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ABSTRACT: Performance portability means a single program gives good performance 

across a variety of systems, without modifying the program. OpenACC is designed to 

offer performance portability across CPUs with SIMD extensions and accelerators based 

on GPU or many-core architectures. Using a sequence of examples, we explore the 

aspects of performance portability that are well-addressed by OpenACC itself and those 

that require underlying compiler optimization techniques. We introduce the concepts of 

forward and backward performance portability, where the former means legacy codes 

optimized for SIMD-capable CPUs can be compiled for optimal execution on 

accelerators and the latter means the opposite. The goal of an OpenACC compiler should 

be to provide both, and we uncover some interesting opportunities as we explore the 

concept of backward performance portability. 
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1. Introduction 

A computer program is portable if a single source 

code version can be compiled and executed across 

multiple types of computer systems.  Impediments to 

portability include differing instruction sets, differing 

capacity (e.g. memory size) and differing functionality of 

operating systems.  High-level programming languages 

are designed to overcome these impediments.  These 

languages can be implemented via traditional compilers, 

interpreters, or just-in-time compilers. Libraries including 

pre-packaged functions or class definitions enhance the 

portability of high-level programming languages. 

 A computer program is performance portable if a 

single source code version can be compiled and executed 

with uniformly good performance across multiple types of 

computer systems.  Impediments to performance 

portability are often related to system architecture – 

memory hierarchy, parallelism, vectors – but the design of 

programming languages and the inability of compilers to 

successfully map those programming languages to a given 

target are big factors as well. 

In this paper, we define a program as being forward 

performance portable if it is written and optimized for a 

previous generation or style of processor, and can be 

compiled for execution with high performance on a newer 

generation or style of processor.  Likewise, a backward 

performance portable program is one written and 

optimized for a newer generation or style of processor and 

which can be compiled for execution with high 

performance on a previous generation or style of 

processor.  

2. Performance Portability Success Stories 

The most classical example of successful 

performance portable programs is the set of programs 

written for vectorizing compilers.  In 1976, the Cray-1 

supercomputer was installed at Los Alamos Scientific 

Laboratory.  The Cray Fortran Translator (CFT) would 

automatically vectorize loops, which could give a 4-5X 

performance boost over sequential execution.  Moreover, 

the compiler would include vectorization feedback in the 

listing file, indicating to the programmer which loops 

failed to vectorize and why, thereby directing users on 

how to modify their programs to enhance vectorization.  

Over the next few years, Cray programmers were trained 

in how to write programs that would successfully 

vectorize.  Other manufacturers introduced vector 

supercomputer computers over the next several years, 

such as the IBM Vector Facility, the NEC SX-1 and SX-

2, the Convex C1, and others.  Performance portability 

was demonstrated when programs written to vectorize 

with CFT for the Cray would also vectorize for these 

other vector computers. 
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A second set of performance portable programs 

includes those using MPI for parallel control and 

communication.  MPI has become ubiquitous for 

implementing scalable, highly parallel programs.  As 

such, vendors are motivated to design machines that 

execute these programs efficiently, even to providing 

tuned implementations of the MPI libraries. 

These two examples show two very different 

methods to achieve performance portability.  The first 

uses a hardware feature (vector instruction set), exposed 

to and exploited by programmers using optimizing 

compiler technology (vectorization), implemented by 

multiple vendors with enough similarities that programs 

optimized to execute in vector mode for any vendor will 

benefit on all such machines.  The second uses a software 

specification (MPI) that motivates vendors to optimize the 

hardware and/or system software for such programs. 

3. Performance Portability Between CPUs 

and GPUs 

OpenACC is intended and designed to provide both 

portability and performance portability across most types 

of processors used in HPC today:  multi-core CPUs with 

SIMD instructions, many-core processors like the Intel 

MIC, massively parallel stream-oriented GPUs, and 

heterogeneous configurations where a CPU is coupled to 

a MIC co-processor or GPU accelerator.  There are 

several examples of OpenACC benchmarks and 

applications that display performance portability across 

multiple types of systems [Her12, LSG12, MFM13]. 

