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Abstract—The third generation of the North German Su-
percomputing Alliance (HLRN) compute and storage facilities
comprises a Cray XC30 architecture with exclusively Intel Ivy
Bridge compute nodes. In the second phase, scheduled for
November 2014, the HLRN-III configuration will undergo a
substantial upgrade together with the option of integrating
accelerator nodes into the system. To support the decision-
making process, a four-node Intel Xeon Phi cluster is integrated
into the present HLRN-III infrastructure at ZIB. This integra-
tion includes user/project management, file system access and
job management via the HLRN-III batch system. For selected
workloads, in-depth analysis, migration and optimization work
on Xeon Phi is in progress. We will report our experiences and
lessons learned within the Xeon Phi installation and integration
process. For selected examples, initial results of the application
evaluation on the Xeon Phi cluster platform will be discussed.
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I. INTRODUCTION

The Cray XC30 system installed at ZIB represents to-
gether with its sister installation in Hannover the third
generation of the North German Supercomputing Alliance
(HLRN) compute and storage facilities. The current Cray
XC30 configuration of phase I is homogeneous with exclu-
sively Intel Ivy Bridge compute nodes.

Within the next years, advances in manufacturing pro-
cesses continue and enable processor architectures with
increasing counts of powerful compute cores (many-core
processors) and integrated infrastructure for attaching mem-
ory and networks devices at moderate power envelopes
and pricing. The XC30 architecture has at its heart an
interconnect infrastructure which enables scalability at to-
day’s application requirements level. Furthermore, many-
core devices (Nvidia GPU and Intel MIC) can be integrated
to build a heterogeneous system which is attractive for
certain compute-bound applications with sufficient paral-
lelism. We believe that within the next years, heterogeneous
compute and storage architectures will become more and
more mainstream in HPC to leverage compute and storage
resources without sacrificing the power envelope as visible
in the TOP500 [4].

Research in Many-Core High-Performance Computing

At ZIB, recently the Research Center ”Many-Core High-
Performance Computing” being one of Intel Parallel Com-
puting Centers (IPCC) world-wide was founded. This re-
search center aims at porting and improving HPC workloads
on many-core technologies. Additionally, we provide best-
practice experiences for many-core code developers and we
develop low-level system software for, e.g., faster upload of
HPC code on many-core devices.

With respect to the envisaged growing importance of
many-core computing in HPC, we evaluated in the past
disruptive processing technologies, including FPGAs, Clear-
Speed, and Cell BE processors [17], [21], [22], [24], as well
as general-purpose GPUs [7], [23], [27], and recently the
MIC architecture [28].

To foster the evaluation of many-core processors for
workloads on the HLRN system, a four-node Intel Xeon Phi
cluster is integrated into the present HLRN-III infrastructure
at ZIB.

The structure of this paper is as follows:
Section II describes the overall HLRN-III configuration

and in particular the installation at ZIB with its services.
Sections III and IV presents the configuration of the Xeon
Phi test cluster and its integration into the HLRN infras-
tructure. In section V we discuss selected results of our mi-
gration and optimization work on Xeon Phi. We summarize
our experiences and lessons learned within the Xeon Phi
installation and integration process in Sect. VI.

II. HLRN-III CRAY XC30 INSTALLATION

As its predecessor systems HLRN-I and HLRN-II, the
HLRN-III system is distributed among two sites and is
operated at Zuse Institute Berlin (ZIB) and at Leibniz
University IT Services (LUIS) in Hannover.

A. Hardware Configuration

In the first installation phase (since fall 2013), a Cray
XC30 system with exclusively Intel x86 nodes provides
high-end compute power (1488 nodes in total with two 12-
core Intel IvyBridge CPUs each). At the Hannover site, 32
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Figure 1. Schematic representation of the distributed HLRN-III system.
C: compute system consisting of Cray XC30 and MEGware SMP nodes;
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additional large memory quad-socket SMP nodes with Intel
octa-core SandyBridge processors are part of the HLRN-III
infrastructure.

Figure 1 shows a schematic representation of the dis-
tributed HLRN-III system with its two sites Berlin and
Hannover. The two sites are connected by a fast dedicated
fiber optical link (10 Gbps) which is used to provide a single-
system view (single login) to the user.

Besides the usual login nodes for user access the system is
also equipped with additional service nodes like data mover
and pre- and postprocessing nodes with large memory on
both sites, or services to access the archive systems.

