Under negotiation

# European Centre for Medium-Range Weather Forecasts

#### oliver treiber, treiber@ecmwf.int HPC Systems Team











#### **Overview**

- what is ECMWF?
- HPC configuration (Cray and current production system)
- a hint at some ECMWF HPC idiosyncrasies



#### Who are we and what do we do?

| European Centre      | We are an independent<br>international organisation funded<br>by 34 States                                                                         |                                 |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Medium-Range         | Up to fifteen days ahead.<br>Today our products also include<br>monthly and seasonal forecasts<br>and we collect and store<br>meteorological data. |                                 |
| Weather Forecasts    | We produce<br>global weather forecasts                                                                                                             | -sCa                            |
| What do we have to a | chieve this?                                                                                                                                       | ECMNT Analysis<br>SOOPA Heght J |
| People               | About 260 staff,<br>specialists and contractors                                                                                                    | 2.5%                            |
| Equipment            | State-of-the-art supercomputers and data handling systems                                                                                          | CONTRACT INCOME                 |
| Budget               | £50 million per year                                                                                                                               |                                 |
| Experience           | 37 years                                                                                                                                           |                                 |





Slide 3

### A basic description of our models





# The European Centre for Medium-Range Weather Forecasts (ECMWF) in 1979...

- On 1 August 1979, ECMWF delivered its first operational medium-range weather forecast using a Cray-1A.
- The model resolution was N48 (~200km) and used about 5 hours of CPU time to produce a 10 day forecast.
- Cray-1A
  - Single vector processor
  - 1 Mword (8 Mbytes) of memory
  - 12.5 nanosecond clock (0.08 GHz freq.)
  - 2 results per clock; 160 Mflops peak
  - ~ 50 Mflops sustained if memory sufficient
  - 2.5 GB storage
  - ~ 5 hours to produce a ten-day forecast, with overhead of 1 hour due to disk I/O

## **CECMWF**



The Ambassador of Finland, in front of the Cray-1A, believed to be in winter of 1980-81



HRH Prince Charles speaking with Aksel Wiin-Nielsen and Rob Brinkhuysen during the opening ceremony of the ECMWF permanent headquarters at Shinfield Park in Reading in 1979





#### ECMWF in 2014...

- ECMWF is an acknowledged world-leader in global mediumrange numerical weather prediction.
- Meteorology and weather forecasts, including those of severe weather, are becoming increasingly important in an ever more complex world.

- High resolution deterministic forecast: twice per day 16 km 137-level, to 10 days ahead
- Ensemble forecast (EPS): twice daily
  51 members, 30/60 km 62-level, to 15 days ahead
- Seasonal forecast: once a month (coupled to ocean model)
  41 members, 125 km 62 levels, to 7 months ahead
- IFS = ECMWF's Integrated Forecasting System; >70% of cycles
  - hybrid, >1M lines of source







ECM WF per manent headquarters at Shinfield Park in Reading, UK

Thursday 31 October 2013 12UTC @ECMWF Analysis t+000 VT: Thursday 31 October 2013 12UTC Surface: Mean sea level pressure / 850-hPa wind speed



ECM WF Forecast from 31 October 2013



#### ECMWF x365 daily production workflow: not much room for downtime





## HPC at ECMWF: "two cluster set-up" (not good for top500...)

- since 2003: two "independent" compute clusters
  - but since ~2005: (MC-GPFS) with access to both storage clusters at same performance
- Idea is to have clusters at least as "self-sufficient"
  - could disable links to storage in alternate hall in case of major instabilities
  - a research and an operational filesystem in each hall, sufficient to run Ops and keep compute busy with research
  - backed by independent power and cooling
- Pros of shared storage flexibility

Slide 8

- workload can be flexibly distributed over the two compute clusters
- operational suite can be moved from one compute cluster to the other by config variable (or spread over both), re-run failed jobs and move on, as long as currently used operational storage pool remains healthy and accessible (if not, restart using alternate filesystem from last checkpoints)
- Cons of shared storage loss of complete independence as with air gap
  - hangs might spread over both compute clusters (e.g., "waiters" for GPFS); lustre recoverability might depend on other cluster