One of the challenges of enabling performance 

portability across CPUs and GPUs is to overcome basic 

design differences in the areas of memory and 

parallelism.  CPUs have latency-optimized memory 

systems and rely on a few very fast cores with modest 

SIMD capability.  To deliver high performance on these 

processors, work is distributed across the cores using MPI 

or SMP parallelization and then organized for efficient 

use of the SIMD hardware using vectorization.  In a paper 

presented at CUG 2013 [CO13], an example loop from 

the weather application COSMO was shown as an 

example of this style of coding: 
 

do k=2,Nz   

   do ip=1,nproma   

       c2=c1(ip,k)*a(ip,k-1)   

       a(ip,k)=c2*a(ip,k-1)   

   enddo 

enddo 

Example 1 

 

The inner loop above is stride-1, and will be vectorized by 

most optimizing compilers to take advantage of SIMD 

capabilities on an x86 CPU.  A similar formulation would 

be advantageous on Power CPUs with Altivec, or ARM 

CPUs with Neon extensions. 

GPUs have stream-optimized memory systems and 

rely on very large numbers of slower cores that operate in 

sub-groups in a single-instruction multiple-thread (SIMT) 

fashion. Every core in a sub-group executes the same 

instruction at the same time, or no instruction at all.  To 

deliver high performance on these processors, work is 

oversubscribed across the cores in a massively parallel 

fashion, and organized so that when the cores in a sub-

group each issue a given memory operation, the 

operations collectively result in a single main memory 

fetch of a sequence of contiguous data elements.  To 

structure the above loop from COSMO for optimal 

execution on a GPU, the loops must be interchanged: 

 
do ip=1,nproma   

   do k=2,Nz   

      c2=c1(ip,k)*a(ip,k-1)   

      a(ip,k)=c2*a(ip,k-1)   

   enddo 

enddo 

Example 2 

 

When compiled for execution on a GPU using either 

OpenACC or an explicit model such as CUDA or 

OpenCL, the outer ip-loop in Example 2 is replaced with 

a parallel kernel launch call and the inner loop becomes 

the body of the kernel.  Each outer ip-loop iteration is 

executed by a separate GPU core, each of which executes 

separate complete instances of the inner k-loop.  The 

work is scheduled by the compiler so that adjacent GPU 

cores tend to access adjacent elements of c1 and a with 

the same memory access instruction, resulting in optimal 

use of memory bandwidth on the GPU.   

The resulting problem is obvious.  If we have to 

structure loops in one way for optimal execution on a 

CPU and in another way for optimal execution on a GPU, 

it puts at risk the ability to maintain a single version of 

source code that can be efficiently compiled and executed 

on either CPUs or GPUs.  The above example is quite 

simple to conditionally compile either way, but the same 

situation can occur with loops that are much larger and 

more complicated. If this challenge can’t be resolved by a 

programming model or compiler, the application 

developer must either maintain two code paths for 

computationally intensive code, or compromise the 

performance of one platform or the other. 

Can we make the CPU formulation forward 

performance portable to GPUs?  Can we make the GPU 

formulation backward performance portable to CPUs?  

These are the questions we will explore in the remainder 

of this paper. 
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4. A Motivating Example  

FIM (Flow-following, finite-volume, icosahedral 

model) is a weather code under development by NOAA 

(http://fim.noaa.gov).  To facilitate performance analysis 

and tuning, the authors of FIM created the standalone 

TRCADV benchmark representing a key part of the code.  

There are 3 subroutines in TRCADV.  Example 3 shows 

the main loop structure of trcadv3. 
 