For the per site globally accessible on-line storage two
different technical solutions are in use. The HOME file
system (total capacity of 1.4 PB) is realized as a network
attached storage (NAS) from DataDirectNetworks (DDN)
whereas the parallel file system for fast I/O in batch jobs is
implemented with a Cray Lustre File System (CLFS) with a
total capacity of 2.8 PB in the first phase. The data is stored
on a DDN block storage systems.

As archival storage for permanent data sets Oracle Stor-
ageTek tape libraries with a capacity of several PB (depend-
ing on the user requirements) and nearly 100 TB on-line
disk caches are additionally provided on each site.

In the second phase, scheduled for fall 2014, the HLRN-
III will undergo a substantial upgrade of the XC30 system on
both sites together with the option of integrating accelerators
like Intel Xeon Phi or GPGPUs into the Cray XC30 system
(Fig. 2).

B. Batch Service and Programming Environment

For the job scheduling and accounting Moab/Torque is im-
plemented. If the Moab Grid Scheduler is fully in operation
the HLRN-III can provide a single point of view to the user
in terms of handling jobs. Job accounting is realized through
the MAM component of Moab and is capable of providing a
single accounting instance today for all jobs on the HLRN-
III system. This includes jobs run on the MPP (Cray XC30)

Figure 2. The Cray XC30 system “Konrad” in Berlin (top) in its final
stage will comprise 10 cabinets whereas the XC30 system ”Gottfried” in
Hannover (bottom) will offer 9 cabinets and 64 additional external SMP
nodes in total.

and SMP nodes, the data movers, pre-/post-processing nodes
and (as described below) on the Xeon Phi nodes. Different
weighting factors are applied to job charging for each of
different node types.

The Programming Environment is based on Cray versions
of the compiler, libraries and performance analysis tools. It is
supplemented by domain specific libraries and tools installed
and maintained by HLRN staff. A basic tool for version
management is the modules environment package.

C. HLRN-III Workloads

HLRN has a broad user community in the universities
and scientific institutions of the seven participating North-
German federal states. A wide palette of topics in the
specific scientific areas of the HLRN clients needs to be
supported. The major scientific fields are chemistry and
material science, earth sciences, engineering, and physics.
Thus, the HLRN-III system has to support a broad range of
HPC applications efficiently as possible across the various
scientific disciplines.

The program packages used on HLRN-III are mostly
academic and developed by community members. Ma-
jor compute cycles are consumed by BQCD [18] and
FRESCO [1] (both physics), CP2K [25] (chemistry and
material sciences), OpenFOAM [3] (engineering), PALM
and PALM/particle [20], NEMO [2] and FESOM [26] (all
geosciences), which were part of the HLRN-III application
benchmark suite in the procurement.

III. THE INTEGRATED XEON PHI TEST CLUSTER

The current HLRN-III complex at ZIB contains a separate
but fully integrated four-node Intel Xeon Phi cluster. With
the many-core upgrade of HLRN-III in mind, the Xeon Phi
cluster serves for the HLRN-III users as a development
and testing system for code portation to the Xeon Phi, and
for the HLRN-III administrators as a training assistance to
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Figure 3. Four-node Xeon Phi cluster (nodes: Bphi[1-4]) as a separate but
fully integrated component of the HLRN-III installation consisting of the
Cray XC30 and the attached user and administrative infrastructure. Bphi[1-
4] spawn an independent InfiniBand subnetwork using Intel True Scale
fabric components, and are connected to HLRN-III via Gigabit Ethernet.

become acquainted with the integration and management of
the Xeon Phi into the HLRN-III infrastructure. Further, the
cluster is used by ZIB for code development throughout its
many-core research center activities.

Each node of the test cluster contains two Intel Xeon
octa-core CPUs and hosts one Intel Xeon Phi coprocessor.
The four nodes spawn an independent InfiniBand (IB) sub-
network which allows for fast communication between the
nodes and the Xeon Phi coprocessors.

Figure 3 illustrates the integration of the Xeon Phi nodes
into HLRN-III complex in Berlin. The network connection
to the HLRN-III service nodes and storage resources is
realized via Gigabit Ethernet. The nodes reside in the same
subnet as the XC30 MOM nodes.

It follows detailed information on the hardware and the
software configuration of the Xeon Phi nodes.