#### **ECMWF System Overview**





© ECMWF

Slide 9

#### **Overview of Cray system – currently being commissioned**



## 2 Cray XC30 - Compute

- 2 Cray XC30 systems in separate halls
  - self sufficient (but usually cross-mounted Lustre/NFS) <sup>10</sup>
  - 210 TF sustained perf on ECMWF codes (~3.5TF/peak)
- each XC30
  - 19 compute cabinets
  - ~3,450 compute nodes (24c lvB), 64 GiB@1866MT/s
  - 60 pre/post processing nodes (24c IvB), 128GiB@1866MT/s
  - 4 pre/post p nodes/services, 256GiB@1333MT/s
  - 7 aprun-MoMs, LNET, 8 DSL, 2 DVS,
  - 8 data transfer nodes (40Gb bonds to LAN), in lieu of RSIP (as that has currently no HA)
- Compared to Cray-1A:
  - ~21M times faster, ~60M times main memory capacity







#### Cray XC30 - Storage

- 2 Sonexion 1600 in each hall
  - one FS for timecrit activities; one FS for research projects; identical config in other hall (no systemprovided replication across the halls)
  - cross-connected to XC30 LNET in alternate hall via IB (100m fibre), same access bandwidth
  - 400GB/s & 12 PB aggregate (evenly split across halls)
- each hall: NetApp FAS6240, 38TB net, for NFS
  - \$HOME, project HOMEs, /usr/local
  - async snapshot replication to stand-by LUNs across halls
- 100+ TB/d new data archived to HPSS
- Compared to Cray-1A:
  - ~4.5 million times the disk capacity
  - ~100k times streaming bandwidth (!)







#### **Storage sets for time-critical activities**

- each hall has one operational lustre/NFS filesystem set, identical config
  - accessible from both compute clusters
  - no system-provided replication on lustre (some weather sites did that with GPFS)
  - environment variable for batch job selects storage set for \$HOME,\$TMPDIR; selection dialog at interactive session startup; no scp to "\$HOME"
  - otherwise, depend on /usr/local/ (separate FS via NFS per compute cluster) only

