

Accelerate Insights with Topology, High Throughput and Power Advancements

Michael A. Jackson, President Wil Wellington, EMEA Professional Services

May 2014

Adaptive/Cray Example Joint Customers

Cray Implementations with Over 20,000 Nodes, Topology Aware, Dual Domain, Workload-Aware Power Management

- NCSA (Blue Waters)
- Oak Ridge
- LANL
- Sandia
- NOAA
- HLRN
- UTK

- **HLRS**
- ExxonMobil
- Univ of Chicago
- Laval Univ
- Penn State
- KTH
- ARSC (U of Alaska)

- Univ of Bergen
- NERSC
- Indiana Univ
- Colorado State
- Tokyo Inst of Tech
- Penn State
- Texas A&M

Adaptive Computing Highlights

Innovating world-class HPC solutions for <u>over 12 years</u>

- Pioneers of HPC schedulers, grid, power management, HPC-Cloud, optimization, scale, dynamic provisioning, Big Workflow and more
- 50+ patents issued or pending
 - Important for customers concerned about Indemnification risks
- Backed by top-tier investors

Many customers in the Top 100, including #2 Titan

- Largest provider of HPC workload management software to HPC sites*
- Long history of running the most powerful systems in the world
- Global partnership with Cray since 2007 reselling Moab for 7 years

Accelerating Insights with Moab

Topology Aware Scheduling

- Improve application performance by 2X
- Based on communication intensity of jobs

High Throughput Scheduling

Over 150X more job starts per second

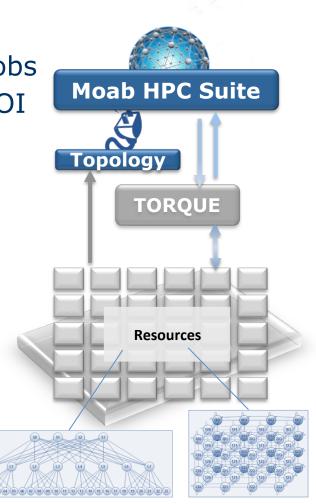
Power Savings

- Up to 20% Power Savings
- Reduce carbon usage with less than 5% performance impact

30X faster command response on large systems

Better Cray ROI

- Faster job launching,
- faster processing of network-intense workloads,
- better overall performance means more insights accomplished on the same hardware investment



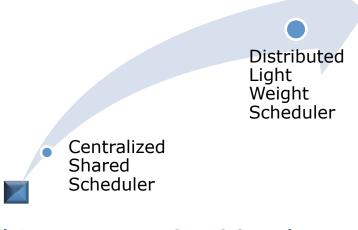
Topology-aware Scheduling

Faster Processing Due to Faster Communications

Moab HPC Suite is Optimized for Cray: Topology-based Scheduling Capability

- Speed job processing up to 200%
 - Depending on network intensity of jobs
 - Run more jobs per month better ROI
- Maintain Job run time consistency with less than 5% variance
- Schedule jobs on nodes closest to each other; closer = faster
- Topology node allocation plugin capability for different topologies:
 - Cray ALPS Inventory Topology Plugin currently available
 - Additional Cray-specific plugin
 - 3D Torus
 - Others in development

Moab Task Manager


High Throughput Computing (For TORQUE, Slurm, etc.)

Moab Task Manager (MTM)

High Throughput Computing

- Distributed lightweight scheduler
- Allows 1000's of job launches per second
- Simplifies and offloads global scheduler
- No 'per task' policy overhead

HPC Architecture: 10-100 Jobs Launched / Second*

HTC Architecture: 160,000 Jobs Launched / Second*

How Does Moab Task Manager Work?

- Ultra high-speed message queue
- Different approach to scheduling
 - MTM is a transiently invoked sub cluster
 - Combines small, alike jobs to a session
 - Creates policies for the group of jobs
 - Schedules it as one job
 - Incurs scheduling overhead only once, not once per individual small job

Limitations

- Bounded by processor speed & job size
- Job I/O requirements may limit speed
- MTM sacrifices some granularity in management
 - The batch is the unit of management and reporting
 - i.e. individual tasks in a large batch cannot be cancelled or pre-empted in isolation

High Throughput Problem – solved by MTM

Example:

