

CUG 2014 Proceedings 1 of 8

Performance Portability and OpenACC

Douglas Miles, David Norton and Michael Wolfe

PGI / NVIDIA

ABSTRACT: Performance portability means a single program gives good performance

across a variety of systems, without modifying the program. OpenACC is designed to

offer performance portability across CPUs with SIMD extensions and accelerators based

on GPU or many-core architectures. Using a sequence of examples, we explore the

aspects of performance portability that are well-addressed by OpenACC itself and those

that require underlying compiler optimization techniques. We introduce the concepts of

forward and backward performance portability, where the former means legacy codes

optimized for SIMD-capable CPUs can be compiled for optimal execution on

accelerators and the latter means the opposite. The goal of an OpenACC compiler should

be to provide both, and we uncover some interesting opportunities as we explore the

concept of backward performance portability.

KEYWORDS: Compiler, Accelerator, Multicore, GPGPU, Parallelization, Vectorization

1. Introduction

A computer program is portable if a single source

code version can be compiled and executed across

multiple types of computer systems. Impediments to

portability include differing instruction sets, differing

capacity (e.g. memory size) and differing functionality of

operating systems. High-level programming languages

are designed to overcome these impediments. These

languages can be implemented via traditional compilers,

interpreters, or just-in-time compilers. Libraries including

pre-packaged functions or class definitions enhance the

portability of high-level programming languages.

 A computer program is performance portable if a

single source code version can be compiled and executed

with uniformly good performance across multiple types of

computer systems. Impediments to performance

portability are often related to system architecture –

memory hierarchy, parallelism, vectors – but the design of

programming languages and the inability of compilers to

successfully map those programming languages to a given

target are big factors as well.

In this paper, we define a program as being forward

performance portable if it is written and optimized for a

previous generation or style of processor, and can be

compiled for execution with high performance on a newer

generation or style of processor. Likewise, a backward

performance portable program is one written and

optimized for a newer generation or style of processor and

which can be compiled for execution with high

performance on a previous generation or style of

processor.

2. Performance Portability Success Stories

The most classical example of successful

performance portable programs is the set of programs

written for vectorizing compilers. In 1976, the Cray-1

supercomputer was installed at Los Alamos Scientific

Laboratory. The Cray Fortran Translator (CFT) would

automatically vectorize loops, which could give a 4-5X

performance boost over sequential execution. Moreover,

the compiler would include vectorization feedback in the

listing file, indicating to the programmer which loops

failed to vectorize and why, thereby directing users on

how to modify their programs to enhance vectorization.

Over the next few years, Cray programmers were trained

in how to write programs that would successfully

vectorize. Other manufacturers introduced vector

supercomputer computers over the next several years,

such as the IBM Vector Facility, the NEC SX-1 and SX-

2, the Convex C1, and others. Performance portability

was demonstrated when programs written to vectorize

with CFT for the Cray would also vectorize for these

other vector computers.

CUG 2014 Proceedings 2 of 8

A second set of performance portable programs

includes those using MPI for parallel control and

communication. MPI has become ubiquitous for

implementing scalable, highly parallel programs. As

such, vendors are motivated to design machines that

execute these programs efficiently, even to providing

tuned implementations of the MPI libraries.

These two examples show two very different

methods to achieve performance portability. The first

uses a hardware feature (vector instruction set), exposed

to and exploited by programmers using optimizing

compiler technology (vectorization), implemented by

multiple vendors with enough similarities that programs

optimized to execute in vector mode for any vendor will

benefit on all such machines. The second uses a software

specification (MPI) that motivates vendors to optimize the

hardware and/or system software for such programs.

3. Performance Portability Between CPUs

and GPUs

OpenACC is intended and designed to provide both

portability and performance portability across most types

of processors used in HPC today: multi-core CPUs with

SIMD instructions, many-core processors like the Intel

MIC, massively parallel stream-oriented GPUs, and

heterogeneous configurations where a CPU is coupled to

a MIC co-processor or GPU accelerator. There are

several examples of OpenACC benchmarks and

applications that display performance portability across

multiple types of systems [Her12, LSG12, MFM13].