| e                | roo                                                                                                                                                  | t@co              | ca-lo             | gin1             | :/ro       | ot                     |                        |      |                            |             |     |                     |         |                          |                |     |                   |                  |     |     |                  |   |      |             |             |  |  |  | - ( | X |   |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|------------------|------------|------------------------|------------------------|------|----------------------------|-------------|-----|---------------------|---------|--------------------------|----------------|-----|-------------------|------------------|-----|-----|------------------|---|------|-------------|-------------|--|--|--|-----|---|---|
| #                | [20<br>roo<br>su                                                                                                                                     | 14-<br>t@c<br>- e | 04-<br>ca-<br>mos | 30<br>1og        | 23:<br>in1 | :47<br> :~             | : 03]                  | 1 [: | syg                        | _10         | gos | 5/00                | asm     | w1.                      | .140           | 430 | _23               | 46 81            | ۰,  | tty | :43              | С | md : | 10          | 96 <u>]</u> |  |  |  |     |   | * |
|                  | ***                                                                                                                                                  | ##                |                   | #<br>#<br>#<br># |            | #<br>##<br>#<br>#<br># | *<br>**<br>*<br>*<br>* |      | ###<br>#<br>###<br>#<br>#  | :###<br>:## | 1   | ****<br>*<br>*<br>* | ""<br>" | ##<br>#<br>##<br>##<br># | ****           | #   |                   | #<br>#<br>#<br># |     | *** | ##               |   |      |             |             |  |  |  |     |   |   |
|                  | #<br>#<br>#<br>#                                                                                                                                     | *<br>*<br>*       | *<br>*            | ####<br>####     | #          | ##<br>#<br>#<br>#<br># | ****<br>***            |      | ###<br>#<br>####<br>#<br># | ***<br>***  |     |                     |         | ##<br>##<br>##<br>#1     | 40000<br>10000 | 4   | #<br>##<br>#<br># | ***              | # # | *** | #<br>#<br>#<br># | # | ***  | #<br>#<br># |             |  |  |  |     |   |   |
| 1<br>2<br>P<br>[ | 1) sc1<br>2) sc2<br>Please select the desired timecrit storage set for \$STHOST: 1<br>[profile.ecmwf-INFO] HOWE=/sc1/home/emos=/timecrit_1/home/emos |                   |                   |                  |            |                        |                        |      |                            |             |     |                     |         |                          |                |     |                   |                  |     |     |                  |   |      |             |             |  |  |  |     |   |   |
| ſ                | [profile.ecmwf-INF0] PERM=/sc1/perm/emos=/timecrit_1/perm/emos                                                                                       |                   |                   |                  |            |                        |                        |      |                            |             |     |                     |         |                          |                |     |                   |                  |     |     |                  |   |      |             |             |  |  |  |     |   |   |
| ſ                | [profile.ecmwf-INF0] TCWORK=/sc1/tcwork/emos=/lus/snx11061/tcwork/emos                                                                               |                   |                   |                  |            |                        |                        |      |                            |             |     |                     |         |                          |                |     |                   |                  |     |     |                  |   |      |             |             |  |  |  |     |   |   |
| E                | [profile.ecmwf-INF0] SCRATCHDIR=TMPDIR=/sc1/TMPDIR/emos/JTMP/38/emos.26411.cca-login1.20140430T234706                                                |                   |                   |                  |            |                        |                        |      |                            |             |     |                     |         |                          |                |     |                   |                  |     |     |                  |   |      |             |             |  |  |  |     |   |   |
| e                | nos@                                                                                                                                                 | cca               | -10               | gin              | 1:7        | 'sc                    | 1/hc                   | ome. | /em                        | ios>        | •   |                     |         |                          |                |     |                   |                  |     |     |                  |   |      |             |             |  |  |  |     |   | • |



#### pre/post-processing (PPP) on repurposed XC30 nodes (MAMU)

#### PPP nodes run several concurrent jobs, serial and small parallel

- Cray provided new mpiexec for intra-node (sharedmem) MPI in lieu of aprun
  - Cray MPI library supports both aprun/ESM and mpiexec/MAMU mode: MAMU=multi app,multi user, per node
- PPP nodes run as normal linux server cluster nodes, each with its MoM, technically they are service nodes (no ESM, snvar via NFS)
- Jobs share PPP nodes (as is case on aprun-MoMs, too),
  - we required water-tight enforcement of memory limits per job, not just periodic polling of process table
    - on PPP, to be implemented via hook that runs jobs in separate cgroups
    - plan to use on aprun MoMs for safety, too;
- if necessary, could repurpose more (or less) 64GB ESM nodes as PPP nodes; as of 5.2, only requires reboot of nodes to be repurposed



#### **System Acceptance Status**

- Acceptance in stages
  - EC requires to always have two clusters able to run operational forecasts
  - Power and cooling restrictions allow only three 1-1.5MW clusters at once
- Acceptance process
  - Stages (=kit in one hall) and entire
    System (=all kit) undergoes:
    - 5 day Functional Verification Test
      - failover (cable pull, node shooting), benchmarks,...
    - +30 day Operational Test
      - tracking Downtime, Incidents & Events targets
    - +60 day further Reliability Test (for Phase only)





#### **Current system**

#### IBM POWER7 System, Torrent/HFI interconnect

- Two identical systems for resiliency
- 70 Teraflops sustained on ECMWF's codes
- Each cluster
  - 754 Teraflops peak performance
  - 23,648 processor cores (739 compute nodes)
  - 1.5 Petabytes storage
  - Power consumption: ~1.2 MW

- Allocation of ECMWF's computing resources
  - 25% Operational activities
  - 50% ECMWF research activities
  - 25% Member State users (throughout Europe)