A. Hardware Configuration of the Phi Cluster

The compute nodes each hold two Intel Xeon E5-2690
Sandy-Bridge octa-core CPUs (clocked @2.9 GHz, Hyper-
Threading enabled) that are installed into an Intel server
board S2600GZ [15]. Each CPU socket has attached 12
DDR3 DIMM slots that are fully populated with 4 GB
DIMMs for a total of 96 GB main memory.

The system includes two riser card slots on the server
board, where riser card slot 0 is attached to CPU 0 and
riser card slot 1 to CPU 1. Our installation uses riser cards
with one PCIe x16 Gen3 and one PCIe x8 Gen3 slot each.
Per node one Intel Xeon Phi 7120 coprocessor card [13]
(61 physical cores with 4-way hardware multi-threading
each, and 16 GB main memory) and one single-port Intel
True Scale Fabric InfiniBand QLE7340 HCA [12] (3.4 GB/s
unidirectional throughput and latency down to 1.0µs) are
installed into the PCIe slots. To ensure direct access to the
HCA from the Xeon Phi, it is necessary to have both of
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Figure 4. Assignment of PCIe card slots to PCIe root complexes of the
two Intel Xeon E5 CPUs. Both the Xeon Phi card and the InfiniBand HCA
are placed into PCIe slots attached to the same PCIe root complex.

the two attached to the same PCIe root complex. For the
S2600GZ server board the Xeon Phi thus need to be placed
into the x16 slot of riser card 1, and the HCA in any of
the remaining PCIe x8 slots. The setup is schematically
illustrated in Fig. 4.

The Xeon Phi nodes are connected with each other via an
Intel True Scale Fabric 12300-BS01 switch that provides 36
4x QDR ports with 4 GB/s throughput per port [11].

Table I summarized the performance of our True Scale
InfiniBand network. All values have been determined with
the Intel MPI benchmark 3.2.4. The respective maximum
transferrates and minimum latencies are noted in Fig. 3.

Table I
TRANSFERRATES (GB/S) AND LATENCIES (µS) FOR COMMUNICATING

MPI RANKS (A) ON TWO DIFFERENT HOST NODES, (B) ON ANY OF THE
HOST NODES AND THE XEON PHI INSTALLED WITHIN THAT NODE, AND
(C) ON TWO XEON PHI CARDS WITHIN TWO DIFFERENT HOST NODES.

Fabric # Ranks Transferrate Latency

(A) Host-to-Host TMI 2 1.8 GB/s 1.4µs.
TMI 4 3.4 GB/s 1.5µs.
TMI 8 3.0 GB/s 4.5µs.
TMI 16 3.0 GB/s 8.0µs.

(B) Host-to-Xeon Phi SCIF 2 5.7 GB/s 9.2µs.
SCIF 4 6.5 GB/s 12.6µs.
SCIF 8 6.8 GB/s 41.0µs.
SCIF 16 6.9 GB/s 62.0µs.

(C) Xeon Phi-to-Xeon Phi TMI 2 0.4 GB/s 6.4µs.
TMI 4 0.8 GB/s 7.1µs.
TMI 8 1.5 GB/s 7.5µs.
TMI 16 2.1 GB/s 9.3µs.

B. OS Configuration & Xeon Phi Setup

All four Xeon Phi nodes run a locally installed CentOS 6.3
64-bit Linux operating system with kernel version 2.6.32-
279, as recommended by Intel at the time of the installa-
tion [9], [14]. Our first attempts to use CentOS 6.4 instead
resulted in difficulties regarding Xeon Phi specific software



components with only little official support by Intel to
resolve them (at this time).

For the basic OS installation we excluded all InfiniBand
components provided by CentOS 6.3 in favor of the Intel
proprietary Infiniband driver package for True Scale HCAs
(version 7.2.0.0.42).

The integration of the Xeon Phi coprocessor into the
CentOS 6.3 host requires the installation of the Intel Many-
core Platform Software Stack (MPSS for short) which
amongst others
• provides a Linux based µOS for the coprocessor,
• introduces the SCIF (Symmetric Communication Inter-

face) driver layer with SCIF being the communication
backbone between the host and the coprocessor.

• supports standard compliances like sockets, TCP/UDP
IP (over PCIe), PSM, OFED Verbs, MPI, OpenMP, etc.

We use the MPSS 2.1 release (version 2.1.6720-19). On
a separate Xeon Phi node we tested the current MPSS 3.1
release but found no siginificant performance improvements
over MPSS 2.1. Hence, updating from MPSS 2.1 to MPSS
3.1 appears not meaningful to us.

