
C O M P U T E | S T O R E | A N A L Y Z E

OpenACC:
Productive, Portable Performance

on Hybrid Systems Using High-
Level Compilers and Tools

5.May.14 Copyright 2014 Cray Inc.
1

James Beyer, Luiz DeRose, Alistair Hart

(Cray Inc.)

(with contributions from Heidi Poxon)

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are

based on our current expectations. Forward looking statements

may include statements about our financial guidance and expected

operating results, our opportunities and future potential, our product

development and new product introduction plans, our ability to

expand and penetrate our addressable markets and other

statements that are not historical facts. These statements are only

predictions and actual results may materially vary from those

projected. Please refer to Cray's documents filed with the SEC from

time to time concerning factors that could affect the Company and

these forward-looking statements.

 Safe Harbor Statement

Copyright 2014 Cray Inc.
2

5.May.14

C O M P U T E | S T O R E | A N A L Y Z E

 Piz Daint

5.May.14 Copyright 2014 Cray Inc.
3

● \sd

C O M P U T E | S T O R E | A N A L Y Z E

OpenACC at SC13

5.May.14 Copyright 2014 Cray Inc.
4

C O M P U T E | S T O R E | A N A L Y Z E

Timetable

5.May.14 Copyright 2014 Cray Inc.
5

● 13:00 Introduction and accelerator primer (lecture)

● 13:20 A first introduction to OpenACC (lecture)

● 14:00 Porting a simple code (worked example)

● 14:30 ------------ Break ------------

● 15:00 Performance tuning with OpenACC (lecture)

● 15:30 Porting a more realistic code (worked example)

● 15:50 Asynchronicity and parallel applications (lecture)

● 16:15The future roadmap for OpenACC (lecture)

● 16:30 ------------ Close ------------

C O M P U T E | S T O R E | A N A L Y Z E

Contents

5.May.14 Copyright 2014 Cray Inc.
6

● The aims of this course:
● To motivate why directive-based programming of GPUs is useful

● To introduce you to the OpenACC programming model

● To give you some experience in using OpenACC directives
● with some hints and tips along the way

● To introduce you to profiling tools
● to understand and tune OpenACC performance

● to help you understand a real application to start OpenACC-ing...

● The idea is to equip you with the knowledge to develop
applications that run efficiently on parallel hybrid
supercomputers
● not just on single GPUs

C O M P U T E | S T O R E | A N A L Y Z E

Inside the Cray XC30
and the Nvidia Kepler K20X GPU

5.May.14 Copyright 2014 Cray Inc.
7

Alistair Hart

Cray Exascale Research Initiative Europe

C O M P U T E | S T O R E | A N A L Y Z E

The XC30 architecture

5.May.14 Copyright 2014 Cray Inc.
8

● Node architecture:
● One Intel CPU

● Sandybridge (8 cores)

● Ivybridge (12 cores)

● One Nvidia GPU
● Kepler K20x or K40s

● K20x: 2688 + 896 cores

● 1.3 TFlop/s DP, 6GB memory

● Cray Aries interconnect
● shared b/w 4 nodes on blade

● Dragonfly network topology
● 3 levels of all-to-all networks

● high bandwidth/low latency scalability

● Fully integrated/optimised/supported
● Tight integration of GPU and NIC drivers

C O M P U T E | S T O R E | A N A L Y Z E

Exascale, but not exawatts

5.May.14 Copyright 2014 Cray Inc.
9

● Power is a big consideration in an exascale architecture
● Jaguar XT (ORNL) drew 6MW to deliver 1PF

● The US DoE wants 1EF, but using only 20MW...

● A hybrid system is one way to reach this, e.g.
● 105 nodes (up from 104 for Jaguar)

● 104 FPUs/node (up from 10 for Jaguar)
● some full-featured cores for serial work

● a lot more cutdown cores for parallel work

● Instruction level parallelism will be needed
● continues the SIMD trend SSE → AVX → ...

● This looks a lot like the current GPU accelerator model
● manycore architecture, split into SIMT threadblocks

● Complicated memory space/hierarchy (internal and PCIe)

C O M P U T E | S T O R E | A N A L Y Z E

A quick GPU refresher

5.May.14 Copyright 2014 Cray Inc.
10

C O M P U T E | S T O R E | A N A L Y Z E

How fast are current GPUs?

5.May.14 Copyright 2014 Cray Inc.
11

● What should you expect?
● On a typical hybrid system (e.g. Cray XC30):

● Flop/s: GPU ~8x faster than a single CPU (using all 8 cores)

● Memory bandwidth: GPU ~5x faster than CPU

● These ratios are going to be similar in other systems

● Plus, it is harder to reach peak performance on a GPU
● Your code needs to fit the architecture

● You also need to factor in data transfers between CPU and GPU

CPU
~170 GF

GPU
~1.3 TF

32GB

DDR3 6 GB

GDDR5

PCIe-2

8 GB/s

~250 GB/s ~50 GB/s

C O M P U T E | S T O R E | A N A L Y Z E

Nvidia K20X Kepler architecture (1)

5.May.14 Copyright 2014 Cray Inc.
12

● Global architecture
● a lot of lightweight compute cores

● 2688 SP plus 896 DP (ratio 3:1)

● divided into 14 Streaming Multiprocessors (SMX)

● SMXs operate independently of each other

C O M P U T E | S T O R E | A N A L Y Z E

Nvidia K20X Kepler architecture (2)

5.May.14 Copyright 2014 Cray Inc.
13

● SMX architecture
● many cores (192 SP plus 64 DP)

● shared instruction stream
● lockstep, SIMT execution of same ops

● SMX acts like vector processor

● Memory hierarchy
● each core has private registers

● fixed register file size

● cores in an SM share a fast L1 cache
● 64KB, split between:

● L1 cache and user-managed

● large global memory
● shared by all SMXs (cores)

● 6GB; also some specialist memory

C O M P U T E | S T O R E | A N A L Y Z E

Execution and memory models

5.May.14 Copyright 2014 Cray Inc.
14

● Host-directed execution
● The main program executes on the host

● The "host" can offload tasks to the "device" (accelerator, e.g. GPU)
● tasks can be computation or data transfer between host and device

● The host is responsible for managing the accelerator memory
● as well as its own; allocating and freeing memory as needed

● The host is responsible for synchronisation
● ensuring offloaded tasks have completed

● Weak memory model
● The host and device have separate memories

● There's no automatic data synchronisation going on in the background

● GPU memory is fragmented
● there is no way to share data between all threads during computation

● which leaves potential for race conditions

● The compiler and runtime help much more with OpenACC

C O M P U T E | S T O R E | A N A L Y Z E

Program execution with a GPU

5.May.14 Copyright 2014 Cray Inc.
15

● The main program runs on the host (CPU)
● Some of the code will also execute on the host

● either serially or in parallel with threads (e.g. OpenMP)

● This code could be:
● calculations that you want to be done on the CPU, e.g.

● it is hard to parallelise for the GPU

● there is not enough work to justify using the GPU

● control statements for the GPU, e.g.
● memory management

● synchronisation

● communication calls, e.g. MPI

● The main program can also
● launch kernels (tasks) on the device (GPU)

● These are written specially for the GPU, e.g. with
● CUDA

● OpenACC

C O M P U T E | S T O R E | A N A L Y Z E

Kernels

5.May.14 Copyright 2014 Cray Inc.
16

● GPU kernels are executed by many threads in parallel
● all threads execute the same code

● perform the same operations, but on different data

● can take different paths in the code
● actually, they all take the same paths but some threads spin

● each thread has a unique ID

● this can be used to
● select which data elements to process

● make control decisions

● Threads are grouped together
● threads are grouped into "blocks" (or "gangs")

● typically hundreds of threads per block

● the group of blocks is called a "grid"

C O M P U T E | S T O R E | A N A L Y Z E

Kernel execution

5.May.14 Copyright 2014 Cray Inc.
17

● Each kernel thread will be executed by a core on the GPU
● each threadblock will execute on a single SMX

● you can have more threads than there are cores in an SMX

● you really want this to happen
● so the GPU has enough computational work

● different threadblocks will execute on different SMXs
● several threadblocks can be executing on the same SMX

● you really want this to happen
● threadblocks will be swapped in and out of execution to hide memory latency

● you have no control over this
● so you cannot predict which order threadblocks execute in

● nor is there any way to impose a full barrier within a kernel

● threads within a threadblock can interact
● they can communicate data via a fast shared memory

● you can synchronise within a threadblock

C O M P U T E | S T O R E | A N A L Y Z E

What CUDA doesn't tell you (upfront)

5.May.14 Copyright 2014 Cray Inc.
18

● Threads are not created equal
● The SM is really a vector processor of width 32

● groups of 32 cores act in lockstep, rather than independently

● shares a single instruction stream with single program counter

● Threads within a threadblock are divided into sets of 32 (warps)

● each warp executes in SIMT fashion using 32 cores of SM

● if a threadblock contains multiple warps, these are executed in turn
● i.e. if there are more than 32 threads in the threadblock

● Memory loads/stores are also done on a per-warp basis
● Loading/storing 32 consecutive memory addresses at once

● So, really, the compiler is implementing your code using
vector instructions
● This is not explicit in the CUDA programming model, but is crucial to

gaining good performance from a GPU
● whichever programming model you are using (it's a hardware thing)

C O M P U T E | S T O R E | A N A L Y Z E

What does this mean for the programmer?

5.May.14 Copyright 2014 Cray Inc.
19

● You need a lot of parallel tasks (i.e. loop iterations) to keep GPU busy
● Each parallel task maps to a thread in a threadblock

● You need a lot of threadblocks per SM to hide memory latency

● Not just 2688 parallel tasks, but 104 to 106 or more

● This is most-likely in a loop-based code, treating iterations as tasks
● OpenACC is particularly targeted at loop-based codes

● Your inner loop must vectorise (at least with vector length of 32)
● So we can use all 32 threads in a warp with shared instruction stream

● Branches in inner loop are allowed, but not too many

● Memory should be accessed in the correct order
● Global memory access is done with (sequential) vector loads

● For good performance, want as few of these as possible

● so all the threads in warp should collectively load a contiguous block of
memory at the same point in the instruction stream

● This is known as "coalesced memory access"

● So vectorised loop index should be fastest-moving index of each array

C O M P U T E | S T O R E | A N A L Y Z E

What does this mean for the programmer?

5.May.14 Copyright 2014 Cray Inc.
20

● No internal mechanism for synchronising between threadblocks
● Synchronisation must be handled by the host

● So reduction operations are more complicated

● even though all threadblocks share same global memory

● Fortunately launching kernels is cheap
● GPU threadteams are "lightweight"

● Data transfers between CPU and GPU are very expensive
● You need to concentrate on "data locality" and avoid "data sloshing"

● Keeping data in the right place for as long as it is needed is crucial

● You should port as much of the application as possible
● This probably means porting more than you expected

C O M P U T E | S T O R E | A N A L Y Z E

OpenACC suitability

5.May.14 Copyright 2014 Cray Inc.
21

● Will my code accelerate well with OpenACC?
● Computation should be based around loopnests processing arrays

● Loopnests should have defined tripcounts (either at compile- or run-time)
● while loops will not be easy to port with OpenACC
● because they are hard to execute on a GPU

● Data structures should be simple arrays
● derived types, pointer arrays, linked lists etc. may stretch compiler capabilities

● The loopnests should have a large total number of iterations
● at least measured in the thousands

● even more is better; less will execute, but with very poor efficiency

● The loops should span as much code as possible
● maybe with some loops very high up the callchain

● The loopnest kernels should not be too branched

● one or two nested IF-statements is fine
● too many will lead to slow execution on many accelerators

● The code can be task-based
● but each task should contain a suitable loopnest

C O M P U T E | S T O R E | A N A L Y Z E

So...

5.May.14 Copyright 2014 Cray Inc.
22

● GPUs can give very good performance
● but you need to be aware of the underlying architecture

● porting a real application to GPU(s) requires some hard work
● Amdahl says you need to port a lot of the profile to see a speed-up

● bad news: to see 10x speedup, need to port at least 90% of the application profile

● good news: if profile very peaked, 90% of time may be spent in, say, 40% of code

● even before you worry about the costs of data transfers

● A good programming model and environment
● helps bridges the gap between peak and achievable performance

C O M P U T E | S T O R E | A N A L Y Z E

Strategic risk factors of OpenACC

5.May.14 Copyright 2014 Cray Inc.
23

● Will there be machines to run my OpenACC code on?
● Now? Lots of Nvidia GPU accelerated systems

● Cray XC30s and XK7s, plus other vendors (OpenACC is multi-vendor)

● Future? OpenACC can be targeted at other accelerators
● PGI and CAPS already target Intel Xeon Phi, AMD GPUs

● Plus you can always run on CPUs using same codebase

● Will OpenACC continue?

● Support? Cray, PGI, CAPS committed to support. Now gcc as well.
● Lots of big customer pressure to continue to run OpenACC

● Develop? OpenACC committee now 18 partners
● v2.0 finalised in 2013, now working on next version (2.1 or 3.0)

● Will OpenACC be superseded by something else?

● Auto-accelerating compilers? Yes, please! But never managed before
● Data locality adds to the challenge

● OpenMP accelerator directives? Immature at the moment
● OpenACC work not wasted: thinking takes more time than coding
● Very similar programming model; can transition when these release if wish
● Cray (co-chair), PGI very active in OpenMP accelerator subcommittee

C O M P U T E | S T O R E | A N A L Y Z E

Structure of this course

5.May.14 Copyright 2014 Cray Inc.
24

● Aims to lead you through the entire development process
● What is OpenACC?

● How do I use it in a simple code?

● How do I port a real-sized application?

● Performance tuning and advanced topics

● It will assume you know
● A little bit about GPU architecture and programming

● SMs, threadblocks, warps, coalescing

● It will help if you know
● The basic idea behind OpenMP programming

● but this is not essential

C O M P U T E | S T O R E | A N A L Y Z E

A first introduction to OpenACC

5.May.14 Copyright 2014 Cray Inc.
25

C O M P U T E | S T O R E | A N A L Y Z E

Contents

5.May.14 Copyright 2014 Cray Inc.
26

● What is OpenACC?

● How do GPUs work?
● Will my code run well on a GPU using OpenACC?

● What does OpenACC look like?

● How do I use it?
● The basic concepts

● The basic directives
● Advanced topics will have to wait for another training course

● Like this one.

● Plus a few hints, tips, tricks and gotchas along the way
● Not all guaranteed to be relevant, useful (or even true).

http://www.youtube.com/playlist?list=PL1tk5lGm7zvQOLguaplvYUfkBCVx0GMyW

C O M P U T E | S T O R E | A N A L Y Z E

Accelerator programming

5.May.14 Copyright 2014 Cray Inc.
27

● Why do we need a new GPU programming model?

● Aren’t there enough ways to drive a GPU already?
● CUDA (incl. NVIDIA CUDA-C & PGI CUDA-Fortran)

● OpenCL

● All are quite low-level and closely coupled to the GPU
● User needs to rewrite kernels in specialist language:

● Hard to write and debug

● Hard to optimise for specific GPU

● Hard to port to new accelerator

● Multiple versions of kernels in codebase
● Hard to add new functionality

C O M P U T E | S T O R E | A N A L Y Z E

Directive-based programming

5.May.14 Copyright 2014 Cray Inc.
28

Directives provide a high-level alternative

+ Based on original source code (Fortran, C, C++)
+ Easier to maintain/port/extend code

+ Users with OpenMP experience find it a familiar programming model

+ Compiler handles repetitive coding (cudaMalloc, cudaMemcpy...)

+ Compiler handles default scheduling; user tunes only where needed

– Possible performance sacrifice
– Important to quantify this

– Can then tune the compiler

– Small performance sacrifice is an acceptable
– trading-off portability and productivity against this

– after all, who handcodes in assembler for CPUs these days?