# Performance: T1279L137 10d HiRes FC, current op. resolution (without output to disk)



2258 seconds 5.1 Tflops (8.6% peak) 2182 seconds 5.2 Tflops (10.4% peak)



Slide 17

## Workflow: ECMWF Supervisor Monitor Scheduler (Xcdp GUI)

- organises workflow as dependencies between tasks submitted to HPC
- ECMWF researchers usually do not directly interface with batch system
- flex\_submit scheme inspects HPC queueing times and balances over clusters



## **ECMWF scheduling idiosyncrasies**

- no cluster dedicated to operations, but usually have a "sticky" choice for primary operational cluster
- operational workload must fit into one cluster; has variable footprint
- no preemption/suspend/resume scheme used
  - but want to fill up cluster with research to max utilisation
  - flat ESM domain, not yet tried topology aware scheduling (too expensive?)
  - flexible reservation schemes using variable "number of nodes-for-researchlicences" to guarantee sufficient free resources for operational needs; preidling with advance reservations invisible to operational workload (only blocking/visible to research workload), so binding of operational jobs to ARs
  - wall-clock prediction based on lookup from runtime-history DB by external submit filter
    - add +24hrs walltime offset for research workload, +6 hours for operations (also a "grace" period, but underlies the AR use scheme)
  - this has been in use for last 10y on LoadL, currently adapting to PBSpro

#### ec\_jobs = operators' view on batch queue on current system

21:56:00 avlop:24 DRN:2 wait: np:143:24j-254m ns:90:2j-0m tp:0:1j-0m

at 21:55:14: c2a1u.2276.r/emos18bcF in 58min has 72/72

at 21:55:14: c2a1u.2275.r/emos18bcK in 23min has 72/72 at 21:55:14: c2a1u.2274.r/emos18bcA in 14min has 36/36