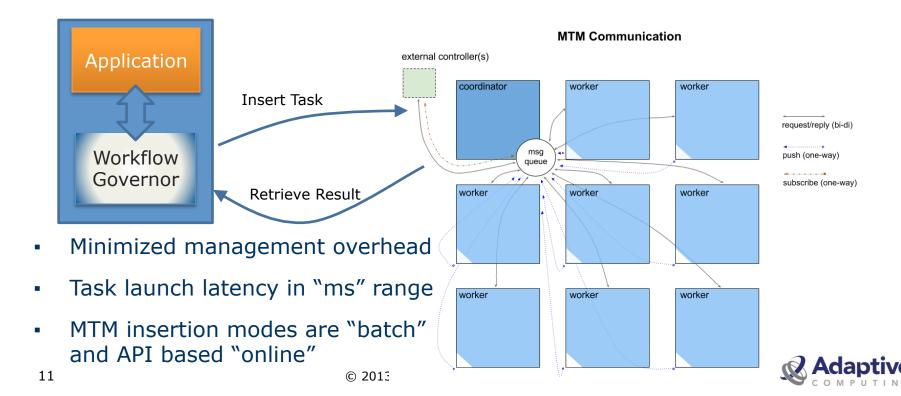
10 Million Jobs on 100 Node Cluster (16 cores/node)

- HPC scheduler, at 100 Jobs per second launch rate
 = 27 hours
- Moab Task Manager, at 10 "tasks"/second/core launch rate
 - = **0.17 hours** (Over 150 times faster)

Lab Test Results:

http://www.adaptivecomputing.com/blog-hpc/announcing-early-availability-moab-task-manager/

 10 Million Jobs on 20 Node Cluster in 0.21 hours (~13800 tasks / sec)


MTM insertion mode for dynamic workflows

MTM internal workflow

- MTM session submission to Moab:
- MTM coordinator launch by Torque:
- Task Insertion in to existing session:

msub -l nodes=9 mtm -i tasklist
nitro -i --exechosts hostlist tasklist

msub -i <mtm-ID> new-tasklist

Green Computing

(Includes roadmap features for upcoming June release)

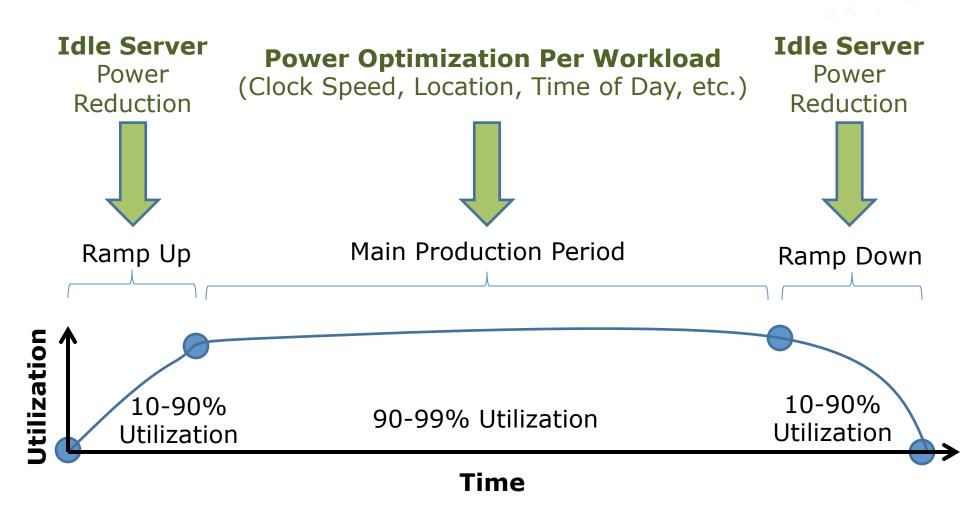
Green Computing – Why

Save Power

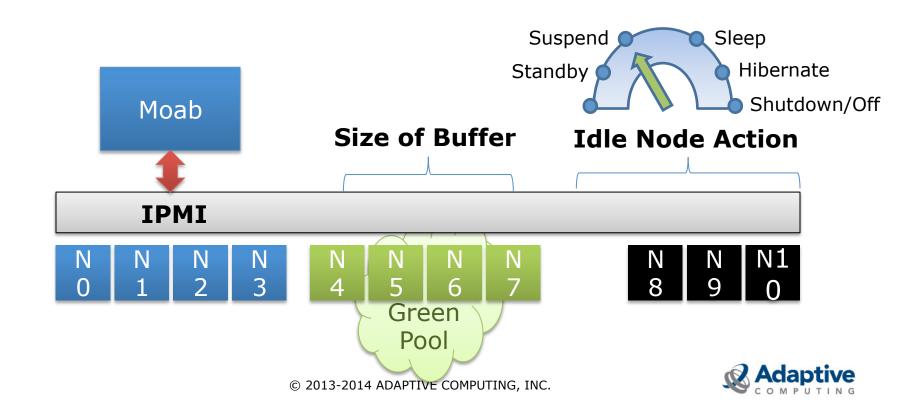
- Limits to Availability
- Reduce Carbon Emissions
- Meet Regulations / Goals