C O M P U T E | S T O R E | A N A L Y Z E

5.May.14 Copyright 2014 Cray Inc.
29

● A common directive programming model for today’s GPUs
● Announced at SC11 conference

● Offers portability between compilers
● Drawn up by: NVIDIA, Cray, PGI, CAPS

● Multiple compilers offer:
● portability, debugging, permanence

● Works for Fortran, C, C++
● Standard available at openacc.org

● Initially implementations targeted at NVIDIA GPUs

● Compiler support: all now complete
● Cray CCE: complete OpenACC 2.0 in v8.2

● PGI Accelerator: v12.6 onwards

● CAPS: Full support in v1.3

● gcc:work started in late 2013, aiming for 4.9

● Various other compilers in development

http://openacc.org/
http://www.pgroup.com/resources/accel.htm
http://www.caps-entreprise.com/technology/hmpp/
http://www.openacc.org/

C O M P U T E | S T O R E | A N A L Y Z E

Accelerator directives

5.May.14 Copyright 2014 Cray Inc.
30

● Modify original source code with directives
● Non-executable statements (comments, pragmas)

● Can be ignored by non-accelerating compiler

● CCE -hnoacc also suppresses compilation

● Sentinel: acc
● C/C++: preceded by #pragma

● Structured block {...} avoids need for end directives

● Fortran: preceded by !$ (or c$ for FORTRAN77)
● Usually paired with !$acc end * directive

● Directives can be capitalized

● Continuation to extra lines allowed
● C/C++: \ (at end of line to be continued)

● Fortran:
● Fixed form: c$acc& or !$acc& on continuation line

● Free form: & at end of line to be continued

● continuation lines can start with either !$acc or !$acc&

! Fortran example
!$acc *
<structured block>
!$acc end *

// C/C++ example
#pragma acc *
{structured block}

C O M P U T E | S T O R E | A N A L Y Z E

Conditional compilation

5.May.14 Copyright 2014 Cray Inc.
31

● In theory, OpenACC code should be identical to CPU
● only difference are the directives (i.e. comments)

● In practise, you may need slightly different code
● For example, to cope with:

● calls to OpenACC runtime API functions

● where you need to recode for OpenACC
● such as for performance reasons

● you should try to minimise this

● usually better OpenACC code is better CPU code

● CPP macro defined to allow conditional compilation
● _OPENACC == yyyymm

● Version 1.0: 201111

● Version 2.0: 201306

C O M P U T E | S T O R E | A N A L Y Z E

A first example

5.May.14 Copyright 2014 Cray Inc.
32

● Execute loop nest on GPU

● Compiler does the work:
● Data movement

● determines data use in loopnest

● at start and end of loopnest:
● allocates/frees GPU memory

● moves data to/from GPU

● Synchronisation

● Loop schedule: spreading loop iterations over threads of GPU
● OpenACC will "partition" (workshare) more than one loop in a loopnest

● compare this to OpenMP, which only partitions the outer loop

● Caching (e.g. explicit use GPU shared memory for reused data)
● automatic caching can be important

● User can tune all default behavior with optional clauses on directives

#pragma acc parallel loop
for (j=0; j<N; j++) {
 for (i=1; i<N-1; i++) {
 c[j][i] = a[j][i] + b[j][i]
 }
}

read-only write-only

C O M P U T E | S T O R E | A N A L Y Z E

Accelerator kernels

5.May.14 Copyright 2014 Cray Inc.
33

● We call a loopnest that will execute on the GPU a "kernel"
● this language is similar to CUDA

● the loop iterations will be divided up and executed in parallel

● We have choice of two directives to create a kernel
● parallel loop or kernels loop

● both generate an accelerator computational task from a loopnest
● also known as a "kernel"

● the language is confusing

● Why are there two and what's the difference?
● You can use either

● or both, in different parts of the code

● This tutorial concentrates on using the parallel loop directive

C O M P U T E | S T O R E | A N A L Y Z E

A first full OpenACC program: "Hello World"

5.May.14 Copyright 2014 Cray Inc.
34

● Note:

● Code can still be compiled for the CPU

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
!$acc parallel loop
 DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
!$acc end parallel loop
 <stuff>
END PROGRAM main

 Two accelerator parallel regions

 Compiler creates two kernels
 Loop iterations automatically divided

across GPU threads

 First kernel initialises array
 Compiler will determine a is write-only

 Second kernel updates array
 Compiler will determine a is read-write

 Breaking parallel region=barrier
 No barrier directive (global or within SM)

C O M P U T E | S T O R E | A N A L Y Z E

Data scoping

5.May.14 Copyright 2014 Cray Inc.
35

● Codes process data, using other data to do this
● all this data is held in structures, such as arrays or scalars

● In a serial code (or pure MPI), there are no complications

● In a thread-parallel code (OpenACC, OpenMP etc.)
● Things are more complicated:

● Some data will be the same for each thread (e.g. the main data array)
● The threads can (and usually should) share a single copy of this data

● Some data will be different (e.g. loop index values)
● Each thread will need it's own private copy of this data

● Data scoping arranges this. It is done:
● automatically (by the compiler) or explicitly (by the programmer)

● If the data scoping is incorrect, we get:
● incorrect (and inconsistent) answers ("race conditions"), and/or

● a memory footprint that is too large to run

C O M P U T E | S T O R E | A N A L Y Z E

Understanding data scoping

5.May.14 Copyright 2014 Cray Inc.
36

● Data scoping ensures the right answer
● We want the same answer when executing in parallel as when serially

● Declare variables in parallel region to be shared or private
● shared

● all loop iterations process the same version of the variable

● variable could be a scalar or an array

● a and b are shared arrays in this example

● private
● each loop iteration uses the variable separately

● again, variable could be a scalar or an array

● t is a private scalar in this example

● loop index variables (like i) are also private

● firstprivate: a variation on private
● each thread's copy set to initial value

● loop limits (like N) should be firstprivate

for (i=0; i<N; i++) {
 t = a[i];
 t++;
 b[i] = 2*t;
}

C O M P U T E | S T O R E | A N A L Y Z E

Data scoping in OpenACC (and OpenMP)

5.May.14 Copyright 2014 Cray Inc.
37

● In OpenMP, we have exactly these data clauses
● shared, private, firstprivate

● In OpenACC
● private, firstprivate are just the same

● shared variables are more complicated in OpenACC
● because we also need to think about data movements to/from GPU

● We sub-classify shared variables by how they are used on the GPU:

● copyin: a shared variable that is used read-only by the GPU

● copyout: a shared variable that is used write-only

● copy: a shared variable that is used read-write

● create: a shared variable that is a temporary scratch space
 (although there is still an unused copy on the host in this case)

C O M P U T E | S T O R E | A N A L Y Z E

Data scoping with OpenACC

5.May.14 Copyright 2014 Cray Inc.
38

● parallel regions:
● scalars and loop index variables are private by default

● arrays are shared by default
● the compiler chooses which shared-type: copyin, copyout, etc.

● explicit data clauses over-ride automatic scoping decisions

● You can also add the default(none) clause
● then you have to do everything explicitly (or you get a compiler error)

C O M P U T E | S T O R E | A N A L Y Z E

A more-explicit first version

5.May.14 Copyright 2014 Cray Inc.
39

● Note:

● Array a is needlessly moved from/to GPU between kernels
● You could call this "data sloshing"

● This will have a big impact on performance

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc parallel loop copyout(a)
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
!$acc parallel loop copy(a)
 DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
!$acc end parallel loop
 <stuff>
END PROGRAM main

● We could choose to make the
data movements explicit
● maybe because we want to

● maybe also use default(none) clause

● or maybe compiler is overcautious

C O M P U T E | S T O R E | A N A L Y Z E

OpenACC data regions

5.May.14 Copyright 2014 Cray Inc.
40

● Data regions allow data to remain on the accelerator
● e.g. for processing by multiple accelerator kernels

● specified arrays only move at start/end of data region

● Data regions are only label a region of code
● they do not define or start any sort of parallel execution

● just specify GPU memory allocation and data transfers

● can contain host code, nested data regions and/or device kernels

● Be careful:
● Inside data region we have two copies of each of the specified arrays

● These only synchronise at the start/end of the data region
● and only following the directions of the explicit data clauses

● Otherwise, you have two separate arrays in two separate memory
spaces

C O M P U T E | S T O R E | A N A L Y Z E

Defining OpenACC data regions

5.May.14 Copyright 2014 Cray Inc.
41

● Two ways to define data regions:
● Structured data regions:

● Fortran: !$acc data [data-clauses] ... !$acc end data

● C/C++: #pragma acc data [date-clauses] {...}

● Unstructured data regions (new in OpenACC v2):
● Fortran: !$acc enter data [data-clauses] ... !$acc exit data [data-clauses]

● C/C++: #pragma enter data [data-clauses] ... #pragma exit data [data-clauses]

● For most "procedural code", use structured data regions

● Unstructured data regions
● Useful for more "Object Oriented" coding styles, e.g.

● Separate constructor/destructor methods in C++

● Separate subroutines for malloc (or allocate) and free (or deallocate)

● A data region with no data clauses is pointless
● that is, it is redundant (and does nothing)

C O M P U T E | S T O R E | A N A L Y Z E

A second version

5.May.14 Copyright 2014 Cray Inc.
42

● No automatic synchronisation within data region
● User-directed synchronisation possible with update directive

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copyout(a)
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
!$acc parallel loop
 DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
!$acc end parallel loop
!$acc end data
 <stuff>
END PROGRAM main

 Now added a data region

 Specified arrays only moved at
boundaries of data region

 Unspecified arrays moved by
each kernel

 No compiler-determined
movements for data regions

 Data region can contain host code
and accelerator regions

 Copies of arrays independent

C O M P U T E | S T O R E | A N A L Y Z E

Data scoping with OpenACC (2)

5.May.14 Copyright 2014 Cray Inc.
43

● parallel regions:
● scalars and loop index variables are private by default

● arrays are shared by default
● the compiler chooses which shared-type: copyin, copyout, etc.

● explicit data clauses over-ride automatic scoping decisions
● You can also add the default(none) clause

● then you have to do everything explicitly (or you get a compiler error)

● data regions:
● only shared-type scoping clauses are allowed

● there is NO default/automatic scoping

● un-scoped variables on data regions
● will be scoped at each of the enclosed parallel regions

● automatically, unless the programmer does this explicitly

● this probably leads to unwanted data-sloshing or large arrays

● Using data region scoping in enclosed parallel regions:
● same routine: omit scoping clauses on enclosed parallel directives

● different routine: use present clause on enclosed parallel directives

C O M P U T E | S T O R E | A N A L Y Z E

Sharing GPU data between subprograms

5.May.14 Copyright 2014 Cray Inc.
44

● present clause uses GPU version of b without data copy
● Original calltree structure of program can be preserved

● One kernel is now in subroutine (maybe in separate file)
● OpenACC 1.0: function calls inside parallel regions required inlining

● OpenACC 2.0: compilers support nested parallelism

SUBROUTINE double_array(b)
 INTEGER :: b(N)
!$acc parallel loop present(b)
 DO i = 1,N
 b(i) = double_scalar(b(i))
 ENDDO
!$acc end parallel loop
END SUBROUTINE double_array

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copyout(a)
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
 CALL double_array(a)
!$acc end data
 <stuff>
END PROGRAM main

INTEGER FUNCTION double_scalar(c)
 INTEGER :: c
 double_scalar = 2*c
END FUNCTION double_scalar

C O M P U T E | S T O R E | A N A L Y Z E

Reduction variables

5.May.14 Copyright 2014 Cray Inc.
45

● Reduction variables are a special case of private variables
● where we will need to combine values across loop iterations

● e.g. sum, max, min, logical-and etc. acting on a shared array

● We need to tell the compiler to treat this appropriately
● Use the reduction clause for this (added to parallel loop directive)

● same expression in OpenACC as in OpenMP

● Examples:
● sum: use clause reduction(+:t)

● Note sum could involve adding and/or subtracting

● max: use clause reduction(max:u)

● Note: OpenACC only allows reductions of scalars
● not of array elements

● advice:
● try rewriting to use a temporary scalar in the loopnest for the reduction

DO i = 1,N
 t = t + a(i) - b(i)
 u = MAX(u,a(i))
ENDDO

C O M P U T E | S T O R E | A N A L Y Z E

Data scoping gotchas: OpenACC vs. OpenMP

5.May.14 Copyright 2014 Cray Inc.
46

● In OpenACC parallel regions:
● scalars and loop index variables are private by default

● Compare this to OpenMP parallel regions:
● loop index variables are private by default, but scalars are shared

● Be careful of this, especially:
● if you program (separately) using the two programming models, or

● if you are translating an OpenMP code to OpenACC

C O M P U T E | S T O R E | A N A L Y Z E

Minimising data movements

5.May.14 Copyright 2014 Cray Inc.
47

● This is the single-biggest OpenACC optimisation for GPUs

● There are three techniques:
● Keep data on the GPU as long as possible

● use data regions and port all enclosed loopnests (as we have seen)

● Only move arrays when you need to
● using the update directive

● Only move the data you need to move
● using array sections

C O M P U T E | S T O R E | A N A L Y Z E

The update directive

5.May.14 Copyright 2014 Cray Inc.
48

● Data regions keep data on device
● can span multiple compute kernels and serial (host) code

● create copies of data arrays on device for duration of data region

● host, device copies only synchronised at start/end of data region
● as requested by explicit data clauses

● You can synchronise copies manually within a data region
● for instance:

● to copy a halo buffer back to the host for communication

● to copy values of an array to the CPU for checking or printing

● You do this using the update directive, for instance:
● update host(a) copies entire array a from device to host

● OpenACC 2.0: can use self instead of host

● update device(a) copies entire array a from host to device

C O M P U T E | S T O R E | A N A L Y Z E

Array sections

5.May.14 Copyright 2014 Cray Inc.
49

● Sometimes we only need to move part of an array
● array section notation allows this, using ":" notation

● syntax differs slightly between languages
● Fortran uses start:end, so first N elements is a(1:N)

● C/C++ uses start:length, so first N elements is b[0:N]

● Advice: be careful when switching languages!
● Use profiler, CRAY_ACC_DEBUG commentary to see how much data moved

● Sections allowed in data clauses and with update

● For multi-dimensional arrays
● specified sections must be a contiguous block of memory
● can only specify one incomplete section on slowest-moving index

● Fortran: slowest index is right-most
● so a(1:N,2:N-1) is allowed, but a(2:N-1,1:N) is not

● C/C++: slowest index is left-most
● so b[1:N-2][0:N] is allowed, but b[0:N][1:N-2] is not

C O M P U T E | S T O R E | A N A L Y Z E

Unshaped pointers

5.May.14 Copyright 2014 Cray Inc.
50

● "Unshaped pointer" compiler/runtime errors

● Fortran arrays have a complicated data structure
● includes a descriptor that contains information about size and shape

● the compiler therefore knows how much data to transfer

● C/C++: arrays are often just pointers
● especially if the arrays were dynamically allocated or passed by reference

● How many bytes should be transferred here: copy(c) ?

● So you usually need to be more explicit
● You need to put in data clauses

● And specify the slicing (even if this is the whole array): copy(c[0:N])

C O M P U T E | S T O R E | A N A L Y Z E

Sharing data between kernels

5.May.14 Copyright 2014 Cray Inc.
51

● If you are using a data region around kernels
● Must ensure that the runtime uses the shared data already present

● If the kernel is in the same routine as the data region
● just don't mention those bits of data in the parallel/kernels clauses

● If the kernel is in a different routine to the data region
● On the parallel or kernels directive:

● Specify the relevant data with present clause

● instead of other shared clauses (copy, copyin, copyout, create)

● don't rely on automatic scoping for shared data in this case

● If an array is declared present, but is not on accelerator
● you get a runtime error and the program crashes

● This is usually what you would like to happen
● rather than running to completion with the wrong answer

● But there are other ways to do things...

C O M P U T E | S T O R E | A N A L Y Z E

Directives in summary

5.May.14 Copyright 2014 Cray Inc.
52

● Compute regions
● created using parallel loop or kernels loop directives

● Data regions
● created using data or enter/exit data directives

● Data clauses are applied to:

● accelerated loopnests: parallel and kernels directives
● here they over-ride relevant parts of the automatic compiler analysis
● you can switch off all automatic scoping with default(none) clause (in v2)

● data regions: data directive (plus enter/exit data in OpenACC v2)
● There is no automatic scoping in data regions (arrays or scalars)

● Shared clauses (copy, copyin, copyout, create)

● supply list of scalars, arrays (or array sections)

● Private clauses (private, firstprivate, reduction)
● only apply to accelerated loopnests (parallel and kernels directives)

● present clause (used for nested data/compute regions)

C O M P U T E | S T O R E | A N A L Y Z E

And take a breath...

5.May.14 Copyright 2014 Cray Inc.
53

● You now know everything you need to start accelerating
● You can successfully port a lot of codes just knowing this much

● The performance at this stage isn't bad, either
● you can often beat the CPU version of the code running across all the cores

● So what is the rest of OpenACC for?
● Some codes require more functionality to port

● OpenACC also has a lot of performance tuning options

● The emphasis in this introduction has been on
● explaining data scoping and using data regions

● Why?
● because optimising data movements is far more important than tuning

● minimising data transfers typically speeds up GPU execution by 10x-100x

● performance tuning maybe gains you 2x-3x
● and you can't start to get this until you first stop data-sloshing

C O M P U T E | S T O R E | A N A L Y Z E

5.May.14 Copyright 2014 Cray Inc.
54

#pragma acc exit data

Do you have any questions?

C O M P U T E | S T O R E | A N A L Y Z E

Porting a Simple Code

Worked example: scalar Himeno code

5.May.14 Copyright 2014 Cray Inc.
55

C O M P U T E | S T O R E | A N A L Y Z E

The Himeno Benchmark

5.May.14 Copyright 2014 Cray Inc.
56

● 3D Poisson equation solver
● Iterative loop evaluating 19-point stencil

● Memory intensive, memory bandwidth bound

● Fortran and C implementations are
available from http://accc.riken.jp/2444.htm

● We look here at the scalar version for simplicity
● We will discuss the parallel version later today

● Code characteristics
● Around 230 lines of Fortran or C

● Arrays statically allocated
● problem size fixed at compile time

http://accc.riken.jp/2444.htm
http://accc.riken.jp/2444.htm
http://accc.riken.jp/2444.htm
http://accc.riken.jp/HPC_e/himenobmt_e.html

C O M P U T E | S T O R E | A N A L Y Z E

Why use such a simple code?

5.May.14 Copyright 2014 Cray Inc.
57

● Understanding a code structure is crucial if we are to
successfully OpenACC an application
● i.e. one that runs faster node-for-node

● not just full accelerator vs. single CPU core

● There are two key things to understand about the code:
● How is data passed through the calltree?

● Where are the hotspots?

● Answering these questions for a large application is hard
● There are tools to help

● we will discuss some of them later in the tutorial

● With a simple code, we can do all of this just by code inspection

C O M P U T E | S T O R E | A N A L Y Z E

The key questions in detail

5.May.14 Copyright 2014 Cray Inc.
58

● How is data passed through the calltree?
● CPUs and accelerators have separate memory spaces
● The PCIe link between them is relatively slow
● Unnecessary data transfers will wipe out any performance gains
● A successful OpenACC port will keep data resident on the accelerator

● Where are the hotspots?

● The OpenACC programming model is aimed at loop-based codes
● Which loopnests dominate the runtime?
● Are they suitable for an accelerator?

● What are the min/average/max tripcounts?

● Minimising data movements will probably require
acceleration of many more (and possibly all) loopnests
● Not just the hotspots

● any loopnest that processes arrays that we want accelerator-resident

● But we have to start somewhere

C O M P U T E | S T O R E | A N A L Y Z E

First stages to accelerating an application

5.May.14 Copyright 2014 Cray Inc.
59

1. Understand and characterise the application
● Profiling tools, code inspection, speaking to developers if you can

2. Introduce first OpenACC kernels

3. Introduce data regions in subprograms
● reduce unnecessary data movements

● will probably require more OpenACC kernels

C O M P U T E | S T O R E | A N A L Y Z E

Next stages to accelerating an application

5.May.14 Copyright 2014 Cray Inc.
60

4. Move up the calltree, adding higher-level data regions
● ideally, port entire application so data arrays live entirely on the GPU

● otherwise, minimise traffic between CPU and GPU

● This will give the single biggest performance gain

5. Only now think about performance tuning for kernels
● First correct any obviously inefficient scheduling on the GPU

● This will give some good performance improvements

● Optionally, experiment with OpenACC tuning clauses
● You may gain some final additional performance from this

● And remember Amdahl's law...