Network Configuration
The initial network configuration includes the creation

of network interfaces for the Phi cards, the installation of
the OFED stack and loading of proper IB RDMA kernel
modules on the Phi system. Details of this installation phase
are described in Appendix B.

In the next step, the system components for the commu-
nication between all OS instances, i. e. host nodes and their
Phi nodes inside are configured. This includes the definition
of sub-networks, routing, IP forwarding and NAT. Details
can be found in Appendix C.

Infiniband, Intel MPI & the TMI Fabric
For communication across the cluster hosts and the

Xeon Phi cards a private Intel True Scale InfiniBand sub-
network is configured. As communication protocol Intel MPI
4.1.1 and 4.1.3 is provided together with the Intel TMI fabric
for tag matching interfaces such as True Scale.

Running MPI programs on the subcluster using the TMI
fabric is done e. g. via

# mpirun -psm ... ./proc.x

For that, on both the host and Xeon Phi system TMI needs
to be configured properly (Appendix D).

The TMI fabric works across our entire Xeon Phi cluster
with the limitation that per node either the host or the
Xeon Phi can be used, but not both of them simultaneosuly.
For the execution of MPI programs utilizing the host and
the Xeon Phi card attached to it, SCIF needs to be selected
as fabric e. g. through the -env I_MPI_FABRICS=dapl
argument when calling mpirun.

With the MPSS 3.3 the True Scale “native mode” will be
supported which should remove this drawback.

IV. INTEGRATED RESOURCES OF THE HLRN-III
COMPLEX

To support a smooth utilization path to the Xeon Phi
resources for the HLRN users, the Phi test cluster integrates
• access to HLRN user’s HOME file systems and central

software repository,
• the user and project management, and
• the job management and resource accounting.

A. Access to HLRN file systems

Both the host nodes and the Xeon Phi cards mount the
HLRN-III user’s HOME directory and the HLRN’s central
software repository to /home/b respectively /sw.

For NFS mount to work on Xeon Phi, for our setup the
aforementioned NAT have been applied. In order to create
the mount points for the above directories when (re)starting
the MPSS service, the filelist configuration for the Phi card
must be updated (Appendix E).

B. Software & Development Tools

As for all HLRN nodes the module environment
package is installed on the Phi cluster nodes to take advan-
tage of the central HLRN software repository maintained
by the HLRN staff. In this way, the Intel development and
analysis suite including Intel compiler, MKL libraries and
performance analysis tools (VTune, ITAC) is provided to the
user through their installation in /sw. Additionally, the GNU
compiler suite (version 4.8.1) and PAPI 5.3.0 are installed,
for example.

For giving Intel VTune access to the hardware perfor-
mance counter the SEP kernel module are installed both on
the cluster host and the Phi card.

C. User and Project Management

Access to Phi test cluster is authorized by the central
HLRN LDAP service. Since the OS version level supported
by the Intel MPSS is not up-to-date and to lift the security
pressure from the administrators, the Phi host nodes are only
accessible from the HLRN login nodes.

Resource accounting on the Phi cluster nodes is imple-
mented through the HLRN job management and accounting
system (see the following subsection). The account of a
user’s project is charged with a weighted factor of the
utilized wall-clock time.

D. Batch System Configuration for Xeon Phi

On the HLRN-III, Torque and Moab from Adaptive
Computing are used as resource manager and scheduler in
the batch system (the currently stable running versions are
Torque 4.2.6 and Moab 7.2.6). To enable communication
with the Moab/Torque batch system, the Phi nodes reside
in the same subnet as the XC30 MOM nodes and can be
allocated from the HLRN-III user login nodes via the batch
system.



Torque’s pbs_mom daemon running on the Phi nodes
are compiled with MIC support, so that the Phi devices
are automatically detected by Torque and known to the
scheduler. Additionally, a special MIC class called “micq”
was configured in Moab for the Phi cluster nodes, and a
node feature called “mic” is configured in Moab.

As the currently used MPSS version 2.1 is lacking of
direct LDAP support, the LDAP userid of the batch job
owner is dynamically added to the µOS of the Xeon Phi in a
job prologue script and removed in a corresponding epilogue
script.

For MPI jobs running on the Xeon Phi the
PBS_NODEFILE needs to be manually modified inside the
job script by adding the hostname(s) of the Phi card(s).