!$acc parallel num_gangs(10242) &  

!$acc vector_length(64) private(anti_tdcy) 

!$acc loop gang 

    do ipn=ips,ipe 

!$acc loop vector 

      do k=1,nvl 

        anti_tdcy(k) = 0. 

      end do 

      do edg=1,nprox(ipn) 

!$acc loop vector 

        do k=1,nvl 

          if (antiflx(k,edg,ipn) >= 0.) then 

                 antiflx(k,edg,ipn) =        &             

                 antiflx(k,edg,ipn)*         & 

                 min(r_mnus(k,ipn),          & 

                     r_plus(k,prox(edg,ipn))) 

          else                                                

             antiflx(k,edg,ipn) =        & 

             antiflx(k,edg,ipn) *        & 

                 min(r_plus(k,ipn),          & 

                     r_mnus(k,prox(edg,ipn))) 

          end if 

          anti_tdcy(k) = anti_tdcy(k) +  & 

                         antiflx(k,edg,ipn) 

        end do 

      end do 

!$acc loop vector 

      do k=1,nvl 

        anti_tdcy(k) =                   & 

           -anti_tdcy(k)* rarea(ipn) 

        trc_tdcy(k,ipn,nf,t) =           & 

           trclo_tdcy(k,ipn,nf,t)        & 

         + anti_tdcy(k) 

        trcdp(k,ipn,t) =                 & 

           trcdp(k,ipn,t)                & 

         + adbash1*trc_tdcy(k,ipn, nf,t) & 

         + adbash2*trc_tdcy(k,ipn, of,t) & 

         + adbash3*trc_tdcy(k,ipn,vof,t) 

        tracr(k,ipn,t) =                 &  

           max(trmin(k,ipn),             & 

               min(trmax(k,ipn),         &                   

                   trcdp(k,ipn,t) /      & 

                       max(thshld,delp(k,ipn)))) 

      end do 

    end do 

!$acc end parallel 

Example 3 
 

The nature of the computations is different in the 

other two subroutines (trcadv1 and trcadv2), and they 

are somewhat larger, but the basic loop structure is 

identical across all three.  The main loop is designed to be 

parallelized with either OpenMP or OpenACC.  It is 

structured with modern CPU architectures in mind, with a 

parallelizable outermost ipn-loop and SIMD vectorizable 

innermost k-loops.  It uses the OpenACC parallel 

construct, which is conceptually similar to an OpenMP 

parallel region and is frequently used to incrementally 

port codes from OpenMP to OpenACC [LL12]. 

Tables 1a and 1b show the increasing performance of 

the code on a single 3.2Ghz Sandy Bridge CPU using PGI 

14.4 and Intel 14.0.2 compilers when SIMD vectorization 

and OpenMP parallelization are enabled, versus a serial 

non-vectorized version running on only 1 core.  All times 

in microseconds. 

 

Cores trcadv1 trcadv2 trcadv3 

  1* 76100 62400 67400 

1 44500 15900 60900 

2 29800 9700 34100 

4 23800 6900 17400 

6 23600 6500 13100 

*No SIMD vectorization 
Table 1a – PGI 14.4 Fortran compiler 

 

 

Cores trcadv1 trcadv2 trcadv3 

  1* 74,300 62,000 56,300 

1 48,600 18,900 31,100 

2 30,100 10,600 16,500 

4 26,100 6,900 10,000 

6 26,800 6,800 8,600 

*No SIMD vectorization 
Table 1b – Intel 14.0.2 Fortran compiler 

 

Table 2 shows the performance of the code on an 

NVIDIA Kepler K20x GPU, unmodified, using 

OpenACC and the PGI 14.4 compilers.   

 

Cores trcadv1 trcadv2 trcadv3 

  2688 1240 750 810 

Table 2 

 

The Kepler executes kernels using two levels of 

parallelism.  The 14.4 version of the PGI compilers maps 

the outer loop gang parallelism to the Kepler thread 

blocks; the thread blocks must execute completely 

independently, since there is no support for 

synchronization between thread blocks or a barrier across 

thread blocks.  The compiler maps the inner loop vector 

parallelism to the threads within a thread block; there is a 

barrier of the vector lanes at the end of a vector loop. The 

times in Table 2 do not include any data transfers, just the 

on-GPU compute times. 