C O M P U T E | S T O R E | A N A L Y Z E

Run the initial CPU version of the code

5.May.14 Copyright 2014 Cray Inc.
61

● First we compile and run the code "as is"
● on the CPU, using one core

● compiled with Cray Compilation Environment (CCE)

● The output reports:

● The runtime
● Measurement: Time (secs) : 4.8043761204462498

● The performance (from the runtime, in MFLOPS)
● Measurement: MFLOPS : 2853.7552548501367

● A residual value from the solver (checksum)
● Measurement: Gosa : 0.137971540815963272E-02

C O M P U T E | S T O R E | A N A L Y Z E

Step 1: Himeno program structure

5.May.14 Copyright 2014 Cray Inc.
62

● It's useful to hardwire nn
● gosa is then a checksum

● xmflops2 shows performance

● Now we look at the details of
jacobi()

PROGRAM himeno ! EDITED HIGHLIGHTS ONLY

 CALL initmt ! Initialise local matrices

 cpu0 = gettime() ! Wraps SYSTEM_CLOCK

 CALL jacobi(3,gosa)

 cpu1 = gettime()

 cpu = cpu1 - cpu0

! nn = INT(ttarget/(cpu/3.0)) ! Fixed runtime

 nn = 1000 ! Hardwired for testing

 cpu0 = gettime()

 CALL jacobi(nn,gosa)

 cpu1 = gettime()

 cpu = cpu1 - cpu0

 xmflops2 = flop*1.0d-6/cpu*nn

 PRINT *,' Time: ',cpu

 PRINT *,' Gosa: ',gosa

 PRINT *,' MFLOPS:',xmflops2

END PROGRAM himeno

Calibration run

Measurement run

Initialisation routine

Stencil routine

C O M P U T E | S T O R E | A N A L Y Z E

Step 1: Structure of the jacobi routine

5.May.14 Copyright 2014 Cray Inc.
63

● Iteration loop
● must be sequential!

● Apply stencil to p

● create temporary wrk2

● residual gosa computed

● Update array p

● from wrk2

● can be parallelised

● outer halo unchanged

SUBROUTINE jacobi(nn,gosa)

 iter_lp: DO loop = 1,nn

! compute stencil: wrk2, gosa from p

 <described on next slide>

! copy back wrk2 into p

 DO k = 2,kmax-1

 DO j = 2,jmax-1

 DO i = 2,imax-1

 p(i,j,k) = wrk2(i,j,k)

 ENDDO

 ENDDO

 ENDDO

 ENDDO iter_lp

END SUBROUTINE jacobi

C O M P U T E | S T O R E | A N A L Y Z E

Step 1: The Jacobi computational kernel

5.May.14 Copyright 2014 Cray Inc.
64

● Stencil applied to array p
● 19-point finite difference

● Not in-place:
● Updated values saved in

temporary array wrk2

● Residual value gosa

● computed here

● is a reduction variable

● This loopnest dominates
runtime
● Can be parallelised

gosa = 0d0

DO k = 2,kmax-1

 DO j = 2,jmax-1

 DO i = 2,imax-1

 S0=a(i,j,k,1)*p(i+1,j, k) &

 +a(i,j,k,2)*p(i, j+1,k) &

 +a(i,j,k,3)*p(i, j, k+1) &

 +b(i,j,k,1)*(p(i+1,j+1,k)-p(i+1,j-1,k) &

 -p(i-1,j+1,k)+p(i-1,j-1,k)) &

 +b(i,j,k,2)*(p(i, j+1,k+1)-p(i, j-1,k+1) &

 -p(i, j+1,k-1)+p(i, j-1,k-1)) &

 +b(i,j,k,3)*(p(i+1,j, k+1)-p(i-1,j, k+1) &

 -p(i+1,j, k-1)+p(i-1,j, k-1)) &

 +c(i,j,k,1)*p(i-1,j, k) &

 +c(i,j,k,2)*p(i, j-1,k) &

 +c(i,j,k,3)*p(i, j, k-1) &

 + wrk1(i,j,k)

 ss = (s0*a(i,j,k,4)-p(i,j,k)) * bnd(i,j,k)

 gosa = gosa + ss*ss

 wrk2(i,j,k) = p(i,j,k) + omega*ss

 ENDDO

 ENDDO

ENDDO

fw
d

 n
.n

.
b

w
d

 n
.n

.
n

.n
.n

.

C O M P U T E | S T O R E | A N A L Y Z E

Step 2: a first OpenACC kernel

5.May.14 Copyright 2014 Cray Inc.
65

● Start with most expensive
● apply parallel loop

● end parallel loop optional
● advice: use it for clarity

● reduction clause
● as in OpenMP, not optional

● private clause?
● By default:

● loop variables private
● i, j, k

● like OpenMP

● scalar variables private
● s0,ss

● unlike OpenMP

● so clause is optional here

● Note that private arrays
● always need private clause

gosa = 0d0

!$acc parallel loop reduction(+:gosa)

DO k = 2,kmax-1

 DO j = 2,jmax-1

 DO i = 2,imax-1

 s0 = a(i,j,k,1) * p(i+1,j, k) &

 <etc...>

 ss = (s0*a(i,j,k,4) - p(i,j,k)) * &

 bnd(i,j,k)

 gosa = gosa + ss*ss

 wrk2(i,j,k) = p(i,j,k) + omega*ss

 ENDDO

 ENDDO

ENDDO

!$acc end parallel loop

C O M P U T E | S T O R E | A N A L Y Z E

Step 2: a first OpenACC kernel (contd)

5.May.14 Copyright 2014 Cray Inc.
66

● copy* data clauses
● compiler will do automatic

analysis
● usually correct

● but can be over-cautious

● advice:
● only use clauses if

compiler over-cautious

● explicit data clauses will
interfere with data
directives at next step

gosa1 = 0d0

!$acc parallel loop reduction(+:gosa1) &

!$acc& private(i,j,k,so,ss) &

!$acc& copyin(p,a,b,c,bnd,wrk1) &

!$acc& copyout(wrk2)

DO k = 2,kmax-1

 DO j = 2,jmax-1

 DO i = 2,imax-1

 s0 = a(i,j,k,1) * p(i+1,j, k) &

 <etc...>

 ss = (s0*a(i,j,k,4) - p(i,j,k)) * &

 bnd(i,j,k)

 gosa1 = gosa1 + ss*ss

 wrk2(i,j,k) = p(i,j,k) + omega*ss

 ENDDO

 ENDDO

ENDDO

!$acc end parallel loop

C O M P U T E | S T O R E | A N A L Y Z E

Compiler feedback

5.May.14 Copyright 2014 Cray Inc.
67

● Compiler feedback is extremely important
● Did the compiler recognise the accelerator directives?

● A good sanity check

● How will the compiler move data?
● Only use data clauses if the compiler is over-cautious on the copy*

● Or you want to declare an array to be scratch space (create clause)

● First major code optimisation: removing unnecessary data movements

● How will the compiler schedule loop iterations across GPU threads?
● Did it parallelise the loopnests?

● Did it schedule the loops sensibly?

● The other main optimisation is correcting obviously-poor loop scheduling

● Compiler teams work very hard to make feedback useful
● advice: use it, it's free! (i.e. no impact on performance to generate it)

● CCE: -hlist=a Produces commentary files <stem>.lst

● PGI: -Minfo Feedback to STDERR

C O M P U T E | S T O R E | A N A L Y Z E

Scheduling

5.May.14 Copyright 2014 Cray Inc.
68

 292. + 1 G----------< !$acc parallel loop reduction(+:gosa1)
 :
 295. 1 G g--------< DO k = 2,kmax-1
 296. + 1 G g 4------< DO j = 2,jmax-1
 297. 1 G g 4 g----< DO i = 2,imax-1
 298. 1 G g 4 g S0 = a(i,j,k,1) * p(i+1,j ,k) &
 :
 315. 1 G g 4 g----> ENDDO
 316. 1 G g 4------> ENDDO
 317. 1 G g--------> ENDDO
 :
 319. 1 G----------> !$acc end parallel loop

ftn-6405 ftn: ACCEL File = himeno_F_v99.F90, Line = 292
 A region starting at line 292 and ending at line 319 was placed on the accelerator.

ftn-6430 ftn: ACCEL File = himeno_F_v99.F90, Line = 295
 A loop starting at line 295 was partitioned across the thread blocks.

ftn-6509 ftn: ACCEL File = himeno_F_v99.F90, Line = 296
 A loop starting at line 296 was not partitioned because a better candidate was found at line 297.

ftn-6412 ftn: ACCEL File = himeno_F_v99.F90, Line = 296
 A loop starting at line 296 will be redundantly executed.

ftn-6430 ftn: ACCEL File = himeno_F_v99.F90, Line = 297
 A loop starting at line 297 was partitioned across the 128 threads within a threadblock.

G = accelerator kernel

Numbers denote

serial loops

g = partitioned loop

gangs, like CUDA threadblocks:

k value(s) built from blockidx.x

Each thread executes complete

complete j-loop for its i, k value(s)

vectors, like CUDA:

i value(s) built from threadidx.x

To learn more, use command:

explain ftn-6405

C O M P U T E | S T O R E | A N A L Y Z E

Data movements

5.May.14 Copyright 2014 Cray Inc.
69

 292. + 1 G----------< !$acc parallel loop reduction(+:gosa1)
 :
 295. 1 G g--------< DO k = 2,kmax-1
 296. + 1 G g 4------< DO j = 2,jmax-1
 297. 1 G g 4 g----< DO i = 2,imax-1
 298. 1 G g 4 g S0 = a(i,j,k,1) * p(i+1,j ,k) &
 :
 315. 1 G g 4 g----> ENDDO
 316. 1 G g 4------> ENDDO
 317. 1 G g--------> ENDDO
 :
 319. 1 G----------> !$acc end parallel loop

ftn-6415 ftn: ACCEL File = himeno_F_v99.F90, Line = 292
 Allocate memory and copy variable "gosa1" to accelerator, copy back at line 319 (acc_copy).

ftn-6418 ftn: ACCEL File = himeno_F_v99.F90, Line = 292
 If not already present: allocate memory and copy whole array "p" to accelerator, free at line 319 (acc_copyin).

< same messages for: "a", "b", "c", "wrk1", "bnd" >

ftn-6416 ftn: ACCEL File = himeno_F_v99.F90, Line = 292
 If not already present: allocate memory and copy whole array "wrk2" to accelerator, copy back at line 319 (acc_copy).

Over-cautious: compiler worried about halos;

we should add the clause: copyout(wrk2)

yes, as we expected

C O M P U T E | S T O R E | A N A L Y Z E

Run the first accelerated kernel

5.May.14 Copyright 2014 Cray Inc.
70

● Original performance:
● Measurement: Gosa : 0.137971540815963272E-02
● Measurement: MFLOPS : 2853.7552548501367

● With one OpenACC kernel:
● Measurement: Gosa : 0.137971540815965701E-02
● Measurement: MFLOPS : 1354.6002299205898

● First: the answer is still correct
● Advice: make sure you have correctness checks

● e.g. checksums, residuals, representative array values
● try to use double precision for reduction variables (checksums, residuals)

● even if the code is single precision

● Note you won't get bitwise reproducibility between CPU and GPU
● different compilers are also likely to give different results

C O M P U T E | S T O R E | A N A L Y Z E

Run the first accelerated kernel

5.May.14 Copyright 2014 Cray Inc.
71

● Why is this first OpenACC version is slower?

● First we look at the Cray runtime commentary
● An event-by-event record of application execution

● To use it:
● Compile with CCE (no special options)

● Set environment variable: CRAY_ACC_DEBUG=2
● Run the executable

● The commentary is written to STDERR

C O M P U T E | S T O R E | A N A L Y Z E

CRAY_ACC_DEBUG=2

5.May.14 Copyright 2014 Cray Inc.
72

<For every iteration we see the following>

ACC: Start transfer 10 items from himeno_F_v99.F90:292
ACC: allocate, copy to acc 'a' (68427792 bytes)
ACC: allocate, copy to acc 'b' (51320844 bytes)
ACC: allocate, copy to acc 'bnd' (17106948 bytes)
ACC: allocate, copy to acc 'c' (51320844 bytes)
ACC: allocate, copy to acc 'p' (17106948 bytes)
ACC: allocate, copy to acc 'wrk1' (17106948 bytes)
ACC: allocate 'wrk2' (17106948 bytes)
ACC: allocate reusable, copy to acc <internal> (8 bytes)
ACC: allocate reusable, copy to acc <internal> (4 bytes)
ACC: allocate reusable <internal> (1008 bytes)
ACC: End transfer (to acc 222390336 bytes, to host 0 bytes)
ACC: Execute kernel jacobi_$ck_L292_1 blocks:126 threads:128 async(auto) from himeno_F_v99.F90:292
ACC: Wait async(auto) from himeno_F_v99.F90:319
ACC: Start transfer 10 items from himeno_F_v99.F90:319
ACC: free 'a' (68427792 bytes)
ACC: free 'b' (51320844 bytes)
ACC: free 'bnd' (17106948 bytes)
ACC: free 'c' (51320844 bytes)
ACC: free 'p' (17106948 bytes)
ACC: free 'wrk1' (17106948 bytes)
ACC: copy to host, free 'wrk2' (17106948 bytes)
ACC: copy to host, done reusable <internal> (8 bytes)
ACC: done reusable <internal> (4 bytes)
ACC: done reusable <internal> (0 bytes)
ACC: End transfer (to acc 0 bytes, to host 17106956 bytes)

C O M P U T E | S T O R E | A N A L Y Z E

More profile information

5.May.14 Copyright 2014 Cray Inc.
73

● We can use the NVIDIA Compute Profiler to learn more:
● Event-by-event timing information

● To use it:
● Compile with CCE (no special options)

● Set environment variable: COMPUTE_PROFILE=1
● Run the executable

● The commentary is written to file cuda_profile_0.log

● Advice:
● Don't set both CRAY_ACC_DEBUG with COMPUTE_PROFILE

C O M P U T E | S T O R E | A N A L Y Z E

COMPUTE_PROFILE=1

5.May.14 Copyright 2014 Cray Inc.
74

<For every iteration we see the following>

method=[memcpyHtoD] gputime=[27222.977] cputime=[27571.473]
method=[memcpyHtoD] gputime=[20372.352] cputime=[20636.215]
method=[memcpyHtoD] gputime=[6538.752] cputime=[6867.797]
method=[memcpyHtoD] gputime=[20333.984] cputime=[20594.152]
method=[memcpyHtoD] gputime=[6538.912] cputime=[6867.491]
method=[memcpyHtoD] gputime=[6547.712] cputime=[6871.381]
method=[memcpyHtoD] gputime=[1.632] cputime=[8.488]
method=[memcpyHtoD] gputime=[0.928] cputime=[6.142]
method=[jacobi_$ck_L292_1] gputime=[2079.296] cputime=[25.261] occupancy=[0.312]
method=[memcpyDtoH] gputime=[35016.480] cputime=[37985.234]
method=[memcpyDtoH] gputime=[2.464] cputime=[19.153]

C O M P U T E | S T O R E | A N A L Y Z E

Profiling with CrayPAT

5.May.14 Copyright 2014 Cray Inc.
75

● We really need an application-wide view using CrayPAT
● rather than an event-by-event account

● To use it:
● module load perftools

● Rebuild the code

● Instrument the executable using pat_build -w command
● Option -w does tracing of accelerator operations)

● Option -u would include tracing of CPU routines as well

● Rerun the code

● Process the information gathered with pat_report command

C O M P U T E | S T O R E | A N A L Y Z E

pat_build -w

5.May.14 Copyright 2014 Cray Inc.
76

Table 1: Profile by Function Group and Function

 Time% | Time | Imb. | Imb. | Calls |Group
 | | Time | Time% | | Function

 100.0% | 10.801079 | -- | -- | 917.0 |Total
|--
| 100.0% | 10.800891 | -- | -- | 516.0 |USER
||---
|| 86.0% | 9.293427 | -- | -- | 103.0 |jacobi_.ACC_COPY@li.292
|| 7.8% | 0.838496 | -- | -- | 1.0 |main_
|| 4.2% | 0.448701 | -- | -- | 103.0 |jacobi_.ACC_COPY@li.319
|| 2.0% | 0.215345 | -- | -- | 103.0 |jacobi_.ACC_SYNC_WAIT@li.319
|==

Table 2: Time and Bytes Transferred for Accelerator Regions

 Host | Host | Acc | Acc Copy | Acc Copy | Events |Calltree
 Time% | Time | Time | In | Out | |
 | | | (MBytes) | (MBytes) | |

 100.0% | 9.963 | 9.935 | 21845 | 1680 | 515 |Total
|--
| 100.0% | 9.963 | 9.935 | 21845 | 1680 | 515 |main_
| | | | | | | jacobi_
3 | | | | | | jacobi_.ACC_REGION@li.292
||||---
4||| 93.3% | 9.293 | 9.275 | 21845 | -- | 103 |jacobi_.ACC_COPY@li.292
4||| 4.5% | 0.449 | 0.444 | -- | 1680 | 103 |jacobi_.ACC_COPY@li.319
4||| 2.2% | 0.215 | -- | -- | -- | 103 |jacobi_.ACC_SYNC_WAIT@li.319
|==

C O M P U T E | S T O R E | A N A L Y Z E

Step 3: Optimising data movements

5.May.14 Copyright 2014 Cray Inc.
77

● Within jacobi routine
● data-sloshing: all arrays copied to/from GPU at every loop iteration

● Need to establish data region outside the iteration loop
● Then data can remain resident on GPU for entire call

● reused for each iteration without copying to/from host

● Must accelerate all loopnests processing the arrays
● Even if they takes negligible compute time,

● must still accelerate for data locality
● This can be a lot of work

● Performance of the kernels is irrelevant

● A major productivity win for OpenACC compared to low-level languages
● You can accelerate a loopnest with one directive; usually no need for tuning

● You don't have to handcode a new CUDA kernel

C O M P U T E | S T O R E | A N A L Y Z E

Step 3: Structure of the jacobi routine

5.May.14 Copyright 2014 Cray Inc.
78

● data region spans
iteration loop
● includes both CPU and

accelerator code

● need explicit data clauses
● no automatic scoping

● requires knowledge of app

● enclosed kernels
● if in same routine

● no data clauses for these
variables

● if in different routine
● use present clause for

these variables

● see earlier advice

● wrk2 now a scratch array
● does not need copying

SUBROUTINE jacobi(nn,gosa)

