by the NHC, even with the

nvidia-healthmon extended version which is imple-

mented on Piz Daint. Recently, for example, an application

failure was reported by a user that exposed an issue with

the functioning of MPS. Although the node was sick, all

vendor-provided tests (e.g. nvidia-healthmon) showed

the node as healthy, because the vendor provided test suites

did not have checks for MPS functionality. We quickly

implemented a test that exposed the bug – based on the

6



simpleMPI.cc code from Nvidia – and the test is now

included in the regression suite. The regression suite can be

called with an optional argument --check-node=nidid

which will run all GPU sanity-related tests on a specific

(read: suspect) node.

The regression suite (or subsets of the suite that check spe-

cific functionality) is launched at the conclusion of monthly

maintenance sessions, after unexpected or expected down-

times, after programming environment updates, or during

production time to check for suspected hardware or software

faults. Some tests require the use of the batch system and

to this end the regression suite checks for the existence of

a Slurm reservation and will submit the test jobs to that

reservation if it exists and is active. Some of the tests in

fact require a specific Slurm reservation and will be skipped

automatically if one is not present.

Each test has been classified as one of the following types:

• Configuration and Functionality (“it is there and meets

some functionality requirements”), or

• Performance (“It meets some performance criterion/a”)

Each test has also been categorized as one or more of:

• Application Performance (AP)

• System Performance (SP)

• System Management (SM)

• File systems/Storage (FS)

• Developer Environment (DE)

• Networking/Connectivity (NC)

These labels are mainly for information purposes, to help

ensure the tests are providing adequate coverage of all

system and software components.

The ease with which failures can be identified and de-

bugged is a key design element for the regression suite, and

apart from the tests that check for regression in application

performance – where a number of tightly or loosely-coupled

system components are being tested at the same time (batch

system, file system mount points, node performance, net-

work performance, Lustre, and so on) – the tests attempt as

much as possible to test individual components in isolation.

We wished to avoid situations where a test is marked simply

as a “fail” because one component has failed inside a long

and complicated workflow: a failed test that compiles a

code, runs the executable in a batch job, and checks the

performance obtained compared a reference is likely to

be less informative than three separate tests that test each

component separately (an additional test may be necessary

to check the workflow itself, however).

In time, the tests will be categorized also in terms of

their criticality, such that decisions can be made more easily

about whether the system can be returned to users or not.

The levels are still to be defined, but we envisage something

along the lines of:

• Critical (“Can not be returned to users . . . ”)

• Major (“Machine is usable, but . . . ”)

• Minor or Purely Cosmetic

The classifications of criticality are important because

they should determine whether or not a machine can be

returned to the user community. To this end we are devel-

oping a set of processes that define how we should react to

a given failure or failures in the regression suite. In some

cases, system administrators will be able to determine easily

the cause of a test failure and correct it immediately. In

other cases they will need to communicate failures to staff

responsible for application development, tuning and support,

and after analysis, a consensus can be reached on whether

or not it is safe to return the system into production.

In Figure 7, we show a partial output from a run of the

regression suite launched from an internal login node of Piz

Daint.

A. System Sanity

The first test in the regression suite simply parses the

output from a system sanity script that is run on the SMW.

This test checks the presence and functionality of critical

system components such as Slurm, various file systems, load

averages and disk space, amongst others (see Test 1000

in Figure 7).

B. Programming Environment Regression

There are approximately 50 tests that assess the config-

uration and functionality of the programming environment

on Piz Daint. Some of these tests are purely configuration-

based: for example, we have tests that check that each

programming environment can compile simple hello world-

type codes, another test that checks if modules relating to

architecture-specific targets provide the expected function-

ality (e.g., the generation of AVX instructions when the

craype-sandybridge module is loaded), and another

test that checks that symbols are resolved by the correct

libraries according to which modules are loaded (e.g., calls

to DGEMM are resolved by the accelerated LibSci library

if the craype-accel-nvidia35 module is loaded).