Save Money

- Less Power Up to 20%
- Cheaper Power

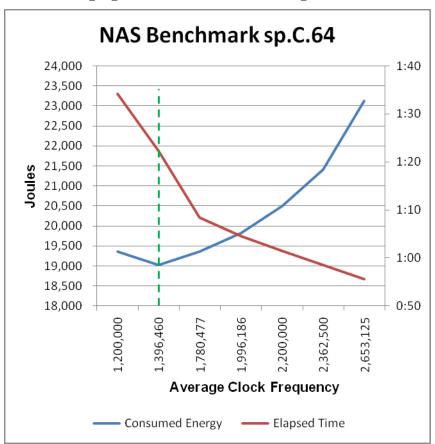

Avoid Overloads

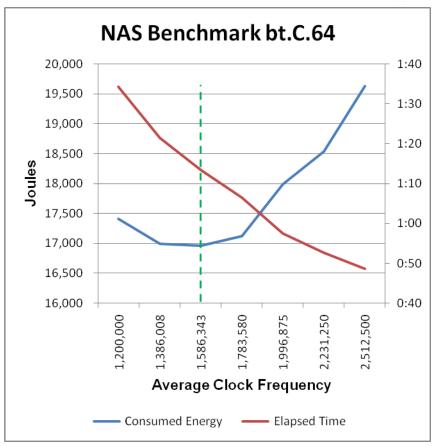
To Grid or Cluster due to Lim


Green Computing – What / When

Idle Server Power Reduction

- Save energy costs reducing power on idle nodes
- Maintain response time with Green Pool Buffer Policy
- Reference scripts provided (OpenIPMI)


Power Optimization Per Workload


- When utilization is high, focus on power optimization per workload
 - Analyze:
 - Completion Time Goals
 - Workload Energy/Runtime Profiles
 - Energy Costs
 - Optimize:
 - Energy Consumption vs. Target Job Run Time

Energy/Runtime Profiles

 Minimizing energy consumption requires application-specific optimal clock frequency

CPU Clock Frequency Control

New cpuclock= job submission option

- Absolute Clock Frequency Number
 - Example: cpuclock=2200 or cpuclock=1800mhz
- Linux Power Governor Policy
 - Example: cpuclock=conservative
- Relative P-state Number (not available for XC/XK/XE)
 - Values 0-15
 - 0="turbo" frequency
 - 15=slowest frequency
 - Example: cpuclock=0 or cpuclock=P2
- Can set in job templates

Green Computing Thought Leadership and Indemnification

Adaptive Computing has Thought Leadership and Intellectual Property in Green Computing

- Analyze: Workload (Current and Future), Resource State, Energy Consumption, Temperature, Energy Costs, Aggregate Energy Use, Time of Day, Location, etc.
- Modify: Power State, Clock Speed, Placement, etc.
- Patents:

8,276,008 B2 8,245,059 B2 8,549,333 B2 8,271,807 B2 8,271,813 B2

• Indemnification:

Adaptive Computing indemnifies users/vendors on Moab Workload Management uses for green computing.

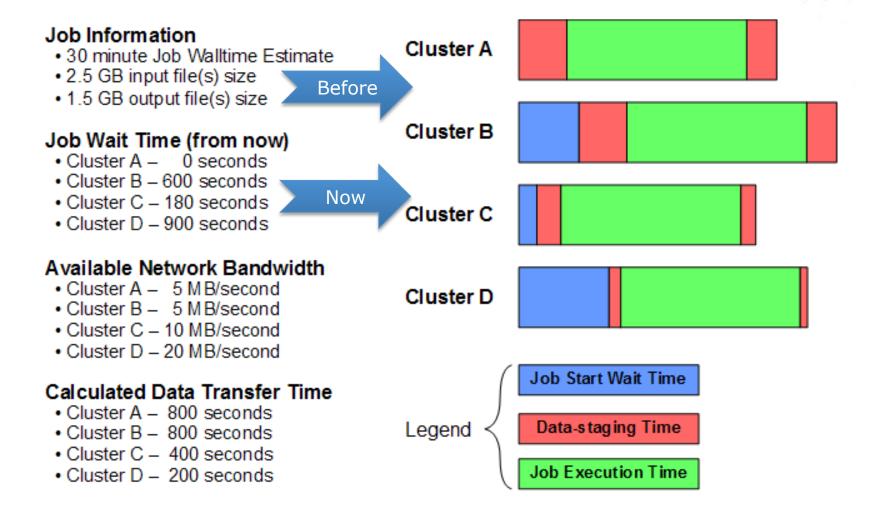
New Capabilities in the Next Release

Scale Large System Responsiveness (Size and Speed)