| be be be        | de diepes n2 nFnpns ol    | F of | op os tF tf tp ts                    |          | W.Clock Prio    | u-10/s101u-2mlutotIMBnowIMBhwml] | [01owbn      | Finish | Nodes                                                      |
|-----------------|---------------------------|------|--------------------------------------|----------|-----------------|----------------------------------|--------------|--------|------------------------------------------------------------|
| tow             | arpegeV6-nemo1            | 1    | c2a9u,15141716,1                     | np       | 00:36 24000-50  | 31.6/0.4131.5131.71395921395921  | 28897        | -00:00 | 827                                                        |
| cn2             | OBS_INC_PREV_FG_LETKF     | - 2  | <u>c2a9u,15142621,0</u>              | np       | 00:00 24000-50  |                                  | N/A          | -00:00 | 254 434                                                    |
| rdx-pat         | g3lu_legA_modeleps_nemo   | - 2  | c2a3u,21015141.0                     | np       | 00:18 23700-50  | 22,7/0,0122,5122,21186941188801  | 2461         | 00:00  | 731 753                                                    |
| rdx-pat         | g3lu_legA_modeleps_nemo   | - 2  | c2a3u,21015147.0                     | np       | 00:18 23700-50  | 22.4/0.0122.4122.21186941190181  | 2461         | 00:00  | 755 756                                                    |
| rdx-pat         | g3lu_legA_modeleps_nemo   | 2    | c2a7u.14955698.0                     | np       | 00:19 23700-50  | 22,4/0,0122,2121,91185631185631  | 2369         | 00:00  | 757 760                                                    |
| enas            |                           |      |                                      |          |                 |                                  |              | 00:00  | 116 127 1a1 880                                            |
| rdc-dag         |                           |      |                                      |          |                 |                                  |              | 00:00  | 3b3                                                        |
| tow             | arpegeV6-nemo1            | 1    | c2a9u.15141672.1                     | np       | 00:39 24000-50  | 32,0/0,0131,6131,71395891395891  | 54491        | 00:01  | 822                                                        |
| rdx-pat         | g3lu_legA_modeleps_nemo   | - 2  | c2a7u.14955720.0                     | np       | 00:18 23700-50  | 21,7/0,1122,3122,21186961190231  | 2368         | 00:01  | 286 752                                                    |
| rdx-pat         | g3lu_legA_modeleps_nemo   | - 2  | c2a3u.21015170.0                     | np       | 00:18 23700-50  | 21,8/0,1122,2122,21184851186501  | 2368         | 00:01  | 4c5 557                                                    |
| ocx-ne1         | 9359_outer_an0            | 16   | c2a1u.22674129.0                     | np       | 00:06 23700-50  | 26,8/0,2126,8122,411910411910416 | 6365233      | 00:01  | 120 240 252 263 287 261 416                                |
| tow             | arpegeV6-nemo1            | 1    | c2a9u,15141755,1                     | np       | 00:37 24000-50  | 31,9/0,0131,6131,71396291396291  | 28739        | 00:01  | 490                                                        |
| tow             | arpegeV6-nemo1            | 1    | c2a7u.14959517.1                     | np       | 00:37 24000-50  | 31,1/0,1131,6131,71396361396361  | 28896        | 00:01  | 231                                                        |
| rdx-stmk        | 93hp_uptra.i_0_ifstra.i   | 30   | c2a4u.21603450.0                     | np       | 00:07 23700-50  | 25.2/0.2111.91 9.11336531336531  | 97181        | 00:01  | 314 324 331 336 340 342 346                                |
|                 | 0                         |      |                                      |          |                 |                                  |              |        | 520 646 716 732 766 816 926                                |
| rdx-std         | 9392 uptraj 0 ifsmin      | 6    | c2a4u.21610334.0                     | np       | 00:12 23700-70  | 25.4/0.2125.2124.01209271209271  | 7943         | 00:02  | 272 321 337 362 3a4 3a6                                    |
| fa1o            | c2a9u,15142517            | 1    | c2a9u.15142517.0                     | np       | 00:07 24000-50  | 3.2/0.11 3.41 3.01292641292641   | 8513         | 00:02  | 974                                                        |
| smk             | HIRLAM e4m2 ecoh Date Hou | - 3  | c2a3u.21019753.0                     | np       | 00:06 24000-50  | 31.0/0.01 n/a130.31 71831 71831  | 1831         | 00:02  | 654 982 984                                                |
| rdx-sts         | o3i3 surf anal snow       | 1    | c2a9u, 15141567, 0                   | np       | 00:03 23700-75  |                                  | N/A          | 00:02  | 2a7                                                        |
| tow             | arpegeV6-pemo1            | 1    | c2a7u,14959497.1                     | np       | 00:39 24000-50  | 32.0/0.0131.6131.61389991392851  | 53653        | 00:03  | 4c4                                                        |
| emos            | sekf surf anal            | 60   | c2a9u, 15142301, 0                   | np       | 00:09 24800-70  | 27.9/0.1125.8125.01287521287521  | 13778        | 00+04  | 112 122 124 126 135 196 226                                |
| 01100           | Contraction ( Contract    | ~    | 020001101-200110                     |          | ***** 240*** ** | 21 10/ 012120101201021201021     | 10110        | ****   | 466 516 521 541 5a3 667 673                                |
|                 |                           |      |                                      |          |                 |                                  |              |        | 857 860 883 912 931 933 935                                |
| rdy-std         | oZbe untraj û ifetraj     | 6    | c2a7u 14959330 0                     | nn       | 00+05 23700-75  |                                  | NZQ.         | 00+04  | 281 284 291 2a2 2a4 666                                    |