V. CASE STUDIES USING THE XEON PHI

In the context of the activities of the IPCC at ZIB and
in collaboration with HLRN program developers, selected
HLRN and ZIB workloads are evaluated and optimized
on the Xeon Phi platform. The selected workloads cover
various scientific areas from quantum chromodynamics
(BQCD), material science (VASP, 2D/3D Ising models),
thermodynamical sampling of molecules (GLAT), turbulent
flow simulation (PALM) or the simulation of photoactive
biomolecules (GPU-HEOM).

In the following, we present results of our evaluation
and performance optimization on Xeon Phi for the two
workloads BQCD and Ising 2D/3D.

A. BQCD – Berlin Quantum ChromoDynamics

BQCD [18] is a Hybrid Monte-Carlo program for the
simulation of lattice QCD with dynamical Wilson fermions.
The program can simulate 2 and 2+1 fermion flavours with
pure, clover improved, and stout smeared fat link Wilson
fermions as well as standard plaquette, and an improved
(rectangle) gauge action. The single flavour is simulated with
the Rational Hybrid Monte-Carlo algorithm.

The development of BQCD by H. Stüben (and later also
by Y. Nakamura) started in 1998 at ZIB. Since 2010 BQCD
is under the GNU General Public License. At ZIB, the
BQCD program has been used as benchmarking code for
the Cray XC30 supercomputer due to its well known strong
scaling behavior to thousands of compute cores.

BQCD is currently extended through the libqcd library
developed by Th. Schütt at ZIB to make use of the Intel
Xeon Phi coprocessor for the execution of the conjugate
gradient (CG) method—CG is a core element of BQCD. Ex-
ecuting CG on Xeon Phi from within the original Fortran 77
program goes through libqcd’s Fortran interface which
is written in C++ and uses Intel’s Language Extension for
Offload (LEO).

The implementation of the CG method on the Xeon Phi
differs from its original Fortran77 counterpart in that the
memory layout has changes from Array-of-Structure (AoS)
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CGHost
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Figure 5. Schematic illustration of the libqcd architecture.

style to an Array-of-Structures-of-Arrays (AoSoA) style to
better support SIMD operations. The Xeon Phi CG-kernel
has been implemented using SIMD intrinsic operations.

Fig. 6 illustrates the performance of the CG kernel on both
CPU host and Xeon Phi for a 32×32×32×64 lattice. On
Xeon Phi 240 OpenMP threads are used for the execution,
whereas on CPU 16 (one CPU socket) respectively 32 (two
CPU sockets) OpenMP threads are used. Compared against
the two-socket CPU execution, a speedup of about 1.75 can
be achieved by offloading the computation to the Xeon Phi.
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Figure 6. Performance of the BQCD CG kernel in GFlops/s obtained on
a single node of the Xeon Phi test cluster.

B. Swendsen-Wang Cluster Algorithm for the Ising Model

The Ising model is a simple spin model describing fer-
romagnetism in Statistical Physics. The Ising model postu-
lates a d-dimensional regular lattice with spins si placed
on the lattice sites and pointing either in the one or in
the opposite direction in space (represented e.g. by spins
take on values si = ±1). The spins interact locally with
their nearest neighbors according to the Hamiltonian H =
−
∑
〈ij〉 Jijsisj + b

∑
i si, where 〈ij〉 denotes spin si and

sj are nearest neighbors, Jij is a coupling constant, and b
is an external magnetic field.

Due to the enormous number of spin configurations sµ on
“large” lattices (2N for N lattice sites), simulations of the
Ising model on the computer are usually done by means of
Monte-Carlo methods, where each configuration is generated
with the probability pµ = e−Eµ/kT

(∑
µ e−Eµ/kT

)−1
of its



Graph representation: Edges

blished with probability padd= 1-exp(-2 Jij/T)
between aligned neighbor spins are esta-

+1
-1

Coupling
constant Jij

Spin lattice

Find clusters
(connected component labeling) 

Cluster

"Swendsen-Wang 
cluster algorithm"

Flip clusters
(with probability 0.5 each)

+
New spin 
configuration

Figure 7. Schematic illustration of the Swendsen-Wang cluster algorithm.
Clusters correspond to regions of aligned, edge-connected neighboring
spins. Finding the clusters maps onto the connected component labeling
problem. After having found all clusters, each of them is flipped over with
probability 0.5 in order to create a new spin configuration.

occurence—T is the temperature at which the simulation
takes place.