One of the challenges of enabling performance

portability across CPUs and GPUs is to overcome basic

design differences in the areas of memory and

parallelism. CPUs have latency-optimized memory

systems and rely on a few very fast cores with modest

SIMD capability. To deliver high performance on these

processors, work is distributed across the cores using MPI

or SMP parallelization and then organized for efficient

use of the SIMD hardware using vectorization. In a paper

presented at CUG 2013 [CO13], an example loop from

the weather application COSMO was shown as an

example of this style of coding:

do k=2,Nz

 do ip=1,nproma

 c2=c1(ip,k)*a(ip,k-1)

 a(ip,k)=c2*a(ip,k-1)

 enddo

enddo

Example 1

The inner loop above is stride-1, and will be vectorized by

most optimizing compilers to take advantage of SIMD

capabilities on an x86 CPU. A similar formulation would

be advantageous on Power CPUs with Altivec, or ARM

CPUs with Neon extensions.

GPUs have stream-optimized memory systems and

rely on very large numbers of slower cores that operate in

sub-groups in a single-instruction multiple-thread (SIMT)

fashion. Every core in a sub-group executes the same

instruction at the same time, or no instruction at all. To

deliver high performance on these processors, work is

oversubscribed across the cores in a massively parallel

fashion, and organized so that when the cores in a sub-

group each issue a given memory operation, the

operations collectively result in a single main memory

fetch of a sequence of contiguous data elements. To

structure the above loop from COSMO for optimal

execution on a GPU, the loops must be interchanged:

do ip=1,nproma

 do k=2,Nz

 c2=c1(ip,k)*a(ip,k-1)

 a(ip,k)=c2*a(ip,k-1)

 enddo

enddo

Example 2

When compiled for execution on a GPU using either

OpenACC or an explicit model such as CUDA or

OpenCL, the outer ip-loop in Example 2 is replaced with

a parallel kernel launch call and the inner loop becomes

the body of the kernel. Each outer ip-loop iteration is

executed by a separate GPU core, each of which executes

separate complete instances of the inner k-loop. The

work is scheduled by the compiler so that adjacent GPU

cores tend to access adjacent elements of c1 and a with

the same memory access instruction, resulting in optimal

use of memory bandwidth on the GPU.

The resulting problem is obvious. If we have to

structure loops in one way for optimal execution on a

CPU and in another way for optimal execution on a GPU,

it puts at risk the ability to maintain a single version of

source code that can be efficiently compiled and executed

on either CPUs or GPUs. The above example is quite

simple to conditionally compile either way, but the same

situation can occur with loops that are much larger and

more complicated. If this challenge can’t be resolved by a

programming model or compiler, the application

developer must either maintain two code paths for

computationally intensive code, or compromise the

performance of one platform or the other.

Can we make the CPU formulation forward

performance portable to GPUs? Can we make the GPU

formulation backward performance portable to CPUs?

These are the questions we will explore in the remainder

of this paper.

CUG 2014 Proceedings 3 of 8

4. A Motivating Example

FIM (Flow-following, finite-volume, icosahedral

model) is a weather code under development by NOAA

(http://fim.noaa.gov). To facilitate performance analysis

and tuning, the authors of FIM created the standalone

TRCADV benchmark representing a key part of the code.

There are 3 subroutines in TRCADV. Example 3 shows

the main loop structure of trcadv3.

!$acc parallel num_gangs(10242) &

!$acc vector_length(64) private(anti_tdcy)

!$acc loop gang

 do ipn=ips,ipe

!$acc loop vector

 do k=1,nvl

 anti_tdcy(k) = 0.

 end do

 do edg=1,nprox(ipn)