The performance is good relative to a single CPU, 

but feedback from NOAA indicated that the GPU 

performance should be up to 50% faster, based on timings 

using the F2C-ACC Fortran to CUDA C translator 

[Gov09].   

http://fim.noaa.gov/
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4.1 Loop interchange 

For a GPU, we want to push vector and parallel loops 

outward to minimize synchronization of the GPU cores 

and maximize the range of code over which coordinated 

memory accesses occur.  This creates longer regions of 

code during which the GPU cores run freely at full speed 

and allows the GPU memory system to ramp up to and 

sustain a high level of memory bandwidth utilization. 

For the loops in example 3, we can interchange the 

sequential do edg loop with the inner vector do k loop 

manually.  This increases the work in each vector loop 

iteration and enables better optimization of the sequential 

inner loop.  Example 4 shows the resulting loop structure: 

 
!$acc loop vector 

      do k=1,nvl 

         do edg=1,nprox(ipn) 

            if (antiflx(k,edg,ipn) >= 0.) then 

               antiflx(k,edg,ipn) =        &             

               antiflx(k,edg,ipn)*         & 

               min(r_mnus(k,ipn),          & 

               r_plus(k,prox(edg,ipn))) 

            else                                                

               antiflx(k,edg,ipn) =        & 

               antiflx(k,edg,ipn) *        & 

               min(r_plus(k,ipn),          & 

               r_mnus(k,prox(edg,ipn))) 

            end if 

            anti_tdcy(k) = anti_tdcy(k) +  & 

            antiflx(k,edg,ipn) 

         end do 

      end do 

Example 4 

 

For any such transformation to be done automatically 

by the compiler, it must answer two questions:  Is it legal?  

Is it profitable?  In the case shown here, determining 

legality of the loop interchange is quite trivial since the k 

loop has no cross-iteration dependences, so no 

dependence conditions prevent interchanging.  However, 

when the expressions used in the loops become more 

complicated, legality checks can become difficult.  If a 

compiler can’t determine a transformation is legal, it must 

assume it is unsafe and no transformation can be 

performed unless some mechanism (like a directive) is 

used to convey to the compiler that it is safe.  

Table 3 shows the performance of the code on an 

NVIDIA Kepler using OpenACC after this loop 

interchange is performed (V1), compared to the original 

version (V0). 

 

Version trcadv1 trcadv2 trcadv3 

  V0 1240 750 810 

  V1 1060 610 730 

Table 3 

 

Clearly it is profitable for the GPU in this case. We 

expect that such interchange, designed to drive 

vectorizable loops outward, is almost always profitable 

for a GPU. The do k loop must be strip-mined to allow 

for arbitrary values of nvl, and the interchange has the 

dual benefit of increasing the work in each vector loop 

iteration and decreasing the overhead introduced by the 

added strip loop. In this case the PGI compiler unrolls the 

do edg loop regardless of the interchange, and 

interchanging the k-strip loop results in better 

optimization in this case.  Loop interchange technology is 

implemented in the PGI compilers, but is not currently 

enabled in the accelerator optimizer as of PGI 14.4. 

4.2 Loop Fusion 

After loop interchange, the 3 do k loops are adjacent 

with no intervening code and with identical loop bounds.  

Fusing these three loops into one larger loop further 

increases the work per iteration, and eliminates any 

potential synchronization between loops.  The 

dependence testing to determine legality of loop fusion is 

more difficult than for loop interchange [Wol96], but in 

this case it’s quite trivial given all array accesses stay in 

the corresponding do k lanes.  Loop fusion technology is 

also implemented in the PGI compilers, but is not enabled 

in the accelerator optimizer as of PGI 14.4.  

