Integration of Intel Xeon Phi Servers into the HLRN-III Complex: Experiences, Performance and Lessons Learned

Florian Wende, Guido Laubender and Thomas Steinke

Zuse Institute Berlin (ZIB)

Cray User Group 2014 (CUG'14) May 6, 2014

Outline

- Site Overview ZIB, IPCC & the HLRN III System
- Integration of a Xeon Phi cluster into HLRN complex @ ZIB
 - Workloads, research, challenges
- Performance: two example applications
- Lessons Learned

Site Overview ZIB, and HLRN

About the Zuse Institute Berlin

- non-university research institute
- founded in 1984
- Research domains:
 - Numerical Mathematics
 - Discrete Mathematics
 - Computer Science
- Supercomputing:
 - operates the HPC systems of the HLRN alliance
 - domain specific consultants
- Research: distributed systems, data management, many-core computing

08.05.2014

e original Z1 in Konrad's parent's living room circa 1938

Research Center for Many-Core High-Performance Computing @ ZIB

steinke@zib.de

History of Supercomputing @ ZIB

HLRN – the North-German Supercomputing Alliance

- Norddeutscher Verbund zur Förderung des Hoch- und Höchstleistungsrechnens – HLRN
- joint project of seven North-German states (Berlin, Brandenburg, Bremen, Hamburg, Mecklenburg-Vorpommern, Niedersachsen and Schleswig-Holstein)
- established in 2001
- HLRN alliance jointly operates a distributed supercomputer system
 - hosted at Zuse Institute Berlin (ZIB) and at Leibniz University IT Service (LUIS), Leibniz University Hanover

Konrad @ ZIB

Gottfried @ LUIS

The HLRN-III System

Cray XC30 Systems in Q4/2014

CEAY

HLRN-III Overall Architecture

Key Characteristic (Q4/2014)

- Non-symmetric installation
- @ZIB: 10 Cray XC30 cabinets
- @LUIS: 9 Cray XC30 cabinets
 + 64 four-way SMP nodes
- Global resource mgmnt & accounting (Moab)
- File systems
 - ✤ WORK: 2 x 3.6 PB, Lustre
 - HOME: 2 x 0.7 PB, NAS appliance

The HLRN-III Complex @ ZIB

- Compute: Cray XC30 (Q4/2014)
- 744 XC30 nodes (1872 nodes)
 - ✤ 24 core Intel IVB, HSW
 - 64 GB / node
- 4 Xeon Phi nodes (7xxx series)
- Storage: Lustre + NAS
 - ✤ WORK (CLFS): 1.4 PB (3.6 PB)
 - ✤ HOME: 0.7 PB
 - DDN SFA12K

Current Cray XC30 installation @ ZIB

Workloads on HLRN System

- Diverse job mix, various workloads
- Codes: self-developed codes + community codes + ISV codes steinke@zib.de

Preparing for Many-Core in HPC Integration of a Xeon Phi **Development Cluster** into HLRN-III Complex

Our Approach with Given Constraints

- Goal: Evaluation, migration, optimization of selected workloads
- Status: Research experiences with accelerator devices since ~2005
 - FPGA (Cray XD1,...), ClearSpeed, CellBE, now GPGPU + MIC
- Challenges: productivity, easy-of-use, "programmability"
 - Iimited personal resources for optimizing production workloads
 - additional funding extremely important
- Collaboration with Intel (IPCC)
 - Push many-core capabilities with MIC
 - Optimization of workloads and many-core research

Workloads Considered

BQCD

steinke@zib.de

Work in Progress...