!$acc loop vector

 do k=1,nvl

 if (antiflx(k,edg,ipn) >= 0.) then

 antiflx(k,edg,ipn) = &

 antiflx(k,edg,ipn)* &

 min(r_mnus(k,ipn), &

 r_plus(k,prox(edg,ipn)))

 else

 antiflx(k,edg,ipn) = &

 antiflx(k,edg,ipn) * &

 min(r_plus(k,ipn), &

 r_mnus(k,prox(edg,ipn)))

 end if

 anti_tdcy(k) = anti_tdcy(k) + &

 antiflx(k,edg,ipn)

 end do

 end do

!$acc loop vector

 do k=1,nvl

 anti_tdcy(k) = &

 -anti_tdcy(k)* rarea(ipn)

 trc_tdcy(k,ipn,nf,t) = &

 trclo_tdcy(k,ipn,nf,t) &

 + anti_tdcy(k)

 trcdp(k,ipn,t) = &

 trcdp(k,ipn,t) &

 + adbash1*trc_tdcy(k,ipn, nf,t) &

 + adbash2*trc_tdcy(k,ipn, of,t) &

 + adbash3*trc_tdcy(k,ipn,vof,t)

 tracr(k,ipn,t) = &

 max(trmin(k,ipn), &

 min(trmax(k,ipn), &

 trcdp(k,ipn,t) / &

 max(thshld,delp(k,ipn))))

 end do

 end do

!$acc end parallel

Example 3

The nature of the computations is different in the

other two subroutines (trcadv1 and trcadv2), and they

are somewhat larger, but the basic loop structure is

identical across all three. The main loop is designed to be

parallelized with either OpenMP or OpenACC. It is

structured with modern CPU architectures in mind, with a

parallelizable outermost ipn-loop and SIMD vectorizable

innermost k-loops. It uses the OpenACC parallel

construct, which is conceptually similar to an OpenMP

parallel region and is frequently used to incrementally

port codes from OpenMP to OpenACC [LL12].

Tables 1a and 1b show the increasing performance of

the code on a single 3.2Ghz Sandy Bridge CPU using PGI

14.4 and Intel 14.0.2 compilers when SIMD vectorization

and OpenMP parallelization are enabled, versus a serial

non-vectorized version running on only 1 core. All times

in microseconds.

Cores trcadv1 trcadv2 trcadv3

 1* 76100 62400 67400

1 44500 15900 60900

2 29800 9700 34100

4 23800 6900 17400

6 23600 6500 13100

*No SIMD vectorization
Table 1a – PGI 14.4 Fortran compiler

Cores trcadv1 trcadv2 trcadv3

 1* 74,300 62,000 56,300

1 48,600 18,900 31,100

2 30,100 10,600 16,500

4 26,100 6,900 10,000

6 26,800 6,800 8,600

*No SIMD vectorization
Table 1b – Intel 14.0.2 Fortran compiler

Table 2 shows the performance of the code on an

NVIDIA Kepler K20x GPU, unmodified, using

OpenACC and the PGI 14.4 compilers.

Cores trcadv1 trcadv2 trcadv3

 2688 1240 750 810

Table 2

The Kepler executes kernels using two levels of

parallelism. The 14.4 version of the PGI compilers maps

the outer loop gang parallelism to the Kepler thread

blocks; the thread blocks must execute completely

independently, since there is no support for

synchronization between thread blocks or a barrier across

thread blocks. The compiler maps the inner loop vector

parallelism to the threads within a thread block; there is a

barrier of the vector lanes at the end of a vector loop. The

times in Table 2 do not include any data transfers, just the

on-GPU compute times.

The performance is good relative to a single CPU,

but feedback from NOAA indicated that the GPU

performance should be up to 50% faster, based on timings

using the F2C-ACC Fortran to CUDA C translator

[Gov09].

http://fim.noaa.gov/

CUG 2014 Proceedings 4 of 8

4.1 Loop interchange

For a GPU, we want to push vector and parallel loops

outward to minimize synchronization of the GPU cores

and maximize the range of code over which coordinated

memory accesses occur. This creates longer regions of

code during which the GPU cores run freely at full speed

and allows the GPU memory system to ramp up to and

sustain a high level of memory bandwidth utilization.