!$acc data copy(p) &

!$acc& copyin(a,b,c,wrk1,bnd) &

!$acc& create(wrk2)

 iter_lp: DO loop = 1,nn

 gosa = 0d0

! compute stencil: wrk2, gosa from p

!$acc parallel loop <clauses>

 <stencil loopnest>

!$acc end parallel loop

! copy back wrk2 into p

!$acc parallel loop

 <copy loopnest>

!$acc end parallel loop

 ENDDO iter_lp

!$acc end data

END SUBROUTINE jacobi

C O M P U T E | S T O R E | A N A L Y Z E

Improved performance

5.May.14 Copyright 2014 Cray Inc.
79

● Original performance:
● Measurement: Gosa : 0.137971540815963272E-02
● Measurement: MFLOPS : 2853.7552548501367

● With one OpenACC kernel:
● Measurement: Gosa : 0.137971540815965701E-02
● Measurement: MFLOPS : 1354.6002299205898

● With a data region around the iterations:
● Measurement: Gosa : 0.137971540815965701E-02
● Measurement: MFLOPS : 40656.6334569459

● The code is correct
● and much faster

● To see why, rerun with CRAY_ACC_DEBUG=2

C O M P U T E | S T O R E | A N A L Y Z E

CRAY_ACC_DEBUG=2

5.May.14 Copyright 2014 Cray Inc.
80

<Start of data region>

ACC: Start transfer 7 items from himeno_F_v99.F90:280
ACC: allocate, copy to acc 'a' (68427792 bytes)
ACC: allocate, copy to acc 'b' (51320844 bytes)
ACC: allocate, copy to acc 'bnd' (17106948 bytes)
ACC: allocate, copy to acc 'c' (51320844 bytes)
ACC: allocate, copy to acc 'p' (17106948 bytes)
ACC: allocate, copy to acc 'wrk1' (17106948 bytes)
ACC: allocate 'wrk2' (17106948 bytes)
ACC: End transfer (to acc 222390324 bytes, to host 0 bytes)

<For each loop iteration... (see next slide)>

<After iteration loop finishes, close of data region>

ACC: Wait async(auto) from himeno_F_v99.F90:340
ACC: Start transfer 7 items from himeno_F_v99.F90:340
ACC: free 'a' (68427792 bytes)
ACC: free 'b' (51320844 bytes)
ACC: free 'bnd' (17106948 bytes)
ACC: free 'c' (51320844 bytes)
ACC: copy to host, free 'p' (17106948 bytes)
ACC: free 'wrk1' (17106948 bytes)
ACC: free 'wrk2' (17106948 bytes)
ACC: End transfer (to acc 0 bytes, to host 17106948 bytes)

C O M P U T E | S T O R E | A N A L Y Z E

CRAY_ACC_DEBUG=2 continued

5.May.14 Copyright 2014 Cray Inc.
81

<Start of data region... (see previous slide)>

<For each loop iteration>

ACC: Start transfer 3 items from himeno_F_v99.F90:293
ACC: allocate reusable, copy to acc <internal> (8 bytes)
ACC: allocate reusable, copy to acc <internal> (4 bytes)
ACC: allocate reusable <internal> (1008 bytes)
ACC: End transfer (to acc 12 bytes, to host 0 bytes)
ACC: Execute kernel jacobi_$ck_L293_1 blocks:126 threads:128 async(auto) from himeno_F_v99.F90:293
ACC: Wait async(auto) from himeno_F_v99.F90:320
ACC: Start transfer 3 items from himeno_F_v99.F90:320
ACC: copy to host, done reusable <internal> (8 bytes)
ACC: done reusable <internal> (4 bytes)
ACC: done reusable <internal> (0 bytes)
ACC: End transfer (to acc 0 bytes, to host 8 bytes)
ACC: Execute kernel jacobi_$ck_L322_2 blocks:126 threads:128 async(auto) from himeno_F_v99.F90:322

<After iteration loop finishes, close of data region... (see previous slide)>

C O M P U T E | S T O R E | A N A L Y Z E

Profiling this version

5.May.14 Copyright 2014 Cray Inc.
82

● Why is this version going so much faster?

● We can generate a CrayPAT profile as before:

Table 1: Profile by Function Group and Function

 Time% | Time | Imb. | Imb. | Calls |Group
 | | Time | Time% | | Function

 100.0% | 0.755941 | -- | -- | 1131.0 |Total
|---
| 100.0% | 0.755749 | -- | -- | 730.0 |USER
||--
|| 40.9% | 0.308847 | -- | -- | 1.0 |main_
|| 28.4% | 0.214851 | -- | -- | 103.0 |jacobi_.ACC_SYNC_WAIT@li.320
|| 24.1% | 0.182321 | -- | -- | 2.0 |jacobi_.ACC_COPY@li.280
|| 4.3% | 0.032620 | -- | -- | 103.0 |jacobi_.ACC_COPY@li.293
|| 1.0% | 0.007862 | -- | -- | 2.0 |jacobi_.ACC_COPY@li.340
|===

Table 2: Time and Bytes Transferred for Accelerator Regions (see next slide)

C O M P U T E | S T O R E | A N A L Y Z E

A synchronous profile

5.May.14 Copyright 2014 Cray Inc.
83

● GPU kernels launch asynchronously
● So the compute time shows up in the SYNC_WAIT events

● We can switch off the automatic asynchronicity
● This can give a clearer profile, but it may be skewed

● Recompile with CCE flag -hacc_model=auto_async_none

● And do a new CrayPAT profile

C O M P U T E | S T O R E | A N A L Y Z E

pat_build -w, with auto_async_none

5.May.14 Copyright 2014 Cray Inc.
84

Table 1: Profile by Function Group and Function

 Time% | Time | Imb. | Imb. | Calls |Group
 | | Time | Time% | | Function

 100.0% | 0.756016 | -- | -- | 1026.0 |Total
|--
| 100.0% | 0.755826 | -- | -- | 625.0 |USER
||---
|| 40.7% | 0.307802 | -- | -- | 1.0 |main_
|| 28.7% | 0.216719 | -- | -- | 103.0 |jacobi_.ACC_KERNEL@li.293
|| 24.1% | 0.182522 | -- | -- | 2.0 |jacobi_.ACC_COPY@li.280
|| 4.4% | 0.033479 | -- | -- | 103.0 |jacobi_.ACC_KERNEL@li.322
|| 1.1% | 0.008124 | -- | -- | 2.0 |jacobi_.ACC_COPY@li.340
|==

Table 2: Time and Bytes Transferred for Accelerator Regions (see next slide)

C O M P U T E | S T O R E | A N A L Y Z E

pat_build -w, with auto_async_none (2)

5.May.14 Copyright 2014 Cray Inc.
85

Table 1: Profile by Function Group and Function (see previous slide)

Table 2: Time and Bytes Transferred for Accelerator Regions

 Host | Host | Acc | Acc Copy | Acc Copy | Events |Calltree
 Time% | Time | Time | In | Out | |
 | | | (MBytes) | (MBytes) | |

 100.0% | 0.448 | 0.437 | 424.177 | 32.630 | 624 |Total
|--
| 100.0% | 0.448 | 0.437 | 424.177 | 32.630 | 624 |main_
| | | | | | | jacobi_
3 | | | | | | jacobi_.ACC_DATA_REGION@li.280
||||---
4||| 49.9% | 0.224 | 0.217 | 0.001 | 0.001 | 412 |jacobi_.ACC_REGION@li.293
5||| 48.4% | 0.217 | 0.214 | -- | -- | 103 | jacobi_.ACC_KERNEL@li.293
4||| 40.7% | 0.183 | 0.180 | 424.176 | -- | 2 |jacobi_.ACC_COPY@li.280
4||| 7.5% | 0.034 | 0.031 | -- | -- | 206 |jacobi_.ACC_REGION@li.322
5||| 7.5% | 0.034 | 0.031 | -- | -- | 103 | jacobi_.ACC_KERNEL@li.322
4||| 1.8% | 0.008 | 0.008 | -- | 32.629 | 2 |jacobi_.ACC_COPY@li.340
|==

C O M P U T E | S T O R E | A N A L Y Z E

Step 4: Further optimising data movements

5.May.14 Copyright 2014 Cray Inc.
86

● The code times the calls to jacobi() routine

● Each call contains a data region
● So we are still timing some data movements

● Solution: move up the call tree to parent routine
● Add a second, outer data region

● Spans calls to iteration routines

● Specified arrays then only move on boundaries of outer data region

● moves the data copies outside of the timed region

C O M P U T E | S T O R E | A N A L Y Z E

Adding a data region

5.May.14 Copyright 2014 Cray Inc.
87

● Spans both calls to jacobi
● plus timing calls

● Arrays just copyin now
● and transfers not timed
● wrk2 could be create

● Keep data region in jacobi
● you can nest data regions
● arrays now declared

present on inner region
● could be copy_or_present

● advice: use present
● runtime error if not present
● rather than just wrong result

● Drawback: arrays have to

be in scope for this to work
● may need to unpick clever

use of module data
● or use OpenACC v2.0

unstructured data regions

SUBROUTINE jacobi(nn,gosa)

!$acc data present(p,a,b,c,wrk1,bnd,wrk2)

 iter_lp: DO loop = 1,nn

 <...>

 ENDDO iter_lp

!$acc end data

END SUBROUTINE jacobi

PROGRAM himeno

 CALL initmt

!$acc data copyin(p,a,b,c,bnd,wrk1,wrk2)

 cpu0 = gettime()

 CALL jacobi(3,gosa)

 cpu1 = gettime()

 cpu0 = gettime()

 CALL jacobi(nn,gosa)

 cpu1 = gettime()

!$acc end data

 END PROGRAM himeno

C O M P U T E | S T O R E | A N A L Y Z E

Step 4: Going further

5.May.14 Copyright 2014 Cray Inc.
88

● Best solution is to port entire application to GPU
● data regions span entire use of arrays

● all enclosed loopnests accelerated with OpenACC

● no significant data transfers

● Expand outer data region
● to include call to initialisation routine as well

● arrays can now all be declared as scratch space with create clause

● need to accelerated loopnests in initmt(), declaring arrays present

● N.B. No easy way to ONLY allocate arrays in GPU memory
● CPU version is now dead space, but

● GPU memory is usually the limiting factor, so usually not a problem

● Can use OpenACC API calls to do this, if really want to
● Means more OpenACC-specific code changes

C O M P U T E | S T O R E | A N A L Y Z E

Porting entire application

5.May.14 Copyright 2014 Cray Inc.
89

● No significant data
transfers now
● doesn't improve

measured performance in
this case

SUBROUTINE initmt

!$acc data present(p,a,b,c,wrk1,bnd)

!$acc parallel loop

 <set all elements to zero>

!$acc parallel loop

 <set some elements to be non-zero>

!$acc end data

END SUBROUTINE initmt

PROGRAM himeno

!$acc data create(p,a,b,c,bnd,wrk1,wrk2)

 CALL initmt

 CALL jacobi(3,gosa) ! plus timing calls

 CALL jacobi(nn,gosa) ! plus timing calls

!$acc end data

 END PROGRAM himeno

C O M P U T E | S T O R E | A N A L Y Z E

Add outer data region

5.May.14 Copyright 2014 Cray Inc.
90

● Original performance:
● Measurement: Gosa : 0.137971540815963272E-02
● Measurement: MFLOPS : 2853.7552548501367

● With one OpenACC kernel:
● Measurement: Gosa : 0.137971540815965701E-02
● Measurement: MFLOPS : 1354.6002299205898

● With an inner data region around the iterations:
● Measurement: Gosa : 0.137971540815965701E-02
● Measurement: MFLOPS : 40656.6334569459

● With an outer data region outside the timers
● Measurement: Gosa : 0.137971540815965701E-02
● Measurement: MFLOPS : 56156.609816492906

C O M P U T E | S T O R E | A N A L Y Z E

pat_build -w , with auto_async_none

5.May.14 Copyright 2014 Cray Inc.
91

Table 1: Profile by Function Group and Function

 Time% | Time | Imb. | Imb. | Calls |Group
 | | Time | Time% | | Function

 100.0% | 0.263683 | -- | -- | 1140.0 |Total
|---
| 99.9% | 0.263520 | -- | -- | 739.0 |USER
||--
|| 81.8% | 0.215700 | -- | -- | 103.0 |jacobi_.ACC_SYNC_WAIT@li.320
|| 13.9% | 0.036764 | -- | -- | 103.0 |jacobi_.ACC_COPY@li.293
|| 1.4% | 0.003685 | -- | -- | 103.0 |jacobi_.ACC_COPY@li.320
|===

Table 2: Time and Bytes Transferred for Accelerator Regions (see next slide)

C O M P U T E | S T O R E | A N A L Y Z E

pat_build -w , with auto_async_none (2)

5.May.14 Copyright 2014 Cray Inc.
92

Table 1: Profile by Function Group and Function (see previous slide)

Table 2: Time and Bytes Transferred for Accelerator Regions

 Host | Host | Acc | Acc Copy | Acc Copy | Events |Calltree
 Time% | Time | Time | In | Out | |
 | | | (MBytes) | (MBytes) | |

 100.0% | 0.264 | 0.255 | 0.001 | 0.001 | 738 |Total
|--
| 100.0% | 0.264 | 0.255 | 0.001 | 0.001 | 738 |main_
| | | | | | | main_.ACC_DATA_REGION@li.116
3 98.9% | 0.261 | 0.249 | 0.001 | 0.001 | 727 | jacobi_
4 | | | | | | jacobi_.ACC_DATA_REGION@li.280
5 98.1% | 0.259 | 0.218 | 0.001 | 0.001 | 515 | jacobi_.ACC_REGION@li.293
||||||---
6||||| 81.8% | 0.216 | -- | -- | -- | 103 |jacobi_.ACC_SYNC_WAIT@li.320
6||||| 14.0% | 0.037 | 0.001 | 0.001 | -- | 103 |jacobi_.ACC_COPY@li.293
6||||| 1.4% | 0.004 | 0.002 | -- | 0.001 | 103 |jacobi_.ACC_COPY@li.320
|==

C O M P U T E | S T O R E | A N A L Y Z E

Elimination of data transfers

5.May.14 Copyright 2014 Cray Inc.
93

● The remaining data transfers are small compiler internals
● associated with the reduction variables

● and you have no control over these

● so you shouldn't worry about them
● if these really are the limiting factor in your application, well done!

● To check this
● Use the CCE runtime commentary

● Re-run with CRAY_ACC_DEBUG=2

C O M P U T E | S T O R E | A N A L Y Z E

OpenACC and/or OpenMP (more advanced)

5.May.14 Copyright 2014 Cray Inc.
94

● GPU speed-up:
● 20x compared to a single core of the CPU

● This is an unfair comparison
● full accelerator versus single CPU core

● Run an OpenMP version to fully exercise CPU

● Overall GPU speedup compared to CPU: 3-5x
● This is the sort of figure we expect

● Kepler GPU memory bandwidth around 5x compared to typical CPU

C O M P U T E | S T O R E | A N A L Y Z E

In summary

5.May.14 Copyright 2014 Cray Inc.
95

● We ported the entire Himeno code to the GPU
● chiefly to avoid data transfers

● 4 OpenACC kernels (only 1 significant for compute performance)

● 1 outer data region

● 2 inner data regions (nested within this)

● 7 directive pairs for 200 lines of Fortran/C

● Profiling frequently showed the bottlenecks

● Correctness was also frequently checked

● First step was optimising data transfers

● Next steps
● Checking kernels are scheduling sensibly

● Look at kernel optimisation

C O M P U T E | S T O R E | A N A L Y Z E

In summary... continued

5.May.14 Copyright 2014 Cray Inc.
96

● Further performance tuning
● data region gave a 20-40x speedup; kernel tuning is secondary

● Low-level languages like CUDA
● offer more direct control of the hardware

● but OpenACC is much easier to use
● should get close to CUDA performance

● Remember Amdahl's Law:
● speed up the compute of a parallel application,

● and soon become network bound

● Don't waste time trying to get an extra 10% in the compute

● You are better concentrating your efforts on tuning the comms or I/O

● Bottom line:
● 3-5x speedup from 7 directive pairs in 200 lines of Fortran/C

● performance comparing GPU to the complete CPU

C O M P U T E | S T O R E | A N A L Y Z E

OpenACC 3: Performance Tuning

5.May.14 Copyright 2014 Cray Inc.
97

Alistair Hart

Cray Exascale Research Initiative Europe

C O M P U T E | S T O R E | A N A L Y Z E

Contents

5.May.14 Copyright 2014 Cray Inc.
98

● How kernels execute on a GPU

● Scheduling
● the importance of vectorisation

● the vector_length clause

● tuning the schedule: collapse and worker clauses

● further tuning: cache and tile

C O M P U T E | S T O R E | A N A L Y Z E

The next step

5.May.14 Copyright 2014 Cray Inc.
99

● Once data movements have been optimised
● the next step is to improve the kernel scheduling

● understand how the iterations of the loopnest are divided between threads
● This is called "partitioning" of the loops

● and how the threads are executed on the hardware

● then we can improve this scheduling

● For this, we need to understand how the hardware works
● we'll concentrate on Nvidia GPUs for this

C O M P U T E | S T O R E | A N A L Y Z E

How a kernel is executed on a GPU

5.May.14 Copyright 2014 Cray Inc.

10

0

● A GPU kernel is executed by a large pool of threads
● Whether we use OpenACC or CUDA

● The threads are logically divided into sets called threadblocks

● Each threadblock executes on a different piece of hardware
● Symmetric Multiprocessor (SM)

● (Almost) like a single vector processor

● Within a threadblock
● The threads are logically divided into sets called warps

● threads within a warp (32 threads) are executed concurrently

● (almost) like a set of vector instructions, each of fixed width 32

● so the threadblock executes as a sequence of concurrent warps

● The CUDA programming model
● does not make warps explicit

● but you need to know about them to understand code performance

C O M P U T E | S T O R E | A N A L Y Z E

OpenACC scheduling

5.May.14 Copyright 2014 Cray Inc.