 
!$acc loop vector 

      do k=1,nvl 

     anti_tdcy(k) = 0. 

         do edg=1,nprox(ipn) 

            if (antiflx(k,edg,ipn) >= 0.) then 

               antiflx(k,edg,ipn) =        &             

               antiflx(k,edg,ipn)*         & 

               min(r_mnus(k,ipn),          & 

                   r_plus(k,prox(edg,ipn))) 

        else                                                

           antiflx(k,edg,ipn) =        & 

           antiflx(k,edg,ipn) *        & 

               min(r_plus(k,ipn),          & 

                   r_mnus(k,prox(edg,ipn))) 

        end if 

        anti_tdcy(k) = anti_tdcy(k) +  & 

                    antiflx(k,edg,ipn) 

     end do 

     anti_tdcy(k) =                    & 

        -anti_tdcy(k) * rarea(ipn) 

     trc_tdcy(k,ipn,nf,t) =            & 

        trclo_tdcy(k,ipn,nf,t)         & 

      + anti_tdcy(k) 

     trcdp(k,ipn,t) =                  & 

        trcdp(k,ipn,t)                 & 

      + adbash1*trc_tdcy(k,ipn, nf,t)  & 

      + adbash2*trc_tdcy(k,ipn, of,t)  & 

      + adbash3*trc_tdcy(k,ipn,vof,t) 

      tracr(k,ipn,t) =                 &  

         max(trmin(k,ipn),             & 

             min(trmax(k,ipn),         &                   

                 trcdp(k,ipn,t) /      & 

                     max(thshld,delp(k,ipn)))) 

   end do 

Example 5 
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Example 5 shows the structure of the new do k loop 

after fusion is performed manually (V2). Loop fusion is 

typically used to reduce loop overhead, but it also can 

affect cache behaviour.  It can improve performance if the 

loops operate on the same data and re-use is increased, 

but can be detrimental if loops become so large and 

operate on so much data that cache locality is 

compromised or the register file spills to memory.  As we 

can see in Table 4, loop fusion in this case is beneficial 

for performance on the GPU.     

 

Version trcadv1 trcadv2 trcadv3 

  V0 1240 750 810 

  V1 1060 610 730 

  V2 980 540 620 

Table 4 

 

As with loop interchange, we expect loop fusion in 

cases like this will often be profitable on the GPU, 

because it reduces the number of barrier synchronization 

points for the vector lanes at the end of vector loops.  As 

we will see, the bigger advantage is enabling other 

transformations. 

4.3 Scalar replacement 

Scalar replacement is an optimization whereby an 

array in a vectorizable loop is replaced with a scalar 

[CK94, AK02].  This is legal when the k-th element of the 

array is initialized and used only in the k-th iteration of 

the vector loop, and is not live out from the loop.  In our 

example, we can perform scalar replacement on the 

private array variable anti_tdcy, reducing memory 

bandwidth requirements.   
 

!$acc parallel num_gangs(10242) &  

!$acc vector_length(64) private(anti_tdcy) 

!$acc loop gang 

    do ipn=ips,ipe 

!$acc loop vector 

      do k=1,nvl 

         anti_tdcy = 0.  

         do edg=1,nprox(ipn) 

          if (antiflx(k,edg,ipn) >= 0.) then 

                 antiflx(k,edg,ipn) =        &             

                 antiflx(k,edg,ipn)*         & 

                 min(r_mnus(k,ipn),          & 

                     r_plus(k,prox(edg,ipn))) 

          else                                                

             antiflx(k,edg,ipn) =        & 

             antiflx(k,edg,ipn) *        & 

                 min(r_plus(k,ipn),          & 

                     r_mnus(k,prox(edg,ipn))) 

          end if 

          anti_tdcy = anti_tdcy +        & 

                         antiflx(k,edg,ipn) 

        end do 

        anti_tdcy =                   & 

           -anti_tdcy * rarea(ipn) 

        trc_tdcy(k,ipn,nf,t) =           & 

           trclo_tdcy(k,ipn,nf,t)        & 

         + anti_tdcy 

        trcdp(k,ipn,t) =                 & 

           trcdp(k,ipn,t)                & 

         + adbash1*trc_tdcy(k,ipn, nf,t) & 

         + adbash2*trc_tdcy(k,ipn, of,t) & 

         + adbash3*trc_tdcy(k,ipn,vof,t) 

        tracr(k,ipn,t) =                 &  

           max(trmin(k,ipn),             & 

               min(trmax(k,ipn),         &                   

                   trcdp(k,ipn,t) /      & 

                       max(thshld,delp(k,ipn)))) 

      end do 

    end do 

!$acc end parallel 

Example 6 

 