For d ≥ 2, and with b = 0, the Ising model exhibits
a phase transition; there is a high-temperature phase with
spins oriented almost at random, and a low-temperature
phase with almost almost all spins pointing. The two phases
are separated by the “critical temperature” Tc. Close to
criticality spins organize into clusters, which are regions of
neighboring spins pointing in the same direction. Monte-
Carlo simulations of the Ising model at criticality are most
efficient by means of cluster algorithms which abstract the
spin system as being made up of clusters and apply changes
to the clusters as a whole to move the spin system from one
configuration to another.

We implemented the Swendsen-Wang cluster algorithm
(Fig. 7 for illustration) on both x86 CPU and Intel Xeon Phi
using MPI for inter-node communication and OpenMP to
achieve parallelism on the nodes—we use a two-layer do-
main decomposition to define independent problems that can
be solved in parallel. At the core of the Swendsen-Wang
algorithm is “connected component labeling” which on
the Xeon Phi has been implemented using SIMD instrinsic
operations—we create native executables on Xeon Phi. On
the CPU vectorization is left to the compiler. A detailed
description of the algorithm and its implementation can be
found in [28].

Performance values measured on the Xeon Phi test cluster
at HLRN-III are given in Fig. 8 for selected two- and
three-dimensional regular lattices. We use one MPI rank
per Xeon Phi device respectively CPU host. We use 240
OpenMP threads on Xeon Phi and 16 OpenMP threads on
the host (pinned to one CPU socket, with Hyper-threading
enabled). MPI communication is directly between MPI ranks
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Figure 8. Performance of the Swendsen-Wang cluster algorithm on the
Xeon Phi test cluster at HLRN-III. The MPI and the threading setup is
described in the text.

on Xeon Phi (native executable) and CPU host, respectively.
According to Fig. 8, in both two and three dimensions

speedups of about a factor 3 can be achieved over the CPU
when using the Xeon Phi. The strong scaling of the imple-
mentation on CPU is almost ideal, whereas on Xeon Phi a
little performance decrease can be observed—we found our
implementation using MPI be bound by the latency of the
network used for inter-node communication.

VI. XEON PHI CLUSTER INTEGRATION: LESSONS
LEARNED

We will summarize our lessons learned during the installa-
tion and integration of Intel Xeon Phi cluster into the HLRN-
III complex.

Timeline: Prior the installation of the Xeon Phi cluster,
the HLRN-III complex with the Cray XC30 system and the
various service nodes was installed and configured by Cray
personnel. During the network configuration of the Phi clus-
ter the internal HLRN networks underwent optimizations,
e. g. changing MTU sizes which impacted the usability of
the Phi nodes (i. e. on all network devices along the data path
from the storage server to the Phi nodes the same MTU size
must be configured). Due to time and personal restrictions
it was decided not to give access to the HLRN Lustre file
system from the Phi nodes.

Batch system: The integration of the Phi nodes into
the Moab/Torque batch and scheduling system is subject
to the same restrictions as for any node, in particular the
ability of reverse name resolution for the communication
between batch server and client process is required. To
enable the visibility of the MIC resources automatically, the
Torque client daemon must be re-compiled with the proper
configuration option --enable-mics [5]. Phi nodes and
the ”mic” class and feature in Moab can be integrated
without side-effects into the site-wide batch configuration
during production.



Since our current MPSS version does not support LDAP
on the OS of the Phi card itself we development a
workaround for enabling temporary users on the Phi µOS.
By means of the Torque prologue script the LDAP user ID
is validated and added to the user accounts on the Phi µOS,
whereas the epilogue script removes the user ID from the
Phi µOS.

LDAP: The LDAP service is managed by the local
system administrator group, and their procedure for config-
uring the LDAP client on the CentOS based Phi nodes went
smoothly.

Security aspects: Due to the MPSS support for old
(CentOS) kernels the access to the Phi cluster is not open
from the public external network. Only authorized HLRN
users can login into the Phi nodes from the HLRN login
service nodes or can submit batch jobs on the Phi cluster.

Phi node hardware and network configuration: Be-
cause of the small number of Phi nodes we decided to
implement a flat network for the (MPI) communication
between the Phi host nodes and the Phi cards. This brings in
a two-fold complexity of the network configuration coming
with the Xeon Phi card being a self-hosting OS instance. Al-
though the Intel documentation provides a valuable source of
information for setting up a Phi cluster we were in particular
surprised by the initial bad communication performance. In
discussions with Intel experts the importance that the Xeon
Phi card and IB NIC needs to be in the same PCIe root
complex was outlined.