10

1

● OpenACC makes the distinction explicit
● gang is the same as threadblock (just as in CUDA)
● worker refers to an entire warp

● i.e. entire width-32 vector instructions (32 is fixed by the hardware)

● vector refers to threads within a warp
● i.e. 32 threads that do the same thing at the same time

● When a loopnest is partitioned by the compiler
● The loop iterations are divided up into gangs of workers

● each worker executes sets of vector instructions (warps)

● There are many different ways for the compiler to do this
● If you give no further instruction, the compiler will make a decision
● You can see what this was from the compiler feedback
● You can then over-ride this decision (at the next compilation)

● by adding additional OpenACC directives and clauses

● This is one place where OpenACC differs from OpenMP
● OpenMP parallel regions only partition one loop over the CPU threads
● OpenACC parallel/kernels regions partition up to three nested loops

C O M P U T E | S T O R E | A N A L Y Z E

Kernel vectorisation

5.May.14 Copyright 2014 Cray Inc.

10

2

● After minimising data movements, next optimisation:
● make sure all the kernels vectorise

● meaning the compiler is efficiently using vector instructions on GPU

● How can I tell if there is a problem?
● if a kernel is surprisingly slow on accelerator

● in a very-different place in the profile compared to running on CPU

● then examine the compiler commentary
● CCE: compile with flag -hlist=a to generate *.lst loopmark file

● Should see loop iterations divided both:
● over threads within a threadblock (vector) and

● over threadblocks (gang)

C O M P U T E | S T O R E | A N A L Y Z E

Vectorisation and loopmark

5.May.14 Copyright 2014 Cray Inc.

10

3

● With CCE, you should see:
● For a single loop:

● should be divided over both levels of parallelism

● look for this in the loopmark: Gg

● For a loopnest:
● Two (or maybe three) loops should be "partitioned" (divided):

● look for G and 2 (or maybe 3) g-s
● possibly with some numbers in between

171. 1 G-----<> !$acc parallel loop ...

172. 1 g------< DO k = 2,kmax-1

173. 1 g 3----< DO j = 2,jmax-1

174. 1 g 3 g--< DO i = 2,imax-1

175. 1 g 3 g s0 = a(i,j,k,1) * p(i+1,j,k) ...

188. 1 g 3 g--> ENDDO

189. 1 g 3----> ENDDO

190. 1 g------> ENDDO

191. 1 !$acc end parallel loop

A loop starting at line 172 was

partitioned across the thread blocks.

A loop starting at line 174 was

partitioned across the 128

threads within a threadblock.

C O M P U T E | S T O R E | A N A L Y Z E

Kernel optimisation

5.May.14 Copyright 2014 Cray Inc.

10

4

● Making sure all the kernels vectorise
● should have one loop "partitioned across threads within a threadblock"

● Which loop do we want to vectorise?
● generally want to vectorise the innermost loop

● usually labels fastest-moving array index, for coalescing

● If it is not vectorised, can we make it vectorise?
● Can loop iterations be computed in any order?

● No? Then can we rewrite code
● avoid loop-carried dependencies

● e.g. buffer packing: calculate rather than increment

● these rewrites will probably perform better on CPU

● there is a lot of literature on vectorisable algorithms

Replace:

 i = 0
 DO y = 2,N-1
 i = i+1
 buffer(i) = a(2,y)
 ENDDO
 buffsize = i
By:

 DO y = 2,N-1
 buffer(y-1) = a(2,y)
 ENDDO
 buffsize = N-2

C O M P U T E | S T O R E | A N A L Y Z E

Forcing compiler to vectorise

5.May.14 Copyright 2014 Cray Inc.

10

5

● Can loop iterations be computed in any order?
● Yes? Then we should guide the compiler

● Either with a gentle hint:
● put "acc loop independent" directive above this loop

● recompile the routine and check compiler feedback to see if this worked

● Or with a direct order:
● put "acc loop vector" directive above this loop

● check the code is still correct (as well as running faster)
● the compiler might not be vectorising the loop for a good reason

● Advice:
● Remember to repeat any reduction clauses on new loop directives

C O M P U T E | S T O R E | A N A L Y Z E

Changing the vectorisation with seq

5.May.14 Copyright 2014 Cray Inc.

10

6

● If the inner loop is vectorising but performance is still bad
● Is the inner loop really the one to vectorise in this case?

● in this example, we should vectorise the i-loop
● because we happen to know mmax is small here

● or because CrayPAT loop-level profiling told us this

● Put "acc loop seq" directive above m-loop
● then executed "redundantly" by every thread

● also t is now an i-loop private scalar
● rather than a reduction variable

● this should also help performance

● The compiler should now vectorise a different loop
● usually the next one up in the loopnest

● in this case there is no choice but the i-loop

● if it is not the next one up in the loopnest
● you will need to put an "acc loop vector" directive in the right place

!$acc parallel loop
DO i = 1,N
 t = 0
!$acc loop seq
 DO m = 1,mmax
 t = t + c(m,i)
 ENDDO
 a(i) = t
ENDDO
!$acc end parallel loop

C O M P U T E | S T O R E | A N A L Y Z E

An aside on this example

5.May.14 Copyright 2014 Cray Inc.

10

7

● We forced vectorisation of the i-loop
● because mmax was too small

● small loops will not give the GPU enough work

● Performance is still likely to be bad
● a warp is 32 threads, executing as a vector

● each thread has a different i-value

● data for the warp is done in vector loads
● but c(m,1:32) is not a contiguous chunk of memory

● so we will need multiple vector loads for each warp

● loads/stores from global memory are slow, so performance will suffer
● this is a hardware feature, not a limitation of OpenACC

!$acc parallel loop
DO i = 1,N
 t = 0
!$acc loop seq
 DO m = 1,mmax
 t = t + c(m,i)
 ENDDO
 a(i) = t
ENDDO
!$acc end parallel loop

C O M P U T E | S T O R E | A N A L Y Z E

More aside on this example

5.May.14 Copyright 2014 Cray Inc.

10

8

● So what can we do?
● Re-arrange the affected data arrays to allow coalescing

● so warps get their data in the minimum number of vector loads/stores

● We want the vector index to be fastest-moving array index
● switched array ct(i,m) now gives coalesced memory accesses

● because ct(1:32,m) is a contiguous chunk of memory

● But this does mean refactoring your code
● which may (or may not) be much work

● Note: you may also get better CPU performance (e.g. with AVX instructions)

!$acc parallel loop
DO i = 1,N
 t = 0
!$acc loop seq
 DO m = 1,mmax
 t = t + ct(i,m)
 ENDDO
 a(i) = t
ENDDO
!$acc end parallel loop

C O M P U T E | S T O R E | A N A L Y Z E

It's all vectorising, but still performing badly

5.May.14 Copyright 2014 Cray Inc.

10

9

● Profile the code and start where it takes most time
● check the slowest thing really is compute kernels

● if it really is a GPU compute kernels...

● GPUs need lots of parallel tasks to work well
● check that there really are enough loop iterations

● Then look at loop scheduling using OpenACC clauses

● Then might need to consider more extreme measures
● source code changes

● handcoding CUDA kernels

C O M P U T E | S T O R E | A N A L Y Z E

Tuning the partitioning

5.May.14 Copyright 2014 Cray Inc.

11

0

● Before we alter the schedule, two easy tuning choices
● number of threads per threadblock; total number of threadblocks

● Do this with clauses on the parallel/kernels directives

● vector_length(<value>)
● changes the number of threads per threadblock

● CCE-specific details:
● value needs to be fixed at compile time

● allowed values are: 1, 32, 64, 128, 256, 512, 1024

● default value is 128

● num_gangs(<value>)
● changes the number of threadblocks

● you do not have to specify this (unlike with CUDA)

● the compiler will make a default choice of sufficient blocks

C O M P U T E | S T O R E | A N A L Y Z E

Over-riding the default scheduling

5.May.14 Copyright 2014 Cray Inc.

11

1

● You can change how loops are scheduled
● by adding additional loop directives above the relevant loops

● with clauses to tell the compiler how to schedule that loop

● use clauses: gang, worker, vector
● we've already seen vector in use in the previous example

● you can also use the seq clause
● tells compiler what not to do, allowing it freedom in scheduling remaining loops

● Can partition a loop over multiple levels of parallelism
● Put more than one of gang, worker, vector clauses on loop directive

● To schedule one loop over whole device:
● acc loop gang worker vector

C O M P U T E | S T O R E | A N A L Y Z E

Over-riding the default scheduling

5.May.14 Copyright 2014 Cray Inc.

11

2

● You can only mention gang, worker, vector (at most) once
each per kernel
● any not mentioned will be handled automatically by the compiler

● it will choose where best to apply them

● once all levels of parallelism are used up
● additional loops will execute sequentially (redundantly)

● Handy tip:
● To debug a kernel by running on a single GPU thread, use:

● !$acc parallel loop gang worker vector num_gangs(1) vector_length(1)

● Useful for checking race conditions in parallelised loopnests
● but execution will be very slow, so maybe find a cut-down testcase first

C O M P U T E | S T O R E | A N A L Y Z E

Aside: vector_length bigger than 32?

5.May.14 Copyright 2014 Cray Inc.

11

3

● What happens if vector_length is larger than 32?

● Warps execute vector instructions of width 32
● this is fixed by the hardware)

● If vector_length is more than 32
● multiple vector instructions are used to implement the operations

● i.e. each vector is decomposed into multiple warps
● or multiple workers, in the language of OpenACC

● This is exactly what happens under-the-hood in CUDA

C O M P U T E | S T O R E | A N A L Y Z E

Advanced loop scheduling

5.May.14 Copyright 2014 Cray Inc.

11

4

● OpenACC loop schedules are limited by the loop bounds
● one loop's iterations are divided over threadblocks
● another loop's iterations are divided over threads in threadblock

● This has limitations, for instance

● "tall, skinny" loopnests (j=1:big; i=1:small) won't schedule well
● inner loop is too small

● if less than 32 iterations won't even fill a warp, so wasted SIMT

● "short, fat" loopnests (j=1:small; i=1:big) also not good
● outer loop is too small

● want lots of threadblocks to swap amongst SMs

● In both cases there are enough total iterations to keep the GPU busy
● but division of iterations between the two loops is non-optimal for the GPU

● How do we better spread the loop iterations over the GPU?
● collapse clause
● worker clause

C O M P U T E | S T O R E | A N A L Y Z E

collapse clause

5.May.14 Copyright 2014 Cray Inc.

11

5

● A way of increasing OpenACC scheduling flexibility

● Merges iterations of two or more loops together
● We then apply OpenACC scheduling clauses to the composite loop
● Both "tall, skinny" and "short, fat" examples will benefit from

● acc loop collapse(2) gang worker vector
● collapse the j and i loops into a single iteration space

● effectively the same as DO ij=1,small*big
● then divide the total iterations over all levels of parallelism on the GPU

● Things to look for
● the compiler may use this automatically (look for C in loopmark feedback)
● no guarantee that it is faster

● index rediscovery (if needed) uses expensive integer divisions
● e.g. j = INT(ij/big); i = ij - j*big

● you can only collapse perfectly nested loops

● The next slides give some examples of using the clause

C O M P U T E | S T O R E | A N A L Y Z E

Examples of using the collapse clause

5.May.14 Copyright 2014 Cray Inc.

11

6

● Consider a three-level loopnest
● must be perfectly nested for collapse clause

● Here are a few examples of what you might do:

● Collapse all loops and schedule across GPU
● "gang worker vector" optional here

● there's only one composite loop left to partition

● Small tripcount loops benefit from this
● better division of iterations

● Schedule inner two loops over threadblock
● "gang" optional here

● Good if k-loop is quite large, but i-loop small
● but you often see that collapse(3) is better

DO k = 1,Nk
 DO j = 1,Nj
 DO i = 1,Ni

!$acc parallel loop &
!$acc collapse(3) &
!$acc gang worker vector
DO k = 1,Nk
 DO j = 1,Nj
 DO i = 1,Ni

!$acc parallel loop &
!$acc gang
DO k = 1,Nk
!$acc loop collapse(2) &
!$acc vector
 DO j = 1,Nj
 DO i = 1,Ni

C O M P U T E | S T O R E | A N A L Y Z E

More examples using the collapse clause

5.May.14 Copyright 2014 Cray Inc.

11

7

● Here are a few more examples of what you might do:
● Usually these don't give the best performance

● Schedule outer two loops over threadblocks
● "acc loop vector" optional here

● Schedule outer two loops over entire GPU
● "acc loop seq" optional here

● Schedule k,i-loops together over entire GPU
● i.e. you want to collapse just the i- and k-loops

● you can't:
● collapsed loops must be perfectly nested (i.e. consecutive statements in the code)

● so you'll need to reorder the loops in the code first

!$acc parallel loop &
!$acc collapse(2) gang
DO k = 1,Nk
 DO j = 1,Nj
!$acc loop vector
 DO i = 1,Ni

!$acc parallel loop &
!$acc collapse(2) &
!$acc gang worker vector
DO k = 1,Nk
 DO j = 1,Nj
!$acc loop seq
 DO i = 1,Ni

C O M P U T E | S T O R E | A N A L Y Z E

Explicit worker clauses

5.May.14 Copyright 2014 Cray Inc.

11

8

● We've already seen the worker clause
● as part of "gang worker vector", meaning "everything"

● Often, the compiler partitions two loops
● the outermost loop over gangs

● the innermost loop over vector

● remaining loops are executed redundantly (sequentially) by all threads

● if the innermost loop has more than 32 iterations
● it is automatically split into multiple workers

● We can use the worker clause to partition a third loop
● Doesn't change the total work (number of loopnest iterations)

● But does change how work distributed between threads

C O M P U T E | S T O R E | A N A L Y Z E

collapse or worker?

5.May.14 Copyright 2014 Cray Inc.

12

1

● Both try to increase the scheduling flexibility

● Perfectly nested loops with one or more low tripcounts
● probably better to use the collapse clause

● Imperfectly nested loops with one or more low tripcounts
● may benefit to put "!$acc loop worker" on the middle loop

● collapse won't work here

● But it is difficult to predict which will be best
● You may need to try both

C O M P U T E | S T O R E | A N A L Y Z E

The cache directive

5.May.14 Copyright 2014 Cray Inc.

12

2

● Main accelerator memory is relatively slow
● If a data element is accessed multiple times

● It may make sense to temporarily store it in a faster cache

● typical use case is a finite difference stencil, e.g.
● for all i, calculate: a[i]=b[i+1]-2*b[i]+b[i-1]

● b[3] is used three times, to calculate all of: a[2], a[3], a[4].

● so we would like to cache values of b for reuse by other loop iterations

● The cache directive suggests this to the compiler
● suggests, but does not compel: compiler can ignore suggestion

● e.g. if you try to store more data than the cache can hold

● check compiler feedback to see what it did

● No guarantee that this improves performance
● you may be polluting some automatic caching (hardware or software)

● Nvidia GPUs
● threads within a threadblock execute on single SM piece of hardware

● have joint access to a common, fast, but small, "shared memory"

C O M P U T E | S T O R E | A N A L Y Z E

cache clause example

5.May.14 Copyright 2014 Cray Inc.

12

3

● A first example:
● loop-based stencil

● bigger than before

● size: 2*RADIUS+1

● inner loop must be sequential

● RADIUS should be known at
compile time (parameter or cpp)

!$acc parallel loop copyin(c)
 DO i = 1,N
 result = 0
!$acc cache(in(i-RADIUS:i+RADIUS),c)
!$acc loop seq
 DO j = -RADIUS,RADIUS
 result = result + c(j)*in(i+j)
 ENDDO
 out(i) = result
 ENDDO

C O M P U T E | S T O R E | A N A L Y Z E

Multi-dimensional loopnests

5.May.14 Copyright 2014 Cray Inc.

12

4

● How much data should be cached here?
● B(NI-1:NI+1,j,k) would probably fill the cache for one j,k value

● And we wouldn't get any re-use for j±1

● To use the cache clause here
● Need to tile the loopnest

● The compiler may do this

● Or we may want more explicit

 control

!$acc parallel loop
DO k = 1,Nk

 DO j = 1,Nj
 DO i = 1,Ni
!$acc cache(B(i-1:i+1,j-1:j+1,k))

 A(i,j,k) = B(i, j, k) - &
 (B(i-1,j-1,k) &
 + B(i-1,j+1,k) &
 + B(i+1,j-1,k) &
 + B(i+1,j+1,k)) / 5
 ENDDO
 ENDDO
ENDDO
!$acc end parallel

C O M P U T E | S T O R E | A N A L Y Z E

The tile clause

5.May.14 Copyright 2014 Cray Inc.

12

5

● Added to loop directive (new for OpenACC 2.0)

● Used to block loops in a loopnest

● Two main use cases:

● To help the compiler implement the cache directive
● Inner "element" loops have a fixed tripcount

● So compiler knows how much shared memory is needed for cache

● To allow compiler to use multidimensional threadblocks

C O M P U T E | S T O R E | A N A L Y Z E

The tile clause in more detail

5.May.14 Copyright 2014 Cray Inc.

12

6

● Blocks loops in a loopnest
● Using specified blocking factors

● fixed at compile-time

● Or * to use compiler default

● one argument per loop

● Outer tile loops
● migrated to outside of nest

● Inner element loops
● have known size

● Scheduling clauses on loop directive still apply, if used
● gang applies to outer, tile loops

● vector applies to inner, element loops
● probably want composite tilesize to be multiple of 32

● worker might apply to either, depending on how used (see Standard)

!$acc loop tile(8,16) ! next 2 loops
DO j = 1,Nj
 DO i = 1,Ni

! equivalent explicit code
!$acc loop
DO jtile = 1,Nj,16
 DO itile = 1,Ni,8

 DO j = jtile,jtile+16-1
 DO i = itile,itile+8-1

C O M P U T E | S T O R E | A N A L Y Z E

Multi-dimensional caching

5.May.14 Copyright 2014 Cray Inc.