Workload	Key Results (Status)	Issues/Challenges	Solutions	Tools/Approaches
BQCD	OpenMP with LEO	SIMD with MPI data layout	AoSoA	VTuneData layout redesign
GLAT	 CPU+Acc code OpenMP + MPI Concurrent kernel execution 	Concurrent kernel execVectorization	LEO and MPIHAM OffloadIntrinsics	 SIMD on CPU based on MIC code Offload (LEO, OpenMP4, HAM)
HEOM	MIC-friendly data layout	Auto-vectorization in OpenCL	Flexible data models	 Data layout (SIMD) for OpenCL
VASP	Extensive profilingMajor call-trees for HFXC	Introducing OpenMP parallelismData layout	 Thread-safe functions 	VTune, Cray PATin progress
PALM	Test bench	working OpenMP test set		

Ongoing Research Work

- Programming Models: Heterogeneous Active Messages (HAM) (M. Noack)
- Throughput Optimization: Concurrent Kernel Execution framework (F. Wende)
- \rightarrow prepared for new application (de)composition schemes
 - designs rely on C++ template mechanism
 - work on Intel Xeon Phi and Nvidia GPUs
 - interface to Fortran / C
 - performance studies with real-world app

16

08.05.2014

Two Example Apps on Xeon Phi

2D/3D Ising Model

Swendsen-Wang cluster algorithm

08.05.2014

Graph representation: Edges between aligned neighbor spins are esta-

blished with probability $p_{add} = 1 - exp(-2J_{ij}/T)$

Performance: Device vs. Device (Socket)

- one MPI rank per device/host
- OpenMP
- native exec on Phi
- Phi: SIMD intrinsics Host: SIMD by comp.
- Phi: 240 threads Host: 16 threads

3 x speedup

19

BQCD - Berlin Quantum Chromodynamics

Solve Ax=b with CG

le **libqcd** by Th Schütt (ZIB)

Lessons Learned

If Non-Sysadmins Have to Build and Configure a Xeon Phi Cluster... (consequences of "bad timing": concurrent HLRN-III and Phi cluster installation)

"Challenges" (1)

Batchsystem:

- Torque client supports MIC (re-compile)
- smooth integration with HLRN-III config
 - introduce new Moab class & feature "mic"
- Torque prologue/epilogue scripts for handling Phi card access:
 - prologue: enable temporary user access on Phi card
 - epilogue: remove user from Phi OS, re-boot Phi OS

"Challenges" (2)

Authentication:

- LDAP integration host-side smoothly
- card-side not supported (MPSS 3.1)

Cluster Assembling...

- Initial HW configuration showed serious MPI performance issues
 - Beginner's mistake: the PCIe root complex story

 Intel True Scale Fabric InfiniBand host adapter QLE7340 (HCA)
 Intel Xeon Phi 7120

theoretical bandwidths for bi-directional communication (full duplex)

... Solved: Intel MPI Benchmark Results

	Fabric	# Ranks	Rate [GB/s]	Latency [us]
(A) Host to Host	TMI	2	1.8	1.4
		16	3.0	8.0
(B) Host to Phi	SCIF	2	5.7	9.2
		16	6.9	62.0
(C) Phi to Phi	TMI	2	0.4	6.4
		16	2.1	9.3

ZIB

IMB v. 3.2.4

MPSS 3.1

Almost Last Words...

- Security:
 - ✤ MPSS supports old CentOS kernel → access to Phi host from HLRN login nodes where HLRN access policies are in effect
 - /sw mounted read-only
 - access granted from offload programs (COI daemon)?
- Transition into the HPC SysAdmin group done.

IPCC @ ZIB is a Significant Instrument...

- Many-cores in future data processing architectures
 - prepare HLRN community for future architectures
- Xeon Phi = flexible architecture
 - ♦ optimization & clear designs → beneficial for standard CPU too!
 - for R&D in computer science (MPI, SCIF, ...)
- pushes re-thinking: algorithms, architectures, HW/SW partitioning,...
- support for ZIB/HLRN community by Intel

Thank You!

ACKNOWLEDGEMENT

- Thorsten Schütt
- Intel:
 - Michael Hebenstreit, Thorsten Schmidt
 - Michael Klemm, Heinrich Bockhorst, Georg Zitzelsberger