Example 6 shows the entire trcadv3 loop, after loop 

interchange, loop fusion and scalar replacement have all 

been performed manually (V3).  On an NVIDIA GPU, the 

compiler may choose to place small gang private arrays 

such as anti_tdcy in shared memory to achieve a 

similar performance benefit to scalar replacement. 

Table 5 shows the performance of the code on an 

NVIDIA Kepler GPU after each of these successive 

transformations: 

 

Version trcadv1 trcadv2 trcadv3 

  V0 1240 750 810 

  V1 1060 610 730 

  V2 980 540 620 

  V3 980 500 580 

Table 5 

 

4.4 OpenACC loop schedules 

OpenACC has the concepts of gang and vector 

parallelism.  On an NVIDIA CUDA GPU, gang 

corresponds roughly to thread-block level parallelism and 

vector lanes roughly to threads within a thread-block.  But 

that's not a strict definition.  An OpenACC 

implementation can re-map the parallelism more broadly. 

In the TRCADV loops, the inner loop has vectors of 

length 64.  The Kepler hardware can support 2,048 active 

threads in each of the SMX units.  With only 64 threads 

per thread block, it would take 32 thread blocks to 

completely subscribe a given SMX unit.  However, there 

is a hardware limit of 16 active thread blocks per SMX 

unit, so we can only half-subscribe the machine if we 

settle for using the inner loop length of  64 as our vector 

length.    If we take the outer loop and run it across 5121 

thread blocks of size 128, dividing each thread block in 

half to handle two vectors of length 64, it will fully 

subscribe the hardware.   

We can do this using the OpenACC kernels construct 

using both gang and worker parallelism on the outer loop: 
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!$acc parallel num_gangs(10242) &  

!$acc          vector_length(64)  

!$acc loop gang 

    do ipn=ips,ipe  

!$acc loop vector 

          do k=1,nvl 

 

changes to (V4): 

 
!$acc kernels 

!$acc loop gang(5121) worker(2)  

       do ipn = ips, ipe 

!$acc loop vector(64) 

          do k = 1, nvl 

 

For an NVIDIA Kepler GPU, this improves the 

performance (because it has improved the occupancy), as 

reflected in Table 6. 

 

Version trcadv1 trcadv2 trcadv3 

  V0 1240 750 810 

  V1 1060 610 730 

  V2 980 540 620 

  V3 980 500 580 

  V4 1000 430 570 

Table 6 

 

Through a sequence of well-understood loop 

transformations, we improved overall performance of the 

TRCADV compute kernels by 36%.  The OpenACC 

directives provide the flexibility to specify a better 

mapping of program parallelism to hardware parallelism, 

increasing the overall improvement to 40%. The 

improvement on one of the kernels is nearly 75%.  If 

these transformations can be automated in the compiler, 

the underlying language and OpenACC directives 

together will enable a common source formulation that 

results in performance portability across both SIMD-

oriented multi-core CPUs and SIMT-oriented GPUs. 

5. Forward performance portability  

To enable forward performance portability, we must 

be able to compile programs written and optimized for 

today’s multi-core CPU architectures to deliver high 

performance on newer GPU architectures.  As we can see 

from the sequence of steps above, the limitation to 

forward performance portability in this case is not the 

hardware, the programming model or the program.  It is 

the inability of the compiler to efficiently map to the GPU 

hardware a program stylized for multi-core CPUs. 