12

7

● The explicit version:
● j-loop: tilesize=16

● i-loop tilesize=64

● automatic scheduling:
● outer tile loops: worker

● inner element loops: vector

● cached data:
● (64+2)*(16+2)=1188 elements

● 4kB of floats or integers

● 8kB of doubles

!$acc parallel loop gang
DO k = 1,Nk
!$acc loop tile(64,16) worker vector
 DO j = 1,Nj
 DO i = 1,Ni
!$acc cache(B(i-1:i+1,j-1:j+1,k))

 A(i,j,k) = B(i, j, k) - &
 (B(i-1,j-1,k) &
 + B(i-1,j+1,k) &
 + B(i+1,j-1,k) &
 + B(i+1,j+1,k)) / 5
 ENDDO
 ENDDO
ENDDO
!$acc end parallel

C O M P U T E | S T O R E | A N A L Y Z E

Conclusions

5.May.14 Copyright 2014 Cray Inc.

12

8

● Scheduling is the biggest optimisation
● after data movements

● Does the code vectorise?
● Does it vectorise the right loop

● Can collapsing loops help?

● Can workers help?

● Caching and tiling might be useful at the end

C O M P U T E | S T O R E | A N A L Y Z E

Porting a larger code

5.May.14 Copyright 2014 Cray Inc.

12

9

Alistair Hart

Cray Exascale Research Initiative Europe

C O M P U T E | S T O R E | A N A L Y Z E

Adding OpenACC to a Larger Code

5.May.14 Copyright 2014 Cray Inc.

● Adding OpenACC to a real code is not trivial work…
● Are parts of the program suitable for an accelerator?

● Where do we start?

● What do we do next?

● We’ll go through the exercise for an example code
● Running on a Cray XC30

● Using Cray compiler and Cray performance analysis tools

13

0

C O M P U T E | S T O R E | A N A L Y Z E

The Code

5.May.14 Copyright 2014 Cray Inc.

● NAS Parallel Benchmarks MG (MultiGrid) code

● Shorter than typical application

● but structure of code is very similar

● This example concentrates on the serial version
● We also have parallel versions ported to OpenACC

● The serial versions have OpenMP directives, but we do not use them during
this exercise

● Downloading it:
● Fortran version: http://www.nas.nasa.gov/publications/npb.html.

● 1445 lines, of which 267 blank

● C version: http://www.hpcs.cs.tsukuba.ac.jp/omni-openmp/download/download-benchmarks.html.

● 1292 lines, of which 206 blank

13

1

http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
http://www.hpcs.cs.tsukuba.ac.jp/omni-openmp/download/download-benchmarks.html
http://www.hpcs.cs.tsukuba.ac.jp/omni-openmp/download/download-benchmarks.html
http://www.hpcs.cs.tsukuba.ac.jp/omni-openmp/download/download-benchmarks.html
http://www.hpcs.cs.tsukuba.ac.jp/omni-openmp/download/download-benchmarks.html
http://www.hpcs.cs.tsukuba.ac.jp/omni-openmp/download/download-benchmarks.html

C O M P U T E | S T O R E | A N A L Y Z E

Building and Running MG

5.May.14 Copyright 2014 Cray Inc.

● Run the code on the CPU:
● Three important lines of output

● Fortran
● L2 Norm is 0.1800564401355E-05
● Mop/s total = 4787.41 ! Fortran
● Verification = SUCCESSFUL

● C output same, but baseline performance differs
● Mop/s total = 4848.87 // C

13

2

C O M P U T E | S T O R E | A N A L Y Z E

Table 1: Profile by Function Group and Function

 Time% | Time | Imb. | Imb. | Calls |Group
 | | Time | Time% | | Function

 100.0% | 4.213820 | -- | -- | 1630.0 |Total
|---
| 100.0% | 4.213768 | -- | -- | 1230.0 |USER
||--
|| 47.8% | 2.013292 | -- | -- | 161.0 |resid_
|| 23.9% | 1.008719 | -- | -- | 160.0 |psinv_
|| 14.2% | 0.599713 | -- | -- | 140.0 |rprj3_
|| 10.7% | 0.450218 | -- | -- | 140.0 |interp_
|| 2.1% | 0.089875 | -- | -- | 461.0 |comm3_
|===

Where Do We Start?

5.May.14 Copyright 2014 Cray Inc.

● Four routines dominate the runtime

● More than half the time is spent in resid
● There are other routines executing for less than 1% of the total time

● These might be important for the OpenACC port

13

3

● Profile MG on the CPU (standard CrayPAT report)

C O M P U T E | S T O R E | A N A L Y Z E

Table 1: Function Calltree View

 Time% | Time | Calls |Calltree

 100.0% | 4.213820 | 1630.0 |Total
|-------------------------------------
| 100.0% | 4.213768 | 1230.0 |mg_
||------------------------------------
|| 76.0% | 3.202582 | 1180.0 |mg3p_
|||-----------------------------------
3|| 25.5% | 1.074038 | 280.0 |resid_
3|| 24.6% | 1.038074 | 320.0 |psinv_
3|| 14.4% | 0.605792 | 280.0 |rprj3_
3|| 10.7% | 0.450218 | 140.0 |interp_
|||===================================
|| 23.6% | 0.993695 | 42.0 |resid_
|=====================================

Understand Flow of the Application

5.May.14 Copyright 2014 Cray Inc.

● CrayPAT report with calltree

● mg calls:
● mg3p (which then calls resid, psinv, rprj3, interp)

● resid also called directly from mg
13

4

C O M P U T E | S T O R E | A N A L Y Z E

Table 2: Loop Stats by Function (from -hprofile_generate)

 Loop | Loop | Loop | Loop | Loop |Function=/.LOOP[.]
 Incl | Hit | Trips | Trips | Trips |
 Time | | Avg | Min | Max |
 Total | | | | |
|--
| 2.073902 | 161 | 96.497 | 4 | 256 |resid_.LOOP.1.li.634
| 2.073579 | 15536 | 201.067 | 4 | 256 |resid_.LOOP.2.li.635
| 1.013344 | 3123776 | 235.548 | 4 | 256 |resid_.LOOP.4.li.642
| 0.972528 | 3123776 | 237.548 | 6 | 258 |resid_.LOOP.3.li.636

Get Work Estimates for Loops

5.May.14 Copyright 2014 Cray Inc.

● Loop-level profiling is more useful now
● Which loopnests (rather than just routines) took most time?
● How may iterations did this loopnest have?

● Here are the lines relating to resid

● Loops starting at 636 and 642 are nested inside loops at line 634, 635
● See how the Loop Hit numbers multiply up
● See how inclusive times for 636 and 642 add to give that for 635
● Inclusive times for 634, 635 same: perfectly nested loops

13

5

C O M P U T E | S T O R E | A N A L Y Z E

Add First OpenACC Kernel

5.May.14 Copyright 2014 Cray Inc.

● Clearly we should start with resid

● Fortran:

● C:
● Data movement sizes explicit

● to avoid "unshaped pointer" errors

● Because dynamically allocating memory

13

6

!$acc parallel loop &
!$acc private(u1,u2) &
!$acc copyin(u,v,a) &
!$acc copyout(r)
DO i3=2,n3-1
 DO i2=2,n2-1
 DO i1=1,n1
 u1(i1) = ...
 u2(i1) = ...
 ENDDO
 DO i1=2,n1-1
 r(i1,i2,i3) = v(i1,i2,i3)
 - a(0) * u(i1,i2,i3)
 - a(2) * (u2(i1) +
 u1(i1-1) + u1(i1+1))
 <...>
 ENDDO
 ENDDO
ENDDO

#pragma acc parallel loop \
 private(u1,u2) \
 copyin(u[0:n1*n2*n3]) \
 copyin(v[0:n1*n2*n3]) \
 copyin(a[0:4]) \
 copyout(r[0:n1*n2*n3])
for (i3 = 1; i3 < n3-1; i3++) {
 for (i2 = 1; i2 < n2-1; i2++) {
 for (i1 = 0; i1 < n1; i1++) {
 <...>

C O M P U T E | S T O R E | A N A L Y Z E

Resulting MG Performance?

5.May.14 Copyright 2014 Cray Inc.

● Running with and without OpenACC kernel:

● So the code is actually slower... Why?

13

7

Original
(Mop/s)

1 kernel
(Mop/s)

Fortran 4787 3509

C 4849 3597

C O M P U T E | S T O R E | A N A L Y Z E

Enable Cray Runtime Commentary

5.May.14 Copyright 2014 Cray Inc.

● export CRAY_ACC_DEBUG=2

● for every call to resid:

● Certainly a lot of data was moved
● Commentary tells us which arrays, at which line and how much data

13

8

ACC: Start transfer 6 items from mg_v02.f:615
ACC: allocate, copy to acc 'a' (32 bytes)
ACC: allocate 'r' (137388096 bytes)
ACC: allocate, copy to acc 'u' (137388096 bytes)
ACC: allocate, copy to acc 'v' (137388096 bytes)
ACC: allocate <internal> (530432 bytes)
ACC: allocate <internal> (530432 bytes)
ACC: End transfer (to acc 274776224 bytes, to host 0 bytes)
ACC: Execute kernel resid_$ck_L615_1 blocks:256 threads:128 async(auto) from mg_v03.f:615
ACC: Wait async(auto) from mg_v02.f:639
ACC: Start transfer 6 items from mg_v02.f:639
ACC: free 'a' (32 bytes)
ACC: copy to host, free 'r' (137388096 bytes)
ACC: free 'u' (137388096 bytes)
ACC: free 'v' (137388096 bytes)
ACC: free <internal> (0 bytes)
ACC: free <internal> (0 bytes)
ACC: End transfer (to acc 0 bytes, to host 137388096 bytes)

C O M P U T E | S T O R E | A N A L Y Z E

Or Use Nvidia Compute Profiler

5.May.14 Copyright 2014 Cray Inc.

● export COMPUTE_PROFILE=1
● Analyses PTX (from OpenACC or from CUDA)

● Very useful if mixing OpenACC with CUDA code

● Data transfers obvious, taking most time

13

9

method=[memcpyHtoD] gputime=[1.248] cputime=[6.727]
method=[memcpyHtoD] gputime=[23297.504] cputime=[23345.885]
method=[memcpyHtoD] gputime=[23329.568] cputime=[23329.770]
method=[resid_$ck_L615_1] gputime=[7611.488] cputime=[16.093] occupancy=[0.312]
method=[memcpyDtoH] gputime=[63877.535] cputime=[64378.523]

C O M P U T E | S T O R E | A N A L Y Z E

Or Use CrayPAT for a Profile by Function

5.May.14 Copyright 2014 Cray Inc.

● Provides aggregated report of data movements
● names, sizes and frequencies of original arrays lost

● Shows asynchronous kernel launches
● Notice ACC_KERNEL almost zero
● SYNC_WAIT shows the compute time
● could recompile with -hacc_model=auto_async_none

14

0

Table 1: Profile by Function Group and Function

 Time% | Time | Imb. | Imb. | Calls |Group
 | | Time | Time% | | Function

 100.0% | 6.981196 | -- | -- | 1252.0 |Total
|---
| 100.0% | 6.981093 | -- | -- | 851.0 |USER
||--
|| 48.2% | 3.364813 | -- | -- | 1.0 |mg_
|| 31.2% | 2.175330 | -- | -- | 170.0 |resid_.ACC_COPY@li.615
|| 15.3% | 1.068125 | -- | -- | 170.0 |resid_.ACC_COPY@li.639
|| 5.3% | 0.368549 | -- | -- | 170.0 |resid_.ACC_SYNC_WAIT@li.639
|| 0.1% | 0.003585 | -- | -- | 170.0 |resid_.ACC_ASYNC_KERNEL@li.615
|| 0.0% | 0.000691 | -- | -- | 170.0 |resid_.ACC_REGION@li.615
||==
| 0.0% | 0.000103 | -- | -- | 401.0 |ETC
||--

C O M P U T E | S T O R E | A N A L Y Z E

…And CrayPAT Accelerator Statistics

5.May.14 Copyright 2014 Cray Inc.

● Host and accelerator times given separately
● ACC_KERNEL

● Acc Time is the compute time
● Host Time is the time for the asynchronous launch

● The Host "catches up" at the SYNC_WAIT

14

1

Table 2: Time and Bytes Transferred for Accelerator Regions

 Host | Host | Acc | Acc Copy | Acc Copy | Events |Calltree
 Time% | Time | Time | In | Out | |
 | | | (MBytes) | (MBytes) | |

 100.0% | 8.007 | 7.962 | 12341 | 6171 | 850 |Total
|---
| 100.0% | 8.007 | 7.962 | 12341 | 6171 | 850 |mg_
||--
|| 50.0% | 4.005 | 3.969 | 6314 | 3157 | 735 |mg3p_
3| | | | | | | resid_
4| | | | | | | resid_.ACC_REGION@li.615
|||||---
5|||| 36.2% | 2.898 | 2.877 | 6314 | -- | 147 |resid_.ACC_COPY@li.615
5|||| 10.8% | 0.867 | 0.860 | -- | 3157 | 147 |resid_.ACC_COPY@li.639
5|||| 2.9% | 0.235 | -- | -- | -- | 147 |resid_.ACC_SYNC_WAIT@li.639
5|||| 0.1% | 0.004 | 0.232 | -- | -- | 147 |resid_.ACC_KERNEL@li.615
5|||| 0.0% | 0.001 | -- | -- | -- | 147 |resid_.ACC_REGION@li.615(exclusive)

C O M P U T E | S T O R E | A N A L Y Z E

… And CrayPAT Summarized Trace

5.May.14 Copyright 2014 Cray Inc.

● pat_build -u mg.B.x

● resid kernel no longer dominates the profile
● actual compute time is shown in SYNC_WAIT (Host) Time

● Its data copies are significant, however

14

2

Table 1: Profile by Function Group and Function

 Time% | Time | Imb. | Imb. | Calls |Group
 | | Time | Time% | | Function

 100.0% | 7.005544 | -- | -- | 265301.0 |Total
|--
| 100.0% | 7.005442 | -- | -- | 264900.0 |USER
||---
|| 31.1% | 2.176236 | -- | -- | 170.0 |resid_.ACC_COPY@li.615
|| 15.2% | 1.067545 | -- | -- | 170.0 |resid_.ACC_COPY@li.639
|| 15.2% | 1.066457 | -- | -- | 168.0 |psinv_
|| 11.6% | 0.811638 | -- | -- | 131072.0 |vranlc_
|| 9.1% | 0.637047 | -- | -- | 147.0 |rprj3_
|| 6.7% | 0.469986 | -- | -- | 147.0 |interp_
|| 5.3% | 0.368538 | -- | -- | 170.0 |resid_.ACC_SYNC_WAIT@li.639
|| 1.5% | 0.103028 | -- | -- | 149.0 |zero3_
|| 1.5% | 0.102412 | -- | -- | 2.0 |zran3_
|| 1.4% | 0.098443 | -- | -- | 487.0 |comm3_
|==

C O M P U T E | S T O R E | A N A L Y Z E

More OpenACC Kernels

5.May.14 Copyright 2014 Cray Inc.

● Running with 4 accelerated kernels:

● Even slower, and C particularly bad. Why?

14

3

Original
(Mop/s)

1 kernel
(Mop/s)

4 kernels
(Mop/s)

Fortran 4787 3509 2727

C 4849 3597 1727

C O M P U T E | S T O R E | A N A L Y Z E

Profile the Code Again

5.May.14 Copyright 2014 Cray Inc.

● Notice that spending most time in interp()

● Next look at compiler listing:

● Loop at line 715 not partitioned
● Executed redundantly: every thread does every loop iteration

14

4

 704. #pragma acc parallel loop private(z1,z2,z3) \
 705. copy(u[0:n1*n2*n3]) \
 706. copyin(z[0:mm1*mm2*mm3])
 707. + gG--------< for (i3 = 0; i3 < mm3-1; i3++) {
 708. + gG 2------< for (i2 = 0; i2 < mm2-1; i2++) {
 709. gG 2 g----< for (i1 = 0; i1 < mm1; i1++) {
 710. gG 2 g i123 = i1 + mm1*i2 + mm12*i3;
 711. gG 2 g z1[i1] = z[i123+mm1] + z[i123];
 712. gG 2 g z2[i1] = z[i123+mm12] + z[i123];
 713. gG 2 g z3[i1] = z[i123+mm1+mm12] + z[i123+mm12] + z1[i1];
 714. gG 2 g----> }
 715. + gG 2 r4---< for (i1 = 0; i1 < mm1-1; i1++) {
 716. gG 2 r4 i123 = i1 + mm1*i2 + mm12*i3;
 717. gG 2 r4 j123 = 2*i1 + n1*(2*i2 + n2 * 2*i3);
 718. gG 2 r4 u[j123] += z[i123];
 719. gG 2 r4 u[j123+1] += 0.5*(z[i123+1]+z[i123]);
 720. gG 2 r4---> }

Loop

Accelerated

Loop

Partitioned

Loop Not

Partitioned

C O M P U T E | S T O R E | A N A L Y Z E

More OpenACC Kernels

5.May.14 Copyright 2014 Cray Inc.

● Insert directive above unpartitioned loop to help compiler:
● #pragma acc loop independent

● (if this didn't work, would use "#pragma acc loop vector" instead)

● Fortran and C performance now identical

14

5

Original
(Mop/s)

1 kernel
(Mop/s)

4 kernels
(Mop/s)

Fortran 4787 3509 2727

C 4849 3597 2715 1727

C O M P U T E | S T O R E | A N A L Y Z E

Next Steps – Reduce Data Movement

5.May.14 Copyright 2014 Cray Inc.

● Need to introduce data regions higher up calltree

● For this, need all callee routines to be accelerated with
OpenACC directives

● Use a profiler to map out the calltree to get list of routines

● First need to port some insignificant routines
● norm2u3, zero3, comm3

14

6

C O M P U T E | S T O R E | A N A L Y Z E

Results for Accelerating up the Calltree

5.May.14 Copyright 2014 Cray Inc.

● Accelerated loops in norm2u3, zero3, comm3

● Slower because even more data movement
● C still slightly down; poor scheduling, needs acc loop independent

14

7

Original
(Mop/s)

1 kernel
(Mop/s)

4 kernels
(Mop/s)

Calltree
Routines
(Mop/s)

Fortran 4787 3509 2727 1884

C 4849 3597 2715 1821

Original
(Mop/s)

1 kernel
(Mop/s)

4 kernels
(Mop/s)

Calltree
Routines
(Mop/s)

Fortran 4787 3509 2727 1884

C 4849 3597 2715 1878

C O M P U T E | S T O R E | A N A L Y Z E

Add Data Region

5.May.14 Copyright 2014 Cray Inc.

