Cori: A Cray XC Pre-Exascale System for NERSC

Cray Signs \$70 Million Supercomputer Contract with the National Energy Research Scientific Computing Center (NERSC)

Katie Antypas, Nicholas Wright, Nicholas Cardo, Allison Andrews, Matthew Cordery

NERSC-8 Project Goals

- NERSC directly supports DOE's science mission; we focus on the scientific impact of our users
- Need to provide a significant increase in computational capabilities for DOE SC computational research; at least 10x increase in sustained performance over NERSC-6 (Hopper)
- Begin transitioning user code base to energy- efficient manycore architectures and programming environments
 - Only way to continue to provide compute speed improvements that meet user need; attempt to do this only once
- Integrate the system into the NERSC environment, enabling user productivity

NERSC-8 system named after Gerty Cori (1896 – 1957): Biochemist

- First American woman to win a Nobel Prize in science (1947)
- Born in Prague; US naturalized 1928
- Shared the Nobel Prize in Medicine or Physiology with her husband + 1 other
- Recognized for work involving enzyme chemistry in carbohydrates: how cells produce and store energy.

 Breakdown of carbohydrates and mechanism of enzyme action are of fundamental importance in renewable bioenergy (cf. DOE Complex Carbohydrate Research Center)

- 50 Cabinets of Cray XC System
 - Approximately 9300 'Knights Landing' compute nodes
 - Self-hosted, (not an accelerator) MPI + OpenMP programming model
 - Greater than 60 cores per node with multiple HW threads each
 - 64-128 GB memory per node
 - High bandwidth on-package memory
 - 14 external login nodes
 - Aries Interconnect
 - 10x Hopper SSP
- Lustre File system
 - 28 PB Disk
 - 432 GB/sec
- Option for a Burst Buffer
- 5 FTE years of Cray Center Of Excellence staff
- Intel training and support
- Delivery in mid-2016

Edison, a Cray XC-30 plays a key role in NERSC's strategy

- NERSC assessed that our broad workload was not ready for GPUs and procured Edison, with Ivy Bridge Intel CPUs
- •Workloads that have difficulty moving to NERSC-8 can still work productively on Edison while the code is adapted
- •In 2016 Edison will likely provide ~20% of NERSC's cycles

Application Readiness

- We must prepare the broad user community for manycore architectures, not just a few codes
- Will require deep collaboration with select code teams
- Finding the additional parallelism in some applications may be difficult.
- Unclear how to use on-package memory, as explicit memory or cache

Burst Buffer

- How to integrate and monitor in a production environment?
- Which applications are best suited to use the Burst Buffer?
- How to make the Burst Buffer user friendly

Integration into NERSC environment in CRT

- Mounting NERSC-8 file system across other systems, (Edison)
- Integration into a new facility

The Computational Research and Theory (CRT) building will be the home for Edison and Cori

• Four story, 140,000 GSF

- 300 offices on two floors
- 20K -> 29Ksf HPC floor
- 12.5MW -> 42 MW to building

Located for collaboration

- CRD and ESnet
- UC Berkeley

Exceptional energy efficiency

- Natural air and water cooling
- Heat recovery
- PUE < 1.1
- LEED gold design

Cori architecture

The Cori System

Intel "Knights Landing" Processor

- Next generation Xeon-Phi
- Single socket processor >3TF peak
- Self-hosted, not a co-processor
- Greater than 60 cores per processor
- Multiple threads/core
- 512b vector units (32 flops/clock AVX 512)
- Improved single thread performance improvement over current generation Xeon-Phi co-processor
- Higher performance per watt
- High bandwidth on-package memory of similar capacity or greater than in current Xeon-Phi co-processor local memory (> 8GB)

Programming Model Considerations

- Knight's Landing is a self-hosted part
 - Users can focus on adding parallelism to their applications without concerning themselves with PCI-bus transfers
- MPI + OpenMP preferred programming model
 - Should enable NERSC users to make robust code changes
- MPI-only will work performance may not be optimal
- On package MCDRAM
 - How to optimally use ?
 - Explicitly or implicitly ??

Knight's Landing Blade

Overview of Aries Node Architecture

Aries

- PCle Gen3 x16, 4 NICs per Aries
- 48 Tile Router 8 Internal links and 40 External links
- 14 Gbps electrical and 12.5 Gbps optical links

Dragonfly "Group"

Local network can handle twice the aggregate injection bandwidth

6 chassis connected by cables to form a single group

Top-down view of Inter-group connections

- Each group is connected to every other
- Adaptive routing
- Note NERSC-8 will have 25 groups
 - Each link will be a bundle of 4 cables ~1.7 TB/s
 - 40% of the optical ports will be populated

I/O Features

- The NERSC-8 system will include several features which provide for the Storage, Access, and Transfer of user data sets at high performance
 - 28PB Lustre "scratch" file system capable of 432GB/s
 - I/O gateway nodes to existing NGF GPFS file systems
 - Remote access to Edison's Parallel File System
 - 40Gb/s External Network connectivity for accessing archival storage(HPSS) and WAN resources

Parallel file system comparison

	Cori	Hopper
Bandwidth	432GB/s	35/35GB/s (70)
Metadata ops (creates/s)	77K/s	17/17 K/s (34)
Capacity	28.5PB	1.1/1.1PB
Delta-PFS*	29min	44min

Delta-PFS: Time to write 80% of memory to the Parallel File System

Burst Buffer

 Flash storage which would act as a cache to improve peak performance of the PFS.