In the case shown above, determining legality of the 

required transformations is quite trivial.  However, as the 

expressions in the loops become more complicated, 

legality checks can become a challenge. 

Determining profitability is in general a more 

difficult problem.  Compilers use heuristics designed to 

trigger legal transformations when loops meet basic 

criteria.  Typically these heuristics evolve and improve 

over time as more and more code examples can be 

analyzed for a given type of transformation on a given 

architecture.   

The loop interchange described above is now 

implemented in the PGI compilers internally, and we see 

about the same performance on the FIM standalone 

example regardless of how the do edg and corresponding 

do k loop are ordered. We are testing this optimization 

more widely to better understand when it is profitable, 

and when it must be throttled to avoid unexpected 

slowdowns before including it as a default optimization in 

a production release of the compilers. 

The loop fusion optimization is somewhat important, 

mostly because it can reduce memory traffic.  We are 

designing an implementation of loop fusion in the 

OpenACC code generator, specifically for cases like those 

seen here.  We expect it to be ready for production use 

late this year. 

Scalar replacement has a relatively small impact, and 

in fact we were somewhat surprised at how small the 

impact was.  The general scalar replacement algorithm 

described in the literature is quite sophisticated.  We 

expect a much simpler implementation to satisfy all the 

requirements we see for cases such as shown here.  It is 

likely that our initial implementation will not try to 

remove the ultimate store to the array, as the cost of 

detecting when an array is no longer needed is relatively 

high. 

OpenACC does not rigidly define the mapping of 

program parallelism (gang, worker, vector) to the target 

machine (grid, block, warp, thread).  We are continually 

experimenting with and incrementally improving the 

parallelism mapping phase of our OpenACC code 

generator, called the Planner.  The Planner must live 

within the constraints of the target architecture.  For 

instance, on NVIDIA GPUs, synchronization between 

threads of a warp or all threads in a thread block can be 

easily implemented, but synchronization between a subset 

of warps in a thread block is not supported.  The compiler 

must not create a schedule that would require 

synchronization between execution units (such as warps) 

that cannot be implemented. 

6. Backward performance portability  

How have the progressive changes of the original 

source code from a CPU-friendly formulation to a GPU-

friendly formulation affected performance on the CPU?  

Table 7 shows the results on a single Sandy Bridge CPU 
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core using the PGI 14.4 compiler after each progressive 

change. 

The loop interchange in V1 is not profitable for the 

CPU, and in fact degrades performance by almost a factor 

of two overall.  This is almost entirely due to limitations 

in a compiler that only vectorizes innermost loops.  In the 

routines that showed most advantage from SIMD 

vectorization, the degradation from failure to vectorize 

(now outer) do k loops is almost a factor of 3. 

 

Version trcadv1 trcadv2 trcadv3 

  V0 44,500 15,900 60,900 

  V1 119,400 39,500 69,500 

  V2 143,000 84,100 75,800 

  V3 143,800 75,300 68,300 

  V4 n/a n/a n/a 

Table 7 

 

Similarly, loop fusion in V2 is not profitable for the 

CPU.  We believe this is due to cache effects discussed 

earlier, but that has not been verified.  Regardless, we 

have taken another step backward in CPU performance 

with this transformation.  As we progressively optimize 

for the GPU, we seem to be de-optimizing for the CPU. 

The scalar replacement transformation in V3 is 

profitable for the CPU, presumably because we have 

reduced memory and SIMD register pressure.  We would 

expect that to be the case generally for both GPUs and 

CPUs.   The V4 transformation has no effect on the CPU 

code because there is no analog to the gang/vector 

rescheduling. 