For the loops in example 3, we can interchange the

sequential do edg loop with the inner vector do k loop

manually. This increases the work in each vector loop

iteration and enables better optimization of the sequential

inner loop. Example 4 shows the resulting loop structure:

!$acc loop vector

 do k=1,nvl

 do edg=1,nprox(ipn)

 if (antiflx(k,edg,ipn) >= 0.) then

 antiflx(k,edg,ipn) = &

 antiflx(k,edg,ipn)* &

 min(r_mnus(k,ipn), &

 r_plus(k,prox(edg,ipn)))

 else

 antiflx(k,edg,ipn) = &

 antiflx(k,edg,ipn) * &

 min(r_plus(k,ipn), &

 r_mnus(k,prox(edg,ipn)))

 end if

 anti_tdcy(k) = anti_tdcy(k) + &

 antiflx(k,edg,ipn)

 end do

 end do

Example 4

For any such transformation to be done automatically

by the compiler, it must answer two questions: Is it legal?

Is it profitable? In the case shown here, determining

legality of the loop interchange is quite trivial since the k

loop has no cross-iteration dependences, so no

dependence conditions prevent interchanging. However,

when the expressions used in the loops become more

complicated, legality checks can become difficult. If a

compiler can’t determine a transformation is legal, it must

assume it is unsafe and no transformation can be

performed unless some mechanism (like a directive) is

used to convey to the compiler that it is safe.

Table 3 shows the performance of the code on an

NVIDIA Kepler using OpenACC after this loop

interchange is performed (V1), compared to the original

version (V0).

Version trcadv1 trcadv2 trcadv3

 V0 1240 750 810

 V1 1060 610 730

Table 3

Clearly it is profitable for the GPU in this case. We

expect that such interchange, designed to drive

vectorizable loops outward, is almost always profitable

for a GPU. The do k loop must be strip-mined to allow

for arbitrary values of nvl, and the interchange has the

dual benefit of increasing the work in each vector loop

iteration and decreasing the overhead introduced by the

added strip loop. In this case the PGI compiler unrolls the

do edg loop regardless of the interchange, and

interchanging the k-strip loop results in better

optimization in this case. Loop interchange technology is

implemented in the PGI compilers, but is not currently

enabled in the accelerator optimizer as of PGI 14.4.

4.2 Loop Fusion

After loop interchange, the 3 do k loops are adjacent

with no intervening code and with identical loop bounds.

Fusing these three loops into one larger loop further

increases the work per iteration, and eliminates any

potential synchronization between loops. The

dependence testing to determine legality of loop fusion is

more difficult than for loop interchange [Wol96], but in

this case it’s quite trivial given all array accesses stay in

the corresponding do k lanes. Loop fusion technology is

also implemented in the PGI compilers, but is not enabled

in the accelerator optimizer as of PGI 14.4.

!$acc loop vector

 do k=1,nvl

 anti_tdcy(k) = 0.

 do edg=1,nprox(ipn)

 if (antiflx(k,edg,ipn) >= 0.) then

 antiflx(k,edg,ipn) = &

 antiflx(k,edg,ipn)* &

 min(r_mnus(k,ipn), &

 r_plus(k,prox(edg,ipn)))

 else

 antiflx(k,edg,ipn) = &

 antiflx(k,edg,ipn) * &

 min(r_plus(k,ipn), &

 r_mnus(k,prox(edg,ipn)))

 end if

 anti_tdcy(k) = anti_tdcy(k) + &

 antiflx(k,edg,ipn)

 end do

 anti_tdcy(k) = &

 -anti_tdcy(k) * rarea(ipn)

 trc_tdcy(k,ipn,nf,t) = &

 trclo_tdcy(k,ipn,nf,t) &

 + anti_tdcy(k)

 trcdp(k,ipn,t) = &

 trcdp(k,ipn,t) &

 + adbash1*trc_tdcy(k,ipn, nf,t) &

 + adbash2*trc_tdcy(k,ipn, of,t) &

 + adbash3*trc_tdcy(k,ipn,vof,t)

 tracr(k,ipn,t) = &

 max(trmin(k,ipn), &

 min(trmax(k,ipn), &

 trcdp(k,ipn,t) / &

 max(thshld,delp(k,ipn))))

 end do

Example 5

CUG 2014 Proceedings 5 of 8

Example 5 shows the structure of the new do k loop

after fusion is performed manually (V2). Loop fusion is

typically used to reduce loop overhead, but it also can

affect cache behaviour. It can improve performance if the

loops operate on the same data and re-use is increased,

but can be detrimental if loops become so large and

operate on so much data that cache locality is

compromised or the register file spills to memory. As we

can see in Table 4, loop fusion in this case is beneficial

for performance on the GPU.