APPENDIX A.
PROLOGUE AND EPILOGUE SCRIPTS FOR THE USER ID

TRANSFER

Torque’s ability to run scripts before and after a batch job
execution [6] is used to temporarily add a LDAP user ID
from the host environment to the Phi µOS in a job prologue
script and to remove it after job termination in a job epilogue
script.

As first step in our prologue script the current passwd
and shadow files of the Phi µOS are copied to the hosts
filesystem as a backup to be able to restore them later on.

In a second step the output of the command on the host
for the specific user ID of the batch job owner is added to the
passwd file of the Phi µOS (by LDAP getent passwd
$userID ).

Also the user entry ( $userID:?::::::: ) is added
to the shadow file of the Phi µOS so that the LDAP user
ID is finally known on the Phi.

In the epilogue script the beforehand saved passwd and
shadow files of the Phi µOS are transfered back on to the
Phi so that the user account which was added in the prologue
script is removed from the Phi µOS. Finally, the Phi µOS
is rebooted to provide a well defined state of the Phi card
for new jobs.

APPENDIX B.
INITIAL NETWORK AND DRIVER SETUP

After the installation of MPSS, the execution of

# micctrl --initdefaults

for each Xeon Phi card creates a network inter-
face micX on the host system for communication
with card X. Further, for each card a subdirectory
INTEL_INSTALL_PATH/mic/filesystem/micX is
created, containing configuration files and directories /etc,
/home, etc. In our case the interface mic0 is created, and
the card is added to /etc/hosts with alias mic0.

Along with the installation of MPSS we installed OFED
(OpenFabrics Enterprise Distribution) for Xeon Phi. Both the
MPSS and the OFED stack are started via init-scripts,

# service mpss start
Starting MPSS Stack: [ OK ]
mic0: online (mode: linux image: ...)
# service ofed-mic start
Starting OFED Stack:
host [ OK ]
mic0 [ OK ]

After starting the OFED layer on the Xeon Phi card

# ssh mic0 ’/etc/init.d/ibmodules start’
Starting ofed layer ... Done

and loading the rdma_ucm module

# ssh mic0 ’modprobe rdma_ucm’

all necessary (virtual) InfiniBand components (e. g.
scif0 interface and rdma_cm device) are set up on
Xeon Phi.

APPENDIX C.
ROUTING WITHIN THE XEON PHI CLUSTER

This section describes the setup of the flat network and
routing for the communication across all OS instances, i. e.
host nodes and Phi cards.

Communication between Xeon Phi card X and its host is
over the network interface pair micX-mic0X, where mic0X
is the predefined network interface on card X. Both micX
and mic0X spawn a separate subnetwork within the compute
node. Communication between Xeon Phi cards within the
same host requires to set up IP forwarding across the
respective micX host interfaces.

Extending the setup to allow Xeon Phi cards in different
compute nodes to communicate with each other is described
hereafter for the nodes bphi1 and bphi2 of our Xeon Phi
cluster.

1) Host interfaces: Both host nodes uses their interface
eth0 for communication over Gigabit Ethernet. We assign
IPs 172.20.6.21/22 and 172.20.6.22/22 to them,
and set MTU 9000 for both of the two.



2) Xeon Phi interfaces: On bphi1 and bphi2 we con-
figure the host interface mic0 with IP 172.22.1.1/24
and 172.22.2.1/24 respectively. The Xeon Phi cards
in bphi1 and bphi2 use their host’s mic0 inter-
face as gateway and have IPs 172.22.2.2/24 and
172.22.1.2/24 assigned to their own mic0 inter-
face. Again, all interfaces are configured with MTU
9000. The respective changes can be applied to the
mic0.conf file, for CentOS and MPSS 2.1 located in
/etc/sysconfig/mic.

3) Routing: The private subnetwork 172.22.0.0/21
(the netmask value 21 follows from bphi3 and bphi4
assign IPs 172.22.3.1/24 and 172.22.4.1/24 to
their mic0 host interfaces) is not known to HLRN-III. For
a particular message from a sender within that subnetwork
(any of the Xeon Phi cards), the network path thus has to be
determined either by bphi1 or bphi2 itself. We therefore
modified the routing for the network devices on bphi1 and
bphi2 (file .../network-scripts/route.eth0,
Fig. 9).