● Now we put a data region in the main program
● Arrays u,v,r are declared create

● We'll never use the host version of these

● Arrays a,c are declared copyin
● They're initialized on the host

● Then in all the subprograms, we change clauses
● Replace copy* and create by present

● Could replace by present_or_*
● If we know they should always be present, better to state this

● Then mistakes become runtime errors rather than just wrong answers

● We'd have to diagnose these by trawling the runtime commentary

14

8

C O M P U T E | S T O R E | A N A L Y Z E

Results with Data Region in Main

5.May.14 Copyright 2014 Cray Inc.

● At last, we are running faster (and correctly)!

14

9

Original
(Mop/s)

1 kernel
(Mop/s)

4 kernels
(Mop/s)

Calltree
Routines
(Mop/s)

Data
Region
(Mop/s)

Fortran 4787 3509 2727 1884 27583

C 4849 3597 2715 1878 26476

C O M P U T E | S T O R E | A N A L Y Z E

View Compiler Commentary Again

5.May.14 Copyright 2014 Cray Inc.

● All array data transfers eliminated
● Run with CRAY_ACC_DEBUG=2 and catch STDERR in a file

● grep "copy" <file> | sort | uniq

● Arrays a, c, jg copied only at initialization

● Some internal transfers unavoidable

15

0

ACC: allocate, copy to acc 'a' (32 bytes)
ACC: allocate, copy to acc 'c' (32 bytes)
ACC: allocate, copy to acc 'jg' (320 bytes)
ACC: allocate reusable, copy to acc <internal> (16 bytes)
ACC: allocate reusable, copy to acc <internal> (4 bytes)
ACC: copy to host, done reusable <internal> (16 bytes)
ACC: reusable acquired, copy to acc <internal> (16 bytes)

C O M P U T E | S T O R E | A N A L Y Z E

Performance Tuning Tips

5.May.14 Copyright 2014 Cray Inc.

● Check the .lst loopmark file
● Are any kernels obviously badly scheduled?

● No, we already checked that

● Try varying vector_length from the default of 128
● Different values may suit different kernels

● No effect here: 128 is the best choice

● Multigrid complicates things;
● routines called with wide variety of problem sizes

15

1

C O M P U T E | S T O R E | A N A L Y Z E

Performance Tuning for resid()

5.May.14 Copyright 2014 Cray Inc.

● Five main tuning options
● Loop restructuring

● Single, perfectly-nested loopnest
● removing u1 array by manually inlining

● temporary arrays could be in global memory

● Two full loopnests
● explicitly privatised temporaries: u1(i,j,k)

● perfectly-nested loopnests tend to schedule better

● Loop scheduling
● collapse perfectly-nested loops

● increases flexibility in scheduling loop iterations

● worker clause on j-loop
● also increases the amount of parallelism mapped to the accelerator threads

● Caching re-used data
● How much: u(i-1:i+1,j,k) or u(i-1:i+1,j-1:j+1,k) or u(i-1:i+1,j-1:j+1,k-1:k+1)

● Tiling the loopnest
● especially if we are using the cache clause

● Varying vector_length (number of threads per block)

15

2

DO k = 2,n3-1
 DO j = 2,n2-1
 DO i = 1,n1
 u1(i) = <j,k-stencil on u>
 ENDDO
 DO i = 2,n1-1
 r(i,j,k) = <i-stencil on u1>
 ENDDO
 ENDDO
ENDDO

C O M P U T E | S T O R E | A N A L Y Z E

So which is best?

5.May.14 Copyright 2014 Cray Inc.

● Lots of options to explore
● best option likely to depend on problem size

● which varies in a single MG run as we cycle through the blockings

● may need different algorithm versions for different problem sizes

● Fortunately, in this case:
● best algorithm choice was:

● single loopnest, worker clause, 1d cache

● vector_length either 256 or 512 (similar)

● did not investigate tiling

● This was best for all problem sizes
● so we can use same algorithm

15

3

!$acc parallel loop
DO k = 2,n3-1
!$acc loop worker
 DO j = 2,n2-1
 DO i = 2,n1-1
!$acc cache(u(i-1:i+1,j,k))
 r(i,j,k) = <full stencil on u>
 ENDDO
 ENDDO
ENDDO

C O M P U T E | S T O R E | A N A L Y Z E

Comparing performance

5.May.14 Copyright 2014 Cray Inc.

● Tuning can work well:
● 1.6x to 2.0x gained here

● depending on problem size

15

4

● OpenACC vs. CPU core:
● GPU wins for larger problems

● default: for 34 and larger

● tuned: for 18 and larger

● OpenACC vs. CUDA
● even default generally better

● CUDA here relatively untuned:
● fused, collapsed, no __shared__

● but it's much easier to tune OpenACC

C O M P U T E | S T O R E | A N A L Y Z E

Other Performance Tuning Improvements

5.May.14 Copyright 2014 Cray Inc.

● Avoiding temporary arrays in resid:
● benefit v. small

● was it really worth hacking the source?

● Call an external CUDA version of resid
● First attempt (no use of __shared__) is slower

● This was a naive kernel (there is a lesson in this...)

● Optimising data movements is much more important than
kernel tuning

15

5

Original
(Mop/s)

Data
Region
(Mop/s)

Code
change
(Mop/s)

CUDA
kernel
(Mop/s)

Fortran 4787 27583 28993 24262

C 4849 26476 30718 23794

C O M P U T E | S T O R E | A N A L Y Z E

Conclusions: How far did we get?

5.May.14 Copyright 2014 Cray Inc.

● Significant speedup compared to single core:
● Mop/s: 4800 → 27000 = 5½x

● The real comparison is to a full CPU
● run the OpenMP version of the code on the Intel SandyBridge CPU

● 4 threads optimal: gives 15000 Mop/s

● maybe MPI version would scale better, but our code here is scalar

● Final speedup compared to full CPU:1.8x

15

6

C O M P U T E | S T O R E | A N A L Y Z E

Conclusions: How much further could we get?

5.May.14 Copyright 2014 Cray Inc.

● So we are 1.8x faster, socket-for-socket
● How much faster could we get (speeds and feeds)

● Flops and memory b/w around 5x faster than single Intel Sandybridge

● So why were we not faster?
● MultiGrid application cycles through grid sizes

● sometimes the grid is really small: 4x4x4

● CrayPAT loop profiling showed us that

● Small grid sizes will never schedule well on the GPU
● consider checking grid size and using different OpenACC for different sizes

● or do we even need the smaller grids?

15

7

C O M P U T E | S T O R E | A N A L Y Z E

OpenACC 4: handling
asynchronicity

5.May.14 Copyright 2014 Cray Inc.

15

8

C O M P U T E | S T O R E | A N A L Y Z E

Exploiting overlap

5.May.14 Copyright 2014 Cray Inc.

15

9

● If individual kernels are performing well
● Can you start overlapping different computational tasks?

● kernels on the GPU

● data transfers to/from the GPU

● maybe even separate computation on the CPU

● You can do this using the async features of OpenACC
● very similar to streams in CUDA

C O M P U T E | S T O R E | A N A L Y Z E

Asynchronicity

5.May.14 Copyright 2014 Cray Inc.

16

0

● GPU operations are launched asynchronously from CPU
● control returns immediately to the host

● host must then wait or test for completion
● automatically (e.g. handled by OpenACC compiler)

● manually (e.g. via OpenACC directives or API calls)

● applies to:
● computational kernels: parallel and kernels regions

● PCIe data transfers: update directives

● plus some other directives

C O M P U T E | S T O R E | A N A L Y Z E

Automatic synchronisation

5.May.14 Copyright 2014 Cray Inc.

16

1

● By default, the compiler will handle synchronisation
● may be conservative:

● and wait for every operation to complete

● may be smarter,
● and use a reduced number of waits consistent with correctness

● CCE-specific options:
● control with compiler option -hacc_model=auto_async_*

● auto_async_none :
● waits for every operation to separately complete

● useful for debugging and generating profiles

● but it may skew performance

● auto_async_kernels :
● may allow some computational kernels to overlap

● the default behaviour

● auto_async_all :
● may allow kernels and data transfers to overlap

● try this as a performance-tuning option

C O M P U T E | S T O R E | A N A L Y Z E

User control via async clause

5.May.14 Copyright 2014 Cray Inc.

16

2

● The async clause overrides the default behaviour
● User is now in control of synchronisation

● applies to: parallel, kernels, update directives

● User needs to insert appropriate synchronisation points
● via wait directive or OpenACC API calls

● Beware: there is no implicit wait at the end of a subprogram!

● Between synchronisation points
● May get overlap of concurrently-executing kernels

● depending on hardware

● Should get overlap of computational kernels with data transfers
● in both directions on PCIe bus

● Data transfers in the same direction will not overlap
● the runtime will automatically serialise the transfers

● Queuing async operations in advance is a good idea
● even if the operations themselves are serialising, get better throughput

C O M P U T E | S T O R E | A N A L Y Z E

A stream of tasks

5.May.14 Copyright 2014 Cray Inc.

16

3

● The async clause can take a handle:
● async(handle) where handle is a (positive or zero) integer

● Operations launched with the same handle
● guaranteed to execute sequentially in the order they were launched

● not guaranteed to execute immediately after each other
● there could be delays

● this is known as a "stream" of tasks

● Synchronisation
● wait(handle) directive ensures just this stream of tasks has completed

● can use an API call to do same thing
● another API call can be used to test whether stream has completed

● Note
● If you've used CUDA streams, these concepts should be very familiar

C O M P U T E | S T O R E | A N A L Y Z E

Multiple streams of tasks

5.May.14 Copyright 2014 Cray Inc.

16

4

● You can launch multiple streams of tasks at once
● each with a different handle value
● Tasks within a given stream

● guaranteed to execute sequentially

● Tasks in different streams
● may overlap or serialise, as the hardware and runtime allows
● operations in different streams should be independent

● or we have a race condition

● Synchronisation
● wait(handle) directive ensures one stream has completed

● wait(handle1,handle2,...) can be used to finalise multiple streams
● wait directive with no argument ensures all streams have completed

● API calls can be used to wait on, or test for, all these completion cases

● Nvidia GPUs (Kepler, Fermi)
● currently support up to 16 simultaneous streams in hardware
● if handle is too large, runtime MODs it back into allowable range

● so handle=16 same as handle=0
● this can lead to false dependencies between streams

C O M P U T E | S T O R E | A N A L Y Z E

REAL :: a(Nvec,Nchunk),b(Nvec,Nchunk)

DO j = 1,Nchunks

 DO i = 1,Nvec
 b(i,j) = <function of a(i,j)>
 ENDDO

ENDDO

OpenACC async first example

5.May.14 Copyright 2014 Cray Inc.

16

5

● a simple pipeline:
● processes an array, slice by slice

● each slice requires 3 tasks:
● copy data to GPU,

● process on GPU,

● bring back to CPU

● which must execute sequentially

● but we can overlap different slices

● Use a different stream for each slice
● use slice number as stream handle

● don't worry if number gets too large

● OpenACC runtime maps it back into allowable range (using MOD function)

● Expect to see overlap of three streams at once
● one sending to the device; one processing the slice; one sending to host

REAL :: a(Nvec,Nchunk),b(Nvec,Nchunk)

!$acc data create(a,b)
DO j = 1,Nchunks
!$acc update device(a(:,j)) async(j)

!$acc parallel loop async(j)
 DO i = 1,Nvec
 b(i,j) = <function of a(i,j)>
 ENDDO

!$acc update host(b(:,j)) async(j)

ENDDO
!$acc wait
!$acc end data

C O M P U T E | S T O R E | A N A L Y Z E

OpenACC async results

5.May.14 Copyright 2014 Cray Inc.

16

6

● Execution times:
● CPU: 3.76s
● OpenACC: 1.10s
● OpenACC, async: 0.34s

● NVIDIA Visual profiler:

● time flows left to right
● streams stacked vertically

● only 7 of 16 streams fit in window
● red: data transfer to device
● pink: computational on device
● blue: data transfer to host

● vertical slice shows what is overlapping
● collapsed view at bottom

● async handle modded by number of streams
● so see multiple coloured bars per stream (looking horizontally)

● Alternative to pipelining is task-based overlap

● Harder to arrange; needs knowledge of data flow in specific application
● May (probably will) require application restructuring (maybe helps CPU)

C O M P U T E | S T O R E | A N A L Y Z E
167

Going further with OpenACC 2.0

5.May.14 Copyright 2014 Cray Inc.

● OpenACC 1.0:
● async/wait perfect for handling linear streams of dependent tasks

● but no way to set up more complicated dependency tree
● e.g. to say:

● "When you have finished these streams of tasks, start this one"

● "When you have finished this stream of tasks, start these ones"

● dependencies like this have to be handled by the host
● which means extra host-side synchronisation points, which:

● reduce the performance of the code

● reduce developer's ability to use CPU for other tasks in the code

● OpenACC 2.0:
● now allows you to set up dependency tree

● wait(handle) clause for parallel, kernels, update directives

● async(handle) clause for wait directive

C O M P U T E | S T O R E | A N A L Y Z E

High-level example

5.May.14 Copyright 2014 Cray Inc.

16

8

Kernel A

Kernel B Kernel C

Kernel D

Kernel E

Kernel G

Kernel F

!$acc parallel loop async(stream1)

<Kernel A>

!$acc parallel loop async(stream1)

<Kernel B>

!$acc parallel loop async(stream2)

<Kernel C>

!$acc parallel loop async(stream3) &

!$acc wait(stream1,stream2)

<Kernel D>

!$acc parallel loop async(stream4) &

!$acc wait(stream3)

<Kernel E>

!$acc parallel loop async(stream5) &

!$acc wait(stream3)

<Kernel F>

!$acc parallel loop async(stream5)

<Kernel G>

!$acc wait ! ensures all completed

C O M P U T E | S T O R E | A N A L Y Z E
170

Using dependency trees

5.May.14 Copyright 2014 Cray Inc.

● The compiler may use some async automatically

● But if you want more control, such as:
● multiple, overlapping streams of tasks

● and, potentially, a more complicated dependency tree

● Then you will need to do it yourself
● This requires:

● good knowledge of your code (so you know what it does, and where)

● good knowledge of the algorithm (so you can change the code)

● good knowledge of the science (so you can change the algorithm)

● OpenACC improves productivity, but cannot replace the "hard thinking"

● We'll show a real-world example next
● see the parallel Himeno code lecture

C O M P U T E | S T O R E | A N A L Y Z E

OpenACC case study:
Porting a parallel code

5.May.14 Copyright 2014 Cray Inc.

17

1

Alistair Hart

Cray Exascale Research Initiative Europe

C O M P U T E | S T O R E | A N A L Y Z E

Overview

5.May.14 Copyright 2014 Cray Inc.

17

2

● A parallel code is a scalar code with data transfers
● We have looked at how to port a scalar code

● optimising the scalar part procedes in the same way

● although the local problem size will change when strong scaling

● Here we look at the parallel version of the same code

● The new feature is the data transfer between PEs
● which also means local data transfers between CPU and GPU

● This talk looks at the extra things we need to consider
● First at a conceptual level

● the OpenACC part

● Then some specific points for particular communication models
● we just discuss MPI here

● (we also have a version using Fortran coarrays)

C O M P U T E | S T O R E | A N A L Y Z E

Contents

5.May.14 Copyright 2014 Cray Inc.

17

3

● Himeno benchmark
● Structure of the parallel code

● Packing and transferring halo buffers
● async clause

● wait clause

● MPI communication
● non-blocking sends and receives

● MPI_WAITANY vs. MPI_WAITALL

● G2G optimisations

C O M P U T E | S T O R E | A N A L Y Z E

The Himeno Benchmark

5.May.14 Copyright 2014 Cray Inc.

17

4

● Parallel 3D Poisson equation solver
● Iterative loop evaluating 19-point stencil

● Memory intensive, memory bandwidth bound

● Fortran, C, MPI and OpenMP implementations
available from http://accc.riken.jp/2444.htm
● Cray also has a Fortran coarray (CAF) version

● Productivity of OpenACC
● ~600 lines of Fortran

● Fully ported to accelerator using around 30 directive pairs

http://accc.riken.jp/2444.htm
http://accc.riken.jp/2444.htm
http://accc.riken.jp/HPC_e/himenobmt_e.html

C O M P U T E | S T O R E | A N A L Y Z E
175

Overall program structure

5.May.14 Copyright 2014 Cray Inc.

● Like scalar case:
● initmt() initialises data

● jacobi(nn,gosa)
● does nn iterations

● stencil update to data

● called twice:
● once for calibration

● once for measurement

● differences:
● initcomm() routine

● sets up processor grid

PROGRAM himeno

 CALL initcomm ! Set up processor grid

 CALL initmt ! Initialise local matrices

 cpu0 = gettime() ! Wraps SYSTEM_CLOCK

 CALL jacobi(3,gosa)

 cpu1 = gettime()

 cpu = cpu1 - cpu0

! nn = INT(ttarget/(cpu/3.0)) ! Fixed runtime

 nn = 1000 ! Hardwired for testing

 cpu0 = gettime()

 CALL jacobi(nn,gosa)

 cpu1 = gettime()

 cpu = cpu1 - cpu0

 xmflops2 = flop*1.0d-6/cpu*nn

 PRINT *,' Loop executed ',nn,' times'

 PRINT *,' Gosa :',gosa

 PRINT *,' MFLOPS:',xmflops2,' time(s):',cpu

END PROGRAM himeno

C O M P U T E | S T O R E | A N A L Y Z E

The distributed jacobi routine

5.May.14 Copyright 2014 Cray Inc.

17

6

● iteration loop:
● fixed tripcount

● jacobi stencil:
● temporary array wrk2

● local residual wgosa

● halo exchange
● between neighbours

● uses send, receive buffers

● Residual
● global residual gosa

● wgosa summed over PEs

● second kernel:
● p updated from wrk2

iter_lp: DO loop = 1,nn

 compute stencil: wrk2, wgosa from p

 pack halos from wrk2 into send bufs

 exchange halos with neighbour PEs

 sum wgosa across PEs

 copy back wrk2 into p

 unpack halos into p from recv bufs

ENDDO iter_lp

C O M P U T E | S T O R E | A N A L Y Z E

The Jacobi computational kernel (serial)

5.May.14 Copyright 2014 Cray Inc.