Version trcadv1 trcadv2 trcadv3

 V0 1240 750 810

 V1 1060 610 730

 V2 980 540 620

Table 4

As with loop interchange, we expect loop fusion in

cases like this will often be profitable on the GPU,

because it reduces the number of barrier synchronization

points for the vector lanes at the end of vector loops. As

we will see, the bigger advantage is enabling other

transformations.

4.3 Scalar replacement

Scalar replacement is an optimization whereby an

array in a vectorizable loop is replaced with a scalar

[CK94, AK02]. This is legal when the k-th element of the

array is initialized and used only in the k-th iteration of

the vector loop, and is not live out from the loop. In our

example, we can perform scalar replacement on the

private array variable anti_tdcy, reducing memory

bandwidth requirements.

!$acc parallel num_gangs(10242) &

!$acc vector_length(64) private(anti_tdcy)

!$acc loop gang

 do ipn=ips,ipe

!$acc loop vector

 do k=1,nvl

 anti_tdcy = 0.

 do edg=1,nprox(ipn)

 if (antiflx(k,edg,ipn) >= 0.) then

 antiflx(k,edg,ipn) = &

 antiflx(k,edg,ipn)* &

 min(r_mnus(k,ipn), &

 r_plus(k,prox(edg,ipn)))

 else

 antiflx(k,edg,ipn) = &

 antiflx(k,edg,ipn) * &

 min(r_plus(k,ipn), &

 r_mnus(k,prox(edg,ipn)))

 end if

 anti_tdcy = anti_tdcy + &

 antiflx(k,edg,ipn)

 end do

 anti_tdcy = &

 -anti_tdcy * rarea(ipn)

 trc_tdcy(k,ipn,nf,t) = &

 trclo_tdcy(k,ipn,nf,t) &

 + anti_tdcy

 trcdp(k,ipn,t) = &

 trcdp(k,ipn,t) &

 + adbash1*trc_tdcy(k,ipn, nf,t) &

 + adbash2*trc_tdcy(k,ipn, of,t) &

 + adbash3*trc_tdcy(k,ipn,vof,t)

 tracr(k,ipn,t) = &

 max(trmin(k,ipn), &

 min(trmax(k,ipn), &

 trcdp(k,ipn,t) / &

 max(thshld,delp(k,ipn))))

 end do

 end do

!$acc end parallel

Example 6

Example 6 shows the entire trcadv3 loop, after loop

interchange, loop fusion and scalar replacement have all

been performed manually (V3). On an NVIDIA GPU, the

compiler may choose to place small gang private arrays

such as anti_tdcy in shared memory to achieve a

similar performance benefit to scalar replacement.

Table 5 shows the performance of the code on an

NVIDIA Kepler GPU after each of these successive

transformations:

Version trcadv1 trcadv2 trcadv3

 V0 1240 750 810

 V1 1060 610 730

 V2 980 540 620

 V3 980 500 580

Table 5

4.4 OpenACC loop schedules

OpenACC has the concepts of gang and vector

parallelism. On an NVIDIA CUDA GPU, gang

corresponds roughly to thread-block level parallelism and

vector lanes roughly to threads within a thread-block. But

that's not a strict definition. An OpenACC

implementation can re-map the parallelism more broadly.

In the TRCADV loops, the inner loop has vectors of

length 64. The Kepler hardware can support 2,048 active

threads in each of the SMX units. With only 64 threads

per thread block, it would take 32 thread blocks to

completely subscribe a given SMX unit. However, there

is a hardware limit of 16 active thread blocks per SMX

unit, so we can only half-subscribe the machine if we

settle for using the inner loop length of 64 as our vector

length. If we take the outer loop and run it across 5121

thread blocks of size 128, dividing each thread block in

half to handle two vectors of length 64, it will fully

subscribe the hardware.