| ocy-dibz        | o2tk outer an0            | 8    | c2a4u 21610526 0                     | np       | 00+08 23700-50  | 27 0/0 1120 7120 012278512278513 | 3098092      | 00+04  | 583 584 5a1 5a2 5b0 5b4 5b6                                |
| ndy-std         | o21x uptrai 0 ifetrai     | 6    | c2a44,21010328,0                     | np       | 00+05 23700-75  | 21:000:1120:1120:012210012210010 | N/0          | 00+05  | 267 375 425 457 473 477                                    |
| anae            | 1889 model folono         | - X  | c2a30.21010737.0                     | np<br>np | 00+07 24000-50  | 9 270 11 m/st 8 01 58741 58141   | 702          | 00+05  | 420 441 446 721                                            |
| eras<br>edv-etd | o2nh untrai 0 ifstrai     | - č  | c2a30,21013730,0<br>c2a10,22673214,0 | np<br>np | 00+05 23700-75  | 3,2/0,11 M/d1 0,01 30/41 30141   | N/0          | 00+05  | 517 526 547 551 572 57Z                                    |
| n1k             | -2-10-09077077            | - 2  | a2a10,22073214,0                     | np<br>pp | 00+27 24000-50  |                                  | 20770        | 00+06  | 970 967                                                    |
| ndv-pot         | oZlu loo0 modelere neme   | - 5  | -2-Zu 21015490 0                     | np       | 00:23 24000-50  | 22.070.0122.3131.71373021373021  | 1541         | 00:00  | 140 151                                                    |
| rux-pac         | 1906 monthmoon162 stat    | - 2  | -2-Zu 21013480.0                     | np       | 00:10 23700-50  | 22,0/0,0122,4122,01100001103201  | 1041<br>N/O  | 00:00  | 195 197                                                    |
| enas            | 1906 monthmoon162 stat    | - 5  | -2-7                                 | np<br>pp | 00:10 24000-50  |                                  | NZO          | 00103  | 947 971                                                    |
| eras<br>adv_ast | a711 feenous1 model       | - 4  | -2-9. 1E177792 0                     | np<br>np | 00:10 24000-50  | 70 170 0100 1100 51000501004071  | 10174        | 00:03  | 777 040 044 074                                            |
| rux-nat         | ifenin untrol 2           | 60   | -2-C+ 2012C7C0 0                     | np       | 00:30 23700-30  | 50,170,0123,1123,51260521264571  | 10174<br>N/0 | 00:10  | 773 040 044 071<br>445 494 444 450 469 466 404             |
| enos            | itswin_upuraj_2           | 00   | C2d00+22120700+0                     | nΡ       | 00:10 24000-36  |                                  | IV H         | 00110  |                                                            |
|                 |                           |      |                                      |          |                 |                                  |              |        | 414 420 476 436 4a4 4a6 4a7<br>COD COD COZ C-4 C-Z C-4 C-E |
|                 | -7:7turi 0 iCauin         | 70   | -0-0- 45140700 0                     |          | 00+40 07700 74  |                                  | C044C        | 00.40  | 602 632 637 6al 6as 6a4 6as                                |
| rax-sts         | golo_uptraj_2_ifsmin      | 50   | CZa90,15142582,V                     | np       | 00:18 25/00-74  | 27,570,1126,8124,21446701446701  | 68116        | 00:10  | 125 160 252 205 510 555 564                                |
|                 | 75                        | 70   | 0.7.04040505.0                       |          | 00.40 07700 74  |                                  | 50440        | 00.44  |                                                            |
| rdx-nesk        | goor_uptraj_2_1fsmin      | 50   | CZa30,21019626,0                     | np       | 00:18 23700-74  | 28,270,1126,8124,11445051445051  | 59446        | 00:11  | 154 156 213 225 261 264 273                                |
|                 | 4000 11 0 11              | _    | 0 4 04000 <b>7</b> 40 0              |          | A4.00 04000 F0  |                                  | 10070        | 00.40  | /61 843 864 8/2 913 91/ 923                                |
| eras            | 1905_cpmodel_nemob_subchu | 5    | c2a4u,21609319,0                     | np       | 01:02 24000-50  | 5,870,01 5,81 5,81 71441 71821   | 40930        | 00:12  | 1a5 535 5a5 750 851                                        |
| nlk             | c2a1u,22674028            | 2    | c2a1u,226/4028,0                     | np       | 00:23 24000-50  | 32,070,0131,9130,81378471378471  | 11986        | 00:15  | 146 164                                                    |
| nlk             | c2a4u,21610430            | 2    | c2a4u,21610430,0                     | np       | 00:23 24000-50  | 31,9/0,0131,9131,51379201379201  | 17340        | 00:15  | 1/5 160                                                    |
| rdx-ste         | g2Fq_uptraj_2_ifsmin      | 30   | c2a1u,22674138,0                     | np       | 00:17 23700-74  |                                  | N/A          | 00:16  | 110 114 131 133 136 174 165                                |
|                 |                           |      |                                      |          |                 |                                  |              |        | 811 817 874 882 922 932 937                                |
| nlk             | c2a9u,15142486            | - 2  | c2a9u,15142486,0                     | np       | 00:23 24000-50  | 31,9/0,0131,9130,91380571380571  | 16793        | 00:17  | 664 725                                                    |
| frjr            | mi-rerun4.glu_var_anal_n1 | 2    | c2a6u,22126651,0                     | np       | 00:26 24000-50  | 26,9/0,0126,9125,71184211184211  | 13353        | 00:20  | 764 765                                                    |
| <more></more>   |                           |      |                                      |          |                 |                                  |              |        |                                                            |