The biggest impediment to backward performance 

portability is the inability of the compiler to vectorize 

non-innermost loops.  Outer loop vectorization has been 

known technology for a long time.  Some compilers have 

implemented outer loop vectorization by interchanging 

the outer loop to the innermost position, essentially 

undoing the V0-V1 transformation.  However, there are 

advantages to vectorizing outer loops without 

interchanging [DE84, Wol96].  Consider the following 

loop, a single-precision matrix-vector product added to 

another vector (smxpy): 
 

    do j = 1, n2 

      do i = 1, n1 

        y(i) = y(i) + x(j)*m(i,j) 

      enddo 

    enddo 

 

On a computer with a typical vector or SIMD instruction 

set, the inner loop will perform the following operations: 

 
    load vector y(i:) 

    load scalar x(j) 

    load vector m(i:,j) 

    multiply x(j) * m(i:,j) 

    add result to y(i:) 

    store vector y(i:) 

 

The inner loop performs three vector memory operations 

and only two vector arithmetic instructions, for a compute 

intensity of 2/3.  Instead, what if we can interchange the 

two loops and vectorize the stride-1 do i loop in the 

outermost position: 

 
    do i = 1, n1 

      do j = 1, n2 

        y(i) = y(i) + x(j)*m(i,j) 

      enddo 

    enddo 

 

In this form, the overhead for strip-mining the do i loop 

occurs only once, outside the do j loop.  More 

importantly, y(i) can be accumulated in a vector register 

in the inner loop;  the loading and storing of that register 

can be moved outside the inner loop.  The inner loop then 

only performs the following operations: 

 
    load scalar x(j) 

    load vector m(i:,j) 

    multiply x(j) * m(i:,j) 

    add result to y(i:) 

 

The compute intensity has improved from 2/3 to 2, with 

only a single vector memory operation.  The ability to 

keep values in registers across multiple iterations of an 

inner loop, and even across multiple inner loops, is the 

strength of outer loop vectorization.  When first 

described, this was called supervector performance, and 

was a motivating factor in the development of BLAS-2.   

We believe outer loop vectorization is key to 

enabling backward performance portability.  In fact, we 

believe outer loop vectorization will be increasingly 

important for CPUs, as vector and/or SIMD instructions 

and registers become more critical to performance 

[NZ08]. 

Scalar replacement is beneficial for both CPU and 

GPU because it reduces the memory bandwidth 

requirements.  For both targets, saving a value in a 

register is always less expensive than saving it to 

memory, unless the register file becomes a critical 

resource.  Even in that case, spilling the register to 

memory should not be more costly than storing the value 

to memory in the first place. 

The only question is whether writing the program 

with fused loops will be too costly for a CPU target.  Our 

experiments show a significant slowdown in all three 

kernels after loop fusion. We believe that to be caused by 

poor cache locality.  With both the outer do k loop and 

inner do edg loop running sequentially, a reference to 

antiflx(k,edg,ipn) will traverse the array down the 

middle dimension, with a large stride.  If the do k loop is 
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vectorized, this reference will benefit from sequential 

access along the stride-1 first dimension.  However, this 

supposition must be proven in practice.  An 

implementation could instead rely on loop fission to 

optimize memory locality [MCT96]. 

7. Summary and Conclusions  

High performance computer architectures are taking 

several possible paths.  One path will use homogeneous 

multicore or highly parallel many-core processors at each 

node, not too different from what we see today.  Another 

path will use a heterogeneous multicore CPU and highly 

parallel, bandwidth-optimized accelerator at each node.  

A third path will use a heterogeneous multicore and 

parallel accelerator integrated on a single chip, perhaps 

sharing a single path to memory.  Likely all three paths, 

and perhaps others, will coexist for the foreseeable future.   

OpenACC is designed to provide expressiveness to 

the programmer and flexibility to the implementer, and to 

promote performance portability across a wide range of 

target architectures.  Using a series of program 

transformations based on existing compiler technology to 

convert a CPU-optimized representation of an algorithm 

into one optimized for a GPU, this paper argues that an 

OpenACC implementation can deliver good performance 

portability.  Moreover, we show how an implementation 

can transform an accelerator-optimized representation of 

an algorithm and optimize it for a latency-optimized CPU.  

We have begun implementation of these methods in the 

PGI compilers. 
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