We can do this using the OpenACC kernels construct

using both gang and worker parallelism on the outer loop:

CUG 2014 Proceedings 6 of 8

!$acc parallel num_gangs(10242) &

!$acc vector_length(64)

!$acc loop gang

 do ipn=ips,ipe

!$acc loop vector

 do k=1,nvl

changes to (V4):

!$acc kernels

!$acc loop gang(5121) worker(2)

 do ipn = ips, ipe

!$acc loop vector(64)

 do k = 1, nvl

For an NVIDIA Kepler GPU, this improves the

performance (because it has improved the occupancy), as

reflected in Table 6.

Version trcadv1 trcadv2 trcadv3

 V0 1240 750 810

 V1 1060 610 730

 V2 980 540 620

 V3 980 500 580

 V4 1000 430 570

Table 6

Through a sequence of well-understood loop

transformations, we improved overall performance of the

TRCADV compute kernels by 36%. The OpenACC

directives provide the flexibility to specify a better

mapping of program parallelism to hardware parallelism,

increasing the overall improvement to 40%. The

improvement on one of the kernels is nearly 75%. If

these transformations can be automated in the compiler,

the underlying language and OpenACC directives

together will enable a common source formulation that

results in performance portability across both SIMD-

oriented multi-core CPUs and SIMT-oriented GPUs.

5. Forward performance portability

To enable forward performance portability, we must

be able to compile programs written and optimized for

today’s multi-core CPU architectures to deliver high

performance on newer GPU architectures. As we can see

from the sequence of steps above, the limitation to

forward performance portability in this case is not the

hardware, the programming model or the program. It is

the inability of the compiler to efficiently map to the GPU

hardware a program stylized for multi-core CPUs.

In the case shown above, determining legality of the

required transformations is quite trivial. However, as the

expressions in the loops become more complicated,

legality checks can become a challenge.

Determining profitability is in general a more

difficult problem. Compilers use heuristics designed to

trigger legal transformations when loops meet basic

criteria. Typically these heuristics evolve and improve

over time as more and more code examples can be

analyzed for a given type of transformation on a given

architecture.

The loop interchange described above is now

implemented in the PGI compilers internally, and we see

about the same performance on the FIM standalone

example regardless of how the do edg and corresponding

do k loop are ordered. We are testing this optimization

more widely to better understand when it is profitable,

and when it must be throttled to avoid unexpected

slowdowns before including it as a default optimization in

a production release of the compilers.

The loop fusion optimization is somewhat important,

mostly because it can reduce memory traffic. We are

designing an implementation of loop fusion in the

OpenACC code generator, specifically for cases like those

seen here. We expect it to be ready for production use

late this year.

Scalar replacement has a relatively small impact, and

in fact we were somewhat surprised at how small the

impact was. The general scalar replacement algorithm

described in the literature is quite sophisticated. We

expect a much simpler implementation to satisfy all the

requirements we see for cases such as shown here. It is

likely that our initial implementation will not try to

remove the ultimate store to the array, as the cost of

detecting when an array is no longer needed is relatively

high.

OpenACC does not rigidly define the mapping of

program parallelism (gang, worker, vector) to the target

machine (grid, block, warp, thread). We are continually

experimenting with and incrementally improving the

parallelism mapping phase of our OpenACC code

generator, called the Planner. The Planner must live

within the constraints of the target architecture. For

instance, on NVIDIA GPUs, synchronization between

threads of a warp or all threads in a thread block can be

easily implemented, but synchronization between a subset

of warps in a thread block is not supported. The compiler

must not create a schedule that would require

synchronization between execution units (such as warps)

that cannot be implemented.

6. Backward performance portability

How have the progressive changes of the original

source code from a CPU-friendly formulation to a GPU-

friendly formulation affected performance on the CPU?

Table 7 shows the results on a single Sandy Bridge CPU

CUG 2014 Proceedings 7 of 8

core using the PGI 14.4 compiler after each progressive

change.

The loop interchange in V1 is not profitable for the

CPU, and in fact degrades performance by almost a factor

of two overall. This is almost entirely due to limitations

in a compiler that only vectorizes innermost loops. In the

routines that showed most advantage from SIMD

vectorization, the degradation from failure to vectorize

(now outer) do k loops is almost a factor of 3.