Others check the performance obtained by various elements

of the programming environment (e.g., numerical libraries)

and compare them to known references: one such test checks

the performance of LibSci’s DGEMM over a range of matrix

sizes and compares the results to reference values, both for

accelerated and CPU-only versions of the library.

The regression suite has already identified half a dozen or

more bugs related to the configuration of the programming

environment, which have been reported to Cray. Some

examples of these were:

• Serial codes failing to compile with PgEnv-gnu and

dynamic linking

• module unload followed by module load not

mimicking module switch behaviour

• Problems with Intel MKL configuration
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robinson@daint03:˜/daint-regression> ./run_regression

Regression test started by robinson

===> start date Wed Apr 30 13:37:55 CEST 2014

Running on daint internal login ( daint03 )

Regression testing output will appear in:

/users/robinson/daint-regression/output/30-04-2014_13-37-55/idaint

Test 1000: Check system health and sanity

=============================================================================

| Checking checkSystem.out was last modified within last 2 hours [ OK ]

| Checking the load average [ OK ]

| Checking for zombie processes [ OK ]

| Checking ntpd process [ OK ]

| Checking free space in / [ OK ]

| Checking free space in /snv [ OK ]

| Checking free space in /rr [ OK ]

| Checking if /apps is mounted on all nodes [ OK ]

| Checking if /users is mounted on all nodes [ OK ]

| Checking if $SCRATCH is mounted on all nodes [ OK ]

| Checking the service nodes [ OK ]

| Checking the DVS nodes [ OK ]

| Checking lustre [ OK ]

| Checking lnet router nodes [ OK ]

| Checking login nodes [ OK ]

| Checking down nodes [ OK ]

| Checking scratch usage [ OK ]

| Checking slurm frontend nodes [ OK ]

| Checking slurm partition [ OK ]

| Check system health and sanity [ FAILED ]

Test 5040: Modules loaded at login match for ext and int login nodes

=============================================================================

| Modules loaded at login match for ext and int login nodes [ PASSED ]

Test 5041: Modules in PrgEnv-intel match for ext and int login nodes

=============================================================================

| Modules in PrgEnv-intel match for ext and int login nodes [ PASSED ]

Test 5042: Modules in PrgEnv-gnu match for ext and int login nodes

=============================================================================

| Modules in PrgEnv-gnu match for ext and int login nodes [ PASSED ]

Test 5043: Modules in PrgEnv-pgi match for ext and int login nodes

=============================================================================

| Modules in PrgEnv-pgi match for ext and int login nodes [ PASSED ]

Test 5003: Ensure PrgEnv-cray is loaded by default

=============================================================================

| Ensure PrgEnv-cray is loaded by default [ PASSED ]

Test 5020: Functionality of module unload PrgEnv-*; module load PrgEnv-*
=============================================================================

| Functionality of module unload PrgEnv-*; module load PrgEnv-* [ PASSED ]

Test 5010: Time for compiling hello world in PrgEnv-cray

=============================================================================

| Time for compiling hello world in PrgEnv-cray [ PASSED ]

Test 5011: Time for compiling hello world in PrgEnv-intel

=============================================================================

| Time for compiling hello world in PrgEnv-intel [ PASSED ]

Test 5012: Time for compiling hello world in PrgEnv-gnu

=============================================================================

| Time for compiling hello world in PrgEnv-gnu [ PASSED ]

Test 5013: Time for compiling hello world in PrgEnv-pgi

=============================================================================

| Time for compiling hello world in PrgEnv-pgi [ PASSED ]

Test 5004: Compile hello world in PrgEnv-cray

=============================================================================

| Compile hello world in PrgEnv-cray [ PASSED ]

Test 5005: Compile hello world in PrgEnv-intel

=============================================================================

| Compile hello world in PrgEnv-intel [ PASSED ]