## file=.../route.eth0 on bphi1
GATEWAY0=172.20.6.22 # IP of bphi2
ADDRESS0=172.22.2.0 # XeonPhi subnet
NETMASK0=255.255.255.0 # on bphi2

## file=.../route.eth0 on bphi2
GATEWAY0=172.20.6.21 # IP of bphi1
ADDRESS0=172.22.1.0 # XeonPhi subnet
NETMASK0=255.255.255.0 # on bphi1

Figure 9. Network device configuration

Figure 10 shows a segment of bphi1’s routing table.
Routes to the Xeon Phis within bphi3 and bphi4 are also
included. Messages send from bphi1’s Xeon Phi to any
other Xeon Phi use bphi[2,3,4] as intermediate stations
along the respective network paths. The scheme can be easily
expanded to more than 4 Xeon Phi nodes, but relatively
fastly becomes cumbersome.

## Routing table of bphi1
Destination Gateway Genmask ......... Iface
--------------------- ------------- ------------- ----------------- ---------
........... ....... ....... ......... .....
172.22.4.0 bphi4 255.255.255.0 eth0
172.22.3.0 bphi3 255.255.255.0 eth0
172.22.2.0 bphi2 255.255.255.0 eth0
172.22.1.0 * 255.255.255.0 mic0
........... ....... ....... ......... .....

Figure 10. Segment of the routing table of bphi1. Messages from
bphi1’s Xeon Phi to any other Xeon Phi are routed first to the respective
hosts, as intermediate stations along the network path, and then to the
Xeon Phis.

4) IP Forwarding & NAT: For messages to be transferred
to/from the Xeon Phi using IPv4 it is required that IPv4 for-
warding on the host is enabled. On CentOS this can be done
either by adapting the line net.ipv4.ip_forward=1

in /etc/ sysctl.conf, or by writing “1” into /proc/
sys/net/ipv4/ip_forward. Further, forwarding rules
have to be added to the IPtables file (/etc/sysconfig/
iptables for CentOS). For our setup we allow forwarding
to any of the Xeon Phis just if the sender belongs to the
172.22.0.0/21 subnetwork (Fig. 11).

## file=/etc/sysconfig/iptables on bphi1
.........................................
*filter
.........................................
-A FORWARD -i mic0 -s 172.22.0.0/21 -j ACCEPT
-A FORWARD -o mic0 -j ACCEPT
.........................................
COMMIT
*nat
.........................................
-POSTROUTING -o eth0 -j MASQUERADE
COMMIT

Figure 11. Segment of the IPtables file of bphi1. The filter-section
contains forwarding rules for IPv4 messages to/from Xeon Phi. The nat-
section is necessary for NFS mount on Xeon Phi (see below).

Since our Xeon Phi subnetwork is private, using HLRN-
III services, e. g. NFS mount of the users’ HOME di-
rectories on the Xeon Phi cards, requires to translate the
Xeon Phis’ network addresses into those known to HLRN-
III. Our iptables file therefore contains Network Address
Translation (NAT) entries (Fig. 11). All messages sent over
the eth0 interface (connection to HLRN-III) inherit eth0’s
IP (achieved by -j MASQUERADE).

APPENDIX D.
TMI CONFIGURATION

On both the host and Xeon Phi system a tmi.conf file
need to created (default location: /etc) with the following
content

## file=/etc/tmi.conf
psm 1.1 libtmip_psm.so " "

APPENDIX E.
NFS MOUNTS ON PHI CARD

For NFS mount to work on Xeon Phi, for
our setup the aforementioned NAT entries in
/etc/sysconfig/iptables have been applied.
In order to create the directories /home/b and /sw when
(re)starting the MPSS service, the file INTEL_INSTALL_
PATH/mic/filesystem/mic0.filelist must
contain the following lines:

## file=INTEL_INSTALL_PATH/mic/filesystem/
## mic0.filelist
...
dir /home/b 755 0 0
dir /sw 755 0 0



Similar to the host node, the Xeon Phi’s fstab (located
at INTEL_INSTALL_PATH/mic/filesystem/mic0/
/etc/fstab) needs to contain the NFS mount entries. It
is particularly necessary to assign to all network interfaces
along the network path used for NFS mount the same MTU
(in our case MTU 9000).
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