Version trcadv1 trcadv2 trcadv3

 V0 44,500 15,900 60,900

 V1 119,400 39,500 69,500

 V2 143,000 84,100 75,800

 V3 143,800 75,300 68,300

 V4 n/a n/a n/a

Table 7

Similarly, loop fusion in V2 is not profitable for the

CPU. We believe this is due to cache effects discussed

earlier, but that has not been verified. Regardless, we

have taken another step backward in CPU performance

with this transformation. As we progressively optimize

for the GPU, we seem to be de-optimizing for the CPU.

The scalar replacement transformation in V3 is

profitable for the CPU, presumably because we have

reduced memory and SIMD register pressure. We would

expect that to be the case generally for both GPUs and

CPUs. The V4 transformation has no effect on the CPU

code because there is no analog to the gang/vector

rescheduling.

The biggest impediment to backward performance

portability is the inability of the compiler to vectorize

non-innermost loops. Outer loop vectorization has been

known technology for a long time. Some compilers have

implemented outer loop vectorization by interchanging

the outer loop to the innermost position, essentially

undoing the V0-V1 transformation. However, there are

advantages to vectorizing outer loops without

interchanging [DE84, Wol96]. Consider the following

loop, a single-precision matrix-vector product added to

another vector (smxpy):

 do j = 1, n2

 do i = 1, n1

 y(i) = y(i) + x(j)*m(i,j)

 enddo

 enddo

On a computer with a typical vector or SIMD instruction

set, the inner loop will perform the following operations:

 load vector y(i:)

 load scalar x(j)

 load vector m(i:,j)

 multiply x(j) * m(i:,j)

 add result to y(i:)

 store vector y(i:)

The inner loop performs three vector memory operations

and only two vector arithmetic instructions, for a compute

intensity of 2/3. Instead, what if we can interchange the

two loops and vectorize the stride-1 do i loop in the

outermost position:

 do i = 1, n1

 do j = 1, n2

 y(i) = y(i) + x(j)*m(i,j)

 enddo

 enddo

In this form, the overhead for strip-mining the do i loop

occurs only once, outside the do j loop. More

importantly, y(i) can be accumulated in a vector register

in the inner loop; the loading and storing of that register

can be moved outside the inner loop. The inner loop then

only performs the following operations:

 load scalar x(j)

 load vector m(i:,j)

 multiply x(j) * m(i:,j)

 add result to y(i:)

The compute intensity has improved from 2/3 to 2, with

only a single vector memory operation. The ability to

keep values in registers across multiple iterations of an

inner loop, and even across multiple inner loops, is the

strength of outer loop vectorization. When first

described, this was called supervector performance, and

was a motivating factor in the development of BLAS-2.

We believe outer loop vectorization is key to

enabling backward performance portability. In fact, we

believe outer loop vectorization will be increasingly

important for CPUs, as vector and/or SIMD instructions

and registers become more critical to performance

[NZ08].

Scalar replacement is beneficial for both CPU and

GPU because it reduces the memory bandwidth

requirements. For both targets, saving a value in a

register is always less expensive than saving it to

memory, unless the register file becomes a critical

resource. Even in that case, spilling the register to

memory should not be more costly than storing the value

to memory in the first place.

The only question is whether writing the program

with fused loops will be too costly for a CPU target. Our

experiments show a significant slowdown in all three

kernels after loop fusion. We believe that to be caused by

poor cache locality. With both the outer do k loop and

inner do edg loop running sequentially, a reference to

antiflx(k,edg,ipn) will traverse the array down the

middle dimension, with a large stride. If the do k loop is

CUG 2014 Proceedings 8 of 8

vectorized, this reference will benefit from sequential

access along the stride-1 first dimension. However, this

supposition must be proven in practice. An

implementation could instead rely on loop fission to

optimize memory locality [MCT96].

7. Summary and Conclusions

High performance computer architectures are taking

several possible paths. One path will use homogeneous

multicore or highly parallel many-core processors at each

node, not too different from what we see today. Another

path will use a heterogeneous multicore CPU and highly

parallel, bandwidth-optimized accelerator at each node.

A third path will use a heterogeneous multicore and

parallel accelerator integrated on a single chip, perhaps

sharing a single path to memory. Likely all three paths,

and perhaps others, will coexist for the foreseeable future.