3.5X to 4X faster

- Moab scheduling speed on very large systems
- Better multi-threading of non-scheduling services

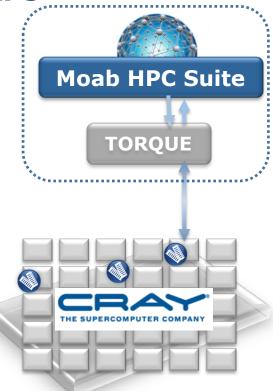
30X+ faster command responsiveness


- (showq, mdiag, showres, showstart, showbf, checkjob, checknode, showstats)
- Low Latency Command Initiative

2X+ improvement in TORQUE job communication handling

- more jobs
- more job starts
- more job exits

Grid Job Scheduling


Moab HPC Suite is Optimized for Cray: Faster, More Reliable Scheduling for Cray

Streamlined Moab HPC Suite and Cray ALPS

architecture via external server

 Increased demands on the scheduler don't impact other SDB processes

- "Beefed up" external Moab server for faster scheduling
- Moab and TORQUE can be run in high availability mode for robustness
- Submit/query jobs during Cray maintenance/downtime
- Better ALPS reservation cleanup
- Auto-detection of Cray nodes and accelerators
- Faster deployment with simpler interface

Moab HPC Suite is Optimized for Cray: Dual Domain Job Scheduling for Cray

- Speed job submission and results
- Schedule single job, runs simultaneously across Cray HPC and Cray Cluster or non-Cray compute nodes
 - no wasted duplicate job submission
 - no waiting to submit dependent job to second domain

Accelerating Insights with Moab

Topology Aware Scheduling

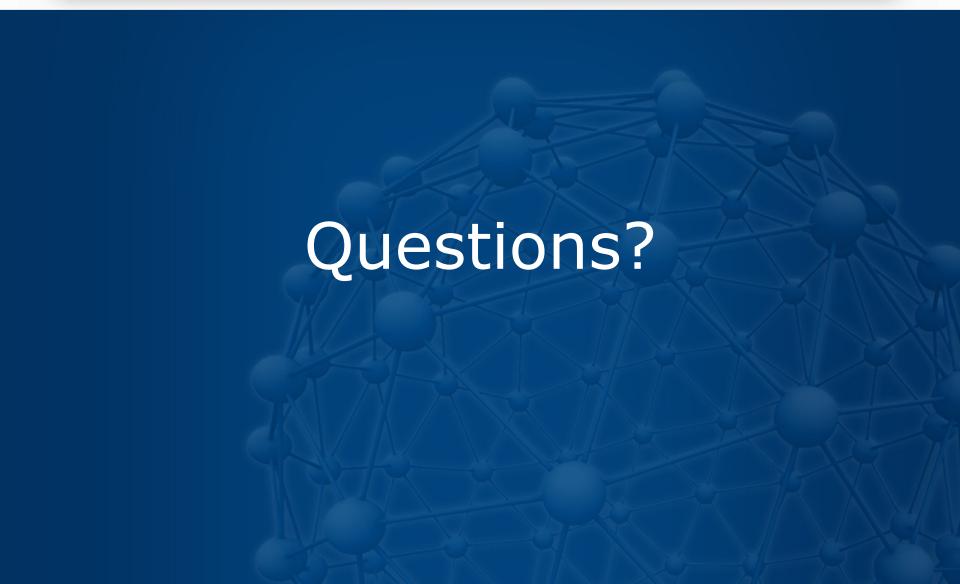
- Improve application performance by 2X
- Based on communication intensity of jobs

High Throughput Scheduling

Over 150X more job starts per second

Power Savings

- Up to 20% Power Savings
- Reduce carbon usage with less than 5% performance impact


30X faster command response on large systems

Better Cray ROI

- Faster job launching,
- faster processing of network-intense workloads,
- better overall performance means more insights accomplished on the same hardware investment