Test 5006: Compile hello world in PrgEnv-gnu

=============================================================================

| Compile hello world in PrgEnv-gnu [ PASSED ]

Test 5007: Compile hello world in PrgEnv-pgi

=============================================================================

| Compile hello world in PrgEnv-pgi [ PASSED ]

Test 5009: craype-accel-nvidia35 resolves to libsci_acc in PrgEnv-gnu

=============================================================================

| craype-accel-nvidia35 resolves to libsci_acc in PrgEnv-gnu [ PASSED ]

Test 5014: Compiler generates AVX instructions PrgEnv-cray

=============================================================================

| craype-sandybridge module loaded [ OK ]

| Compiler flags for AVX found [ OK ]

| Compilation [ OK ]

| AVX instructions generated in assembly code [ OK ]

| Compiler generates AVX instructions PrgEnv-cray [ PASSED ]

Figure 7. Partial output from the regression suite created for Piz Daint.

• Undefined references to Trilinos symbols when linking

dynamically

C. System Performance Regression

We have written a series of tests to check the floating-

point performance on the node (with and without the GPU)

for each and every node in the system. We intend to add

tests that measure the interconnect performance and I/O

subsystem in the near future.

D. Applications Performance Regression

The regression suite currently includes three scientific

software applications (CP2K, NAMD, and GROMACS). In

each case, we run both the CPU-only and the GPU-enabled

versions, which can help debugging problems when tests

fail. We intend to include additional software applications

with time.

V. CASE STUDY: IDENTIFICATION & VERIFICATION OF

COMPLEX, TRANSIENT BUGS

GPU devices in a system bring a complex ecosystem,

particularly so the GPU driver software. As mentioned

before, this driver software allows for the configuration and

manipulation of the GPU devices including its connection

to the CPU in user and privileged modes. Users can write

applications using the driver API. Like any piece of software,

the driver can have bugs, which can be extremely difficult

to identify, especially if the issues are transient and only

occur at scale. Thus, on Piz Daint, since it has nearly 5,300

nodes, transient bugs are hard to detect and difficult to verify

because it is a unique system at this scale. The system

is in production and therefore cannot be taken offline for

detecting bugs or isolating faulty components. We therefore

had to devise a solution that allows us to screen and produce

results on a live system.

We set the following design criteria for the screening

solution:

• Full system coverage

• Statistics gathering

• Analysis of logs

• Simple interface for users

• Reporting

• Flexibility

In designing the solution, we exploited the Slurm schedul-

ing system for creating special reservations, Logstash and

custom scripts to produce reports. Logstash is an Open

Source log management tool that allows logs collection in a

single place in order to easily store, index and analyze log

entries [10]. Logging on Piz Daint is managed with LLM

(Lightweight Log Management). Logs belonging to different

nodes (syslog and console logs) are collected on SMW node.

Not all logs are handled by LLM (i.e. Slurm logs) so agents

are defined on relevant nodes in order to have desired logs

sent to Logstash.
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Figure 8. Overlapping reservations used for screening of Piz Daint using
application runs of 1,024 nodes.

Using Slurm, we can create reservations that rotate around

the system with some ghost nodes for buffering and overlap-

ping. Output from the system logs are gathered in logstash

and triggers can be placed for identifying known errors.

Finally, the Slurm database is analyzed using custom scripts

to ensure adequate screening has been performed on all

available compute nodes.

Here we provide a brief overview of a concrete example

of where we used our design to verify a driver patch. For

this case study we used a production level application called

DCA++ ([11]), which was being used on the system by

a non-privileged (i.e. standard) user. The benefit of the

test procedure is that the user could carry on using the

application in the normal way and at the same time we could

exercise the whole system over a period of time without the

need for extended maintenance windows. In this way we

did not use any compute cycles outside the production User

Program.