OpenACC is designed to provide expressiveness to

the programmer and flexibility to the implementer, and to

promote performance portability across a wide range of

target architectures. Using a series of program

transformations based on existing compiler technology to

convert a CPU-optimized representation of an algorithm

into one optimized for a GPU, this paper argues that an

OpenACC implementation can deliver good performance

portability. Moreover, we show how an implementation

can transform an accelerator-optimized representation of

an algorithm and optimize it for a latency-optimized CPU.

We have begun implementation of these methods in the

PGI compilers.

About the Authors

Doug Miles is director of PGI compilers & tools at

NVIDIA; prior to joining PGI and later NVIDIA, he was

an applications engineer at Cray Research Superservers

and Floating Point Systems. He can be reached by e-mail

at douglas.miles@pgroup.com.

Dave Norton started consulting for PGI over 20 years

ago and joined the company full time in 2012. Prior to

joining PGI he also consulted for Linux Networx, Liquid

Computing, Appro, Quadrics, Microsoft, and other

leading HPC companies. Previously he worked for

Mission Critical Linux and DEC. He can be reached by

email at dave.norton@pgroup.com.

Michael Wolfe joined PGI as a compiler engineer in

1996; he has worked on optimizing and parallel compilers

for over 35 years. He has published one textbook, High

Performance Compilers for Parallel Computing, and a

number of technical papers. He can be reached by e-mail

at michael.wolfe@pgroup.com.

References

[AK02] R. Allen and K. Kennedy, Optimizing Compilers

for Modern Architectures, Morgan Kaufmann, 2002.

[CK94] S. Carr and K. Kennedy, Scalar Replacement in

the Presence of Control Flow, Software-Practice &

Experience, 24(1), January 1994.

[CO13] B. Cumming et al, Refactoring the Community

Climate Code COSMO for Hybrid Cray HPC Systems,

CUG2013, Proc. of the Cray User Group Meeting, Napa

Valley, Cal., May, 2013.

[DE84] J. Dongarra and S. Eisenstat, Squeezing the Most

out of an Algorithm in CRAY Fortran, ACM Trans. on

Mathematical Software, 10:3, pp. 219-230, Sept. 1984.

[Gov94] M. Govett, Development and Use of a Fortran to

CUDA translator to run a NOAA Global Weather Model

on a GPU cluster, Path to Petascale: Adapting

GEO/CHEM/ASTRO Applications for Accelerators and

Accelerator Clusters, Urbana, Ill., April 2009.

[Her12] J. Herman et al, Accelerating Hydrocodes with

OpenACC, OpenCL and CUDA, 2012 SC Companion,

Salt Lake City, 465-471, Nov. 2012.

[LL12] J. Larkin and J. Levesque, Application

Development for the Cray XK6, Tutorial at CUG2012,

Cray User Group, Stuttgart, Germany, April, 2012.

[LSG12] J. Levesque, R. Sankaran and R. Grout,

Hybridizing S3D into an exascale application using

OpenACC: an approach for moving to multi-petaflops

and beyond, SC’12: Proc. of the Int’l Conf. on High

Performance, Salt Lake City, Nov. 2012.

[MFM13] B. T. Minh, M. Forster and U. Maumann,

Towards tangent-linear GPU programs using OpenACC,

Proc. 4
th

 Symp. on Information and Communication

Technology, Da Nang, Vietnam, 27-34, Dec. 2013.

[MCT96] K. McKinley, S. Carr, C.W. Tseng, Improving

Data Locality with Loop Transformations, ACM Trans.

On Programming Languages and Systems, 18(4), pp. 424-

453, July 1996.

[NZ08] D. Nuzman and A. Zaks, Outer-Loop

Vectorization – Revisited for Short SIMD Architectures,

Parallel Architectures and Compiler Techniques, Toronto,

Canada, pp. 2-11, Oct. 2008.

[Wol96] M. Wolfe, High Performance Compilers for

Parallel Computing, Addison Wesley, 1996.

mailto:douglas.miles@pgroup.com
mailto:dave.norton@pgroup.com
file:///C:/Users/dmiles/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/AppData/AppData/AppData/AppData/Local/Temp/michael.wolfe@pgroup.com