#### cpu allocation on current operational cluster (p7iH)

 usually >95% allocation operational cluster, even with adv reservations for timecrit workload C2A number of jobs per class per day 28 April 2014 Total: 229984 jobs







CPU's allocated on C2A by all parallel jobs 27 April 2014

|                   | Average No CPU's: | Percentage:   |
|-------------------|-------------------|---------------|
| Others            | 7184.8            | 15.4 %        |
| Model Division    | 3387.2            | 7.3%          |
| Data Division     | 8929.4            | 19.1 %        |
| D& P and Seasonal | 2027.3            | 4.3 %         |
| E RA 40           | 1403.5            | 3.0 %         |
| MACC              | 2231.5            | 4.8 %         |
| ESuije            | 2132.3            | 4.6 %         |
| Member States     | 12328.4           | 25.4 %        |
| Operational       | 4798.0            | 10.3 %        |
|                   | Total: 44422.4    | Total: 95.2 % |

#### Slide 21

#### current production back-up cluster daily allocation, 175k j/d

#### CPU's allocated on C2B by all parallel jobs 06 April 2014

|          |            | Average No CPU's: | Percentage:   |
|----------|------------|-------------------|---------------|
| Others   |            | 15458.6           | 33.1 %        |
| Model D  | ivition    | 2761.0            | 5.9 %         |
| Data Div | ision      | 16224.4           | 34.8 %        |
| D& P and | d Seasonal | 3169.5            | 6.8 %         |
| E RA 40  |            | 865.0             | 1.9 %         |
| MACC     |            | 1678.0            | 3.6 %         |
| ESulte   |            | 1005.3            | 2.2 %         |
| Member   | States     | 4906.8            | 10.5%         |
| Operatio | anal       | 173.7             | 0.4 %         |
|          |            | Total: 46243.2    | Total: 99.1 % |





© EC<u>MWF</u>

### scheduling on Cray: PBSPro

- A lot of throughput computing
  - biggest operational jobs will be concurrent 1x300nodes highres forecast alongside 50 ensemble forecasts of ~30nodes, for an hour
  - lots of concurrent parallel and serial postprocessing/product generation, etc
  - many concurrent research experiments, usually fewer nodes than operations
  - some bigger research jobs > 1000n exploring future resolution upgrades
  - lots of short jobs (<2 minutes)</li>
  - currently in need of "scheduling" the scheduler (change queue state from cycle to cyle, etc)
- currently configured as one PBS complex per cluster; inter-job dependencies are managed through ECMWF SMS,
- exploring splitting into one parallel and several postproc complexes per cluster for scheduling scalability

Slide 23



#### Average percentage of used nodes





### Thanks for your attention! ECMWF HPC team





#### Cray team at ECMWF: Pete Custerson, John Hopewell (PrjMgr), Chris Spiller, Alex Wood

ECMWF-24

© European Centre for Medium-Range Weather Forecasts