The procedure involves the creation of ghost reservations

to:

1) Provide a single reservation name for user so they do

not have to generated multiple job scripts while the

reservation rotates around the system (Slurm does not

allow for two reservations with identical names);

2) Allow for buffering and overlapping of reservations.

Figure 8 shows a graphical depiction of the screening

process that was customized for DCA++. The application

ran on 1,024 nodes because the frequency of errors was

higher at that scale. Ten extra nodes are assigned to each

reservation for buffering purposes (in the case that nodes

fail during job execution these buffer nodes allow the job to

restart).

Two reservations are created at the beginning of the con-

figuration (“dcapp” and “ghost”); “dcapp” is the reservation

where jobs will actually run starting with the set of nodes

Figure 9. Rotating reservation mechanism allows the overlapping reser-
vations to move across the system over time.

daint01: # scontrol show res

ReservationName=dcapp StartTime=26 Jan 09:10

EndTime=Tomorr 07:34 Duration=1122:23:44

Nodes=nid0[0004-0191,0196-0383,0388-0451,

0456-0767,0772-0835,0840-1057] NodeCnt=1034

CoreCnt=16544 Features=(null)

PartitionName=(null)

Flags=MAINT,OVERLAP,IGNORE_JOBS,SPEC_NODES

Users=(null) Accounts=csstaff,s299

Licenses=(null) State=ACTIVE

ReservationName=ghost StartTime=Tomorr 07:34

EndTime=Sat 07:34 Duration=100:00:00

Nodes=nid0[1047-1151,1156-1535,1540-1919,

1924-1987,1992-2096] NodeCnt=1034

CoreCnt=16544 Features=(null)

PartitionName=(null)

Flags=MAINT,OVERLAP,IGNORE_JOBS,SPEC_NODES

Users=(null) Accounts=csstaff,s299

Licenses=(null) State=INACTIVE

Figure 10. Slurm reservations “dcapp” and “ghost”.

in List1; “ghost” is the reservation where “dcapp” will be

updated into, with the set of nodes in List2.

By means of a script the “dcapp” reservation was updated

daily and switched to the “ghost” reservation using a new set

of nodes (List1 → List2, List2 → List3, List3 → List4, List4

→ List5, List5 → List6, List6 → List1, . . . ) and “ghost” will

be updated daily with a new set nodes as well. This process

is represented graphically in Figure 9.

Figure 10 shows the “dcapp” and “ghost” reservations

setup within Slurm.

The switch of “dcapp” to “ghost” and the update of

“ghost” reservation is made by a script called by an entry

in the crontab:

34 7 * * * /ufs/slurm/priorities/bin/
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Table V
AGGREGATE DCA++ TEST TIME ACCUMULATED USING THE TEST

PROCEDURE.

Number of Nodes DCA++ Test Time (hr)

4062 >48

1037 >24

169 <24

4 0

create_dcapp_res.sh >>

/ufs/slurm/priorities/bin/day.log

Using this process we screened 1,024 compute nodes at

a time in 24-hour cycles. Table V gives a summary of the

screening cycle for primarily 1,024 nodes runs. As can be

seen all bar 173 nodes ran the code for more than 24 hours.

VI. SUMMARY AND FUTURE PLANS

The first hybrid Cray XC30 system incorporates unique

features in its system administration, management, moni-

toring and accounting environments. CSCS has introduced

extensions to the Slurm scheduling system to allow for GPU

operating modes that are needed by end users of the sys-

tem. Furthermore, for supporting robust operations, CSCS

has developed an extensive regression suite and a system

screening mechanism which have been detailed in this paper.

In future, we plan on continuing our collaboration with Cray

and Nvidia to improve coverage of their system management

and diagnostics tools. CSCS will continue to invest in the

regression suite so as to improve on early detection and

diagnosis. We are currently investigating additional GPU

operating modes and features, specifically for OpenGL, to

facilitate interactive visiualization using Piz Daint compute

nodes.
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