 Flash is currently as little as 1/6 the cost of disk per GB/s bandwidth and has better random access characteristics(no seek penalty).

Burst Buffer Option

- Solid state storage(flash) presents an opportunity to significantly improve the I/O experience of NERSC users for several reasons.
 - Lower cost for bandwidth(cost/capacity becomes limiting factor)
 - Better random I/O performance(no seek penalty)
 - Better small block(4K) performance.
- Wide variety of use cases at NERSC
 - Accelerating I/O
 - Checkpoint/restart
 - Reading large datasets
 - Launching area for shared libraries

Cabinet Design

Compute Cabinet

Rack

- 3 chassis / cabinet
- Up to 16 blades/chassis
 - Up to 8 I/O blades
- 4 Nodes/compute blade
 - 1 sockets/node
- 2 single socket nodes/ service blade
 - 2 PCIe gen3 x8 slots/node
- Water coil on right side of each cabinet

Advance Cooling Technology

- Primarily water cooled
- One blower assembly for each cabinet pair (group) + one at the end of row
- Compute rack cooling coil valve adjusts flow rate to maintain outlet air temp.
- Exhaust air can be room neutral or require residual cooling
- N+1 blower configuration
- Hot swap blower assembly
- Low noise

NERSC-8 programming environment and application readiness

Programming Models Strategy

The necessary characteristics for broad adoption of a new programming model is

- Performance: At least 10x-50x performance improvement
- Portability: Code performs well on multiple platforms
- Durability: Solution must be good for a decade or more
- Availability/Ubiquity: Cannot be a proprietary solution

Our near-term strategy is

- Smooth progression to exascale from a user's point of view
- Support for legacy code, albeit at less than optimal performance
- Support for a variety of programming models
- Support optimized libraries

- Codes will probably run on NERSC-8 without any changes.
- To take advantage of the Knights Landing architecture, applications must
 - Exploit more parallelism
 - Express thread-level parallelism
 - Exploit data level parallelism
 - Manage data placement and movement
 - Accommodate less memory per process space

Application Readiness Approach

- Start early; profile workload; set user expectations
- Enable a significant fraction of NERSC workload to run on NERSC-8.
- Be technology agnostic in optimizations
 - (i.e. target parallelism, memory use, algorithms) to maintain investment going forward.
- Performance portability to greatest extent possible
- Educate NERSC users
- Early test beds to learn about the issues as soon as possible
- Transfer lessons learned to/from broader DOE community
 - Collaborate with ACES/ALCF/OLCF Application Readiness Teams

NERSC App Readiness Team formed in 2011 to look at manycore programming challenges

Katerina Antypas NERSC-8 Project Lead

Nick Wright ATG Group Lead

Richard Gerber USG Group Lead

Harvey Wasserman Chemistry

Brian Austin Quantum Chemistry

Zhengji Zhao Materials Science

Jon Rood Applied Math/Bioinformatics

Woo-Sun Yang Climate

Jack Deslippe Materials Science

Helen He Climate

Matt Cordery Climate

Kirsten Fagnan Bio-Informatics

Christopher Daley Astrophysics/ Adaptive Mesh

- Team studied thread parallelism and vectorization in key codes on local test beds.
- Result: compendium of case studies reflecting porting effort, performance results, best practices, common issues on real codes

- Improving a code for advanced architectures can improve performance on traditional architectures.
- Inclusion of OpenMP may be needed just to get the code to run (or to fit within memory)
- Some codes may need significant rewrite or refactoring; others gain significantly just adding OpenMP and vectorization
- Profiling/debugging tools and optimized libraries will be essential
- Vectorization important for performance

- We will urge users to begin preparing for N8 now, using Edison and the "Babbage" Intel MIC test bed system
- Users can profile codes; examine vectorization levels and loop lengths; begin to transform loops
- Can also examine OpenMP parallelism
 - Difficult to estimate performance effects, though
 - If code performs well on Babbage, it will probably perform well on N8
- More Application Readiness training, announcements and plans will be coming soon

Conclusions

Babbage Knights Corner Testbed

- Babbage is a 45 node cluster with Knights Corner coprocessor
- Can use co-processors in 'native' mode to be more representative Knights Landing architecture
- https://www.nersc.gov/users/computational-systems/testbeds/babbage/

Conclusions

- Programming model changes are coming and will affect computing at all levels; not just about preparing for Cori; is really about preparing for Exascale computing
- NERSC's goal is to provide usable Exascale computing
- NERSC is dedicated to helping our users make this transition