17

7

● The stencil is applied to
pressure array p

● Updated pressure values
are saved to temporary
array wrk2

● Local control value
wgosa is computed

DO K=2,kmax-1

 DO J=2,jmax-1

 DO I=2,imax-1

 s0=a(I,J,K,1)* p(I+1,J, K)

 +a(I,J,K,2)* p(I, J+1,K) &

 +a(I,J,K,3)* p(I, J, K+1) &

 +b(I,J,K,1)*(p(I+1,J+1,K)-p(I+1,J-1,K) &

 -p(I-1,J+1,K)+p(I-1,J-1,K)) &

 +b(I,J,K,2)*(p(I, J+1,K+1)-p(I, J-1,K+1) &

 -p(I, J+1,K-1)+p(I, J-1,K-1)) &

 +b(I,J,K,3)*(p(I+1,J, K+1)-p(I-1,J, K+1) &

 -p(I+1,J, K-1)+p(I-1,J, K-1)) &

 +c(I,J,K,1)* p(I-1,J, K) &

 +c(I,J,K,2)* p(I, J-1,K) &

 +c(I,J,K,3)* p(I, J, K-1) &

 + wrk1(I,J,K)

 s = (s0*a(I,J,K,4)-p(I,J,K))*bnd(I,J,K)

 wgosa = wgosa + ss*ss

 wrk2(I,J,K) = p(I,J,K) + omega * ss

 ENDDO

 ENDDO

ENDDO

fw
d

 n
.n

.
b

w
d

 n
.n

.
n

.n
.n

.

C O M P U T E | S T O R E | A N A L Y Z E

Distributed jacobi routine as a flowchart

5.May.14 Copyright 2014 Cray Inc.

● take advantage of overlap
● just network at this point

● still some freedom:
● barrier can move relative to

● Allreduce

● wrk2→bulk

● Which is best order?
● depends on:

● hardware

● comms library

● kernel details

● local problem size

● Could autotune this
● separately

● at runtime

17

8

C O M P U T E | S T O R E | A N A L Y Z E

First OpenACC port

5.May.14 Copyright 2014 Cray Inc.

● Loopnest kernels
● stencil

● pack halos: x, y, z

● wrk2→bulk

● unpack halos: x, y, z

● acc updates
● 6 buffers each time

● Some additional overlap
● GPU kernels asynchronous

● wrk2→bulk
● can overlap with comms

17

9

C O M P U T E | S T O R E | A N A L Y Z E
180

Packing and transferring send buffers

5.May.14 Copyright 2014 Cray Inc.

● Use async clause
● separate handles for overlap

● one per direction
● three in total

● integers, e.g. 1, 2, 3

● what about six streams?
● one each for up and down

● was not as efficient
● but this is a tuning option

● global wait
● all 3 streams completed

!$acc parallel loop async(xstrm)

DO k = 2,kmax-1

 DO j = 2,jmax-1

 sendbuffx_dn(j,k)=wrk2(2,j,k)

 sendbuffx_up(j,k)=wrk2(imax-1,j,k)

 ENDDO

ENDDO

!$acc end parallel loop

!$acc update host &

!$acc (sendbuffx_dn,sendbuffx_up) &

!$acc async(xstrm)

! same for y with async(ystrm)

! same for z with async(zstrm)

!$acc wait

<send the 6 buffers>

C O M P U T E | S T O R E | A N A L Y Z E
181

Packing and transferring send buffers (better)

5.May.14 Copyright 2014 Cray Inc.

● The biggest bottleneck
● PCIe link serialises:

● only one buffer moves at a time

● A better strategy:
● don't wait for all to finish moving

● as soon as one direction done

● send these buffers over network

● Ordering:
● x pack/update starts first

● Can we guarantee x ready first?

● No, but it is likely

● No OpenACC "waitany" facility
● so we go with most likely ordering

!$acc parallel loop async(xstrm)

<pack the two x buffers>

!$acc end parallel loop

!$acc update host &

!$acc (sendbuffx_dn,sendbuffx_up) &

!$acc async(xstrm)

! same for y with async(ystrm)

! same for z with async(zstrm)

!$acc wait(xstrm)

<send the two x buffers>

!$acc wait(ystrm)

<send the two y buffers>

!$acc wait(zstrm)

<send the two z buffers>

C O M P U T E | S T O R E | A N A L Y Z E

Graphically

5.May.14 Copyright 2014 Cray Inc.

● async clause
● allows task overlap on GPU

● halo pack/update
● can overlap x, y, z directions

● halo update/unpack
● can overlap x, y, z directions

● can also overlap wrk2→p

● Host/GPU sync points
● After first kernel

● After each buffer pack/update

● At the end of the iteration

182
18

2

C O M P U T E | S T O R E | A N A L Y Z E
183

Transferring and unpacking recv buffers

5.May.14 Copyright 2014 Cray Inc.

● Copying wrk2 into p
● very quick kernel

● but can overlap with network
● could start this kernel before we

sent the data

● When messages complete
● copy and unpack recv buffers

● three parallel streams again

● wait
● ensures all 4 streams complete

● 3 update/unpacks plus bulk

● ready to start next iteration

!$acc parallel loop async(bstrm)

<copy bulk wrk2 -> p>

!$acc end parallel loop

<network barrier>

!$acc update device &

!$acc (recvbuffx_dn,recvbuffx_up) &

!$acc async(xstrm)

!$acc parallel loop async(xstrm)

<unpack the two x buffers>

!$acc end parallel loop

! same for y with async(ystrm)

! same for z with async(zstrm)

!$acc wait

<end iteration loop>

C O M P U T E | S T O R E | A N A L Y Z E
184

Using the OpenACC v2.0 wait clause

5.May.14 Copyright 2014 Cray Inc.

● Launch 5 operations
● stencil kernel

● 3 buffer packs/updates
● depends on stencil kernel

● 1 bulk unpack
● also depends on stencil

● wait clause
● sorts out dependencies

● host/device sync points
● no longer need after initial,

stencil kernel

C O M P U T E | S T O R E | A N A L Y Z E
185

Using the OpenACC v2.0 wait clause

5.May.14 Copyright 2014 Cray Inc.

● In more detail:

● Introduce new stream
● jstrm for stencil kernel

● buffer-packing streams wait
on this completing

● acc wait(xstrm) guarantees
jstrm has also completed
● (also waits on ystrm, zstrm)

● bulk copy kernel also
waits on jstrm
● we don't set jstrm=bstrm

● want to kick-off buffer packs
as soon as wrk2 is ready

!$acc parallel loop async(jstrm)

<stencil p -> wrk2>

!$acc parallel loop &

!$acc async(xstrm) wait(jstrm)

<pack x buffers from wrk2>

!$acc update host &

!$acc (sendbuffx_dn,sendbuffx_up) &

!$acc async(xstrm)

! same for y with async(ystrm)

! same for z with async(zstrm)

!$acc parallel loop &

!$acc async(bstrm) wait(jstrm)

<copy bulk wrk2 -> p>

!$acc wait(xstrm)

<send the two x buffers>

! same for y with async(ystrm)

! same for z with async(zstrm)

C O M P U T E | S T O R E | A N A L Y Z E
186

Data region considerations

5.May.14 Copyright 2014 Cray Inc.

● Twelve extra buffers needed
● 3 physical dimensions: x, y, z

● 2 directions of transfer: up, down
● 2 separate buffers: send, receive

● These buffers need to be added to the data region(s)
● if just in jacobi() data region

● they should be create
● allocated each time jacobi() is called, no data transfer (except explicit updates)

● or in outer data region
● create in main data region

● present in jacobi() data region

● need to be declared globally

● advice:
● if jacobi() routine is called a lot, often better to allocate once in parent

C O M P U T E | S T O R E | A N A L Y Z E
188

MPI

5.May.14 Copyright 2014 Cray Inc.

● Use nonblocking MPI calls
● MPI_IRECV

● post these receives early; first thing in iteration loop

● MPI_ISEND
● call these in 3 sets (x, y, z) of two (up, down)

● after each of async streams xstrm, ystrm, zstrm separately completes

● network barrier:
● MPI_WAITALL(12,send_recv_handles(:))

● ensures all buffers arrive (and send buffers can be reused)

● Then kick-off the three streams copying recv buffers to accelerator
and unpacking

C O M P U T E | S T O R E | A N A L Y Z E
189

Better host-side MPI

5.May.14 Copyright 2014 Cray Inc.

● PCIe transfer of three sets of recv buffers is a bottleneck
● buffer transfers will serialise, one at once
● better to start transfer of messages to GPU as soon as each arrives

● don't know in which order the 6 message will arrive

● Rather than MPI_WAITALL(12,send_recv_handles(:))

● Loop over MPI_WAITANY(6,recv_handles(:))
● As each arrives, start separate async stream comprising:

● update, then unpack kernel

● 6 different streams being used here

● After all MPI recvs completed:
● MPI_WAITALL(6, send_handles(:))

● so we the send buffers are ready for reuse in the next iteration

● acc wait ensures 7 streams have completed
● 6 copy/unpacks, plus the bulk stream

● Could also use MPI3 nonblocking collective for gosa

● would MPI_WAIT on this handle just before end of iteration loop

C O M P U T E | S T O R E | A N A L Y Z E
190

Improved G2G MPI

5.May.14 Copyright 2014 Cray Inc.

● Latest Cray MPICH library offers "G2G" feature
● Can call MPI on CPU, but passing GPU buffer to library

● Data moves between GPU and network seamlessly
● no need for update directives

● no need for host-side synchronisation between update and send/recv
● when MPI completes, know data has moved

● fewer sync points allows more flexible overlap of CPU and GPU operations

● improved end-to-end communication bandwidth

● host_data directive used to expose device data pointers
● Put host_data regions around MPI calls

● Code can still be compiled for the CPU

C O M P U T E | S T O R E | A N A L Y Z E
191

Using the G2G MPI

5.May.14 Copyright 2014 Cray Inc.

● Receives
● posted with GPU buffers

● updates removed
● just pack buffers on GPU

● Sends
● also use GPU addresses

● MPI_WAITALL
● data now moved to recv

buffers on remote GPUs

● no extra GPU sync needed

● no need for MPI_WAITANY
any more
● can use 3 unpack streams

!$acc host_data use_device &

 (recvbuffx_dn,recvbuffx_up)

call MPI_IRECV(recvbuffx_dn,...)

call MPI_IRECV(recvbuffx_up,...)

!$acc end host_data

! same for y,z

<stencil p -> wrk2> async(jstrm)

<pack x buffs> async(xstrm) wait(jstrm)

! same for y,z

!$acc wait(xstrm)

!$acc host_data use_device &

 (sendbuffx_dn,sendbuffx_up)

call MPI_ISEND(sendbuffx_dn,...)

call MPI_ISEND(sendbuffx_up,...)

!$acc end host_data

! same for y,z

call MPI_WAITALL(12,...)

<unpack x buffs> async(xstrm)

! same for y,z

!$acc wait

C O M P U T E | S T O R E | A N A L Y Z E
192

Summary

5.May.14 Copyright 2014 Cray Inc.

● A parallel code is just like a scalar code

● but with data transfers
● These data transfers add additional complications

● Provide a lot of scope for overlap:
● overlapping GPU kernels/transfers

● overlapping compute and network transfers

● A lot of scope implies a lot of algorithmic choices
● Which is best will depend on the code, the problem, the parallel

decomposition and the hardware

● An autotuning approach may help

● General advice:
● Profile the production code frequently and optimise the slowest bit

● Could be kernel performance or network transfers

● The balance will shift as you continue optimising

C O M P U T E | S T O R E | A N A L Y Z E
193

Summary

5.May.14 Copyright 2014 Cray Inc.

● Some things to look for
● look for opportunities to overlap GPU tasks with the async clause

● e.g. packing buffers in different directions

● look for opportunities to exploit the wait clause
● going beyond simple streams of tasks to a dependency tree

● use asynchronous MPI
● if you are not already doing so

● extra PCIe transfer time gives more scope for network overlap

● try MPI_WAITANY rather than MPI_WAITALL
● to exploit this potential for extra overlap

● or use G2G MPI to remove host-side synchronisation points
● and improve data transfer rates between accelerators on different nodes

● The same principles apply more widely
● to other message-passing programming models

● CAF, SHMEM etc.

C O M P U T E | S T O R E | A N A L Y Z E

OpenMP and OpenACC
a Comparison

5.May.14 Copyright 2014 Cray Inc.

19

4

C O M P U T E | S T O R E | A N A L Y Z E

Outline

5.May.14 Copyright 2014 Cray Inc.

19

5

● Background
● OpenMP

● OpenACC

● Important differences (today)
● Parallelism

● Present_or_*

● Scalars

● Loops

● Unstructured data

● Calls (separate compilation units)

● Nested parallelism

● What is next
● OpenMP

● OpenACC

C O M P U T E | S T O R E | A N A L Y Z E

Background -- OpenMP

5.May.14 Copyright 2014 Cray Inc.

19

6

● FORTRAN version 1.0 - (October 1997)

● Accelerator additions
● Proposal submitted Dec 2009

● Subcommittee formed Aug 2009

● Cray OpenMP for Accelerators nears release

● Fall 2010 several members for OpenACC working group

● TR1 - Technical Report on Directives for Attached
Accelerators (November 2012)

● OpenMP 4.0 (July 2013)

C O M P U T E | S T O R E | A N A L Y Z E

Background -- OpenACC

5.May.14 Copyright 2014 Cray Inc.

19

7

● PGI releases accelerator directives

● CAPS releases HMPP

● Fall 2010 several members form OpenACC working group

● OpenACC 1.0 (Nov 2010)

● OpenACC 2.0 (June 2013)

C O M P U T E | S T O R E | A N A L Y Z E

Important differences

5.May.14 Copyright 2014 Cray Inc.

19

8

● Parallelism

● Present_or_*

● Scalars

● Loops

● Calls (separate compilation units)

C O M P U T E | S T O R E | A N A L Y Z E

Parallelism

5.May.14 Copyright 2014 Cray Inc.

19

9

● OpenACC
● “Off-load” and parallel startup tied together

● Acc parallel

● Acc kernels

● OpenMP
● “Off-load” and parallel startup disconnected

● Omp target
● Omp parallel

● Omp teams

C O M P U T E | S T O R E | A N A L Y Z E

Parallel startup example (Fortran)

5.May.14 Copyright 2014 Cray Inc.

20

0

OpenACC

!$acc parallel

…

!$acc end parallel

Or

!$acc kernels

…

!$acc end kernels

 OpenMP

!$omp target

!$omp teams/parallel

…

!$omp end teams

!$omp end target

C O M P U T E | S T O R E | A N A L Y Z E

Parallel startup example (C/C++)

5.May.14 Copyright 2014 Cray Inc.

20

1

OpenACC

#pragma acc parallel

{

…

}

Or

#pragma acc kernels

{

…

}

 OpenMP

#pragma omp target

#pragma omp teams/parallel

{

…

}

C O M P U T E | S T O R E | A N A L Y Z E

OpenMP teams vs parallel

5.May.14 Copyright 2014 Cray Inc.

20

2

 ● Why two different “parallel” mechanisms

● Teams
● Independent collision domains

● Same behavior as OpenACC gangs

● Only select directives allowed

● Parallel
● A single collision domain

● Default if neither is present

● All non-accelerator OpenMP directives allowed

C O M P U T E | S T O R E | A N A L Y Z E

Present_or_*

5.May.14 Copyright 2014 Cray Inc.

20

3

● OpenACC
● present_or_* programmer visible

● copy, copyin, copyout, create

● copy* without present allowed
● Error prone

● Hard to debug

● Little actual savings

● OpenMP
● present_or_* not programmer visible

● map always implies present test
● in, out, inout, allocate

C O M P U T E | S T O R E | A N A L Y Z E

Scalars

5.May.14 Copyright 2014 Cray Inc.

20

4

● OpenACC
● firstprivate by default

● User can override
● Error prone

● Allows implementation to make these kernels arguments

● Pointers are “special”

● OpenMP
● No such restriction

● Pointers are scalars

C O M P U T E | S T O R E | A N A L Y Z E

Loops

5.May.14 Copyright 2014 Cray Inc.

20

5

● OpenACC
● One construct “loop”

● Multiple parallelism types

● “nested” parallelism implicit

● Three levels available
● gang

● worker

● vector

● OpenMP
● Three constructs

● distribute

● do/for

● simd

● Nested parallelism explicit

C O M P U T E | S T O R E | A N A L Y Z E

Loop examples

5.May.14 Copyright 2014 Cray Inc.

20

6

OpenACC

!$acc loop

do i=1,n

…

enddo

OpenMP

!$omp do

or

!$omp distribute

do i=1,n

…

enddo

!$omp end distribute

or

!$omp end do

C O M P U T E | S T O R E | A N A L Y Z E

Loop examples

5.May.14 Copyright 2014 Cray Inc.

20

7

OpenACC

!$acc loop

do i=1,n

!$acc loop

 do j=1,m

 …

 enddo

enddo

OpenMP

!$omp distribute

do i=1,n

!$omp parallel do

 do j = 1,m

 …

 enddo

!$omp end parallel do

enddo

!$omp end distribute

C O M P U T E | S T O R E | A N A L Y Z E

Loop examples

5.May.14 Copyright 2014 Cray Inc.

20

8

OpenACC

!$acc loop gang worker vector

do i=1,n

…

enddo

OpenMP

!$omp distribute parallel do simd

do i=1,n

…

enddo

!$omp end distribute parallel do simd

C O M P U T E | S T O R E | A N A L Y Z E

Unstructured data

5.May.14 Copyright 2014 Cray Inc.

20

9

● Separate the move to and the move from parts of data
constructs

● enter data
● constructors

● exit data
● destructors

● OpenACC
● Added support in 2.0

● OpenMP
● Nearing completion of feature

C O M P U T E | S T O R E | A N A L Y Z E

Calls

5.May.14 Copyright 2014 Cray Inc.

21

0

● OpenACC
● routine

● Only one type of parallelism
allowed
● gang

● worker

● vector

● seq

● Hard on user

● Easy for implementer

● OpenMP
● declare

● Type of parallelism ignored

● Easy on user

● Hard for implementer

C O M P U T E | S T O R E | A N A L Y Z E

Nested parallelism

5.May.14 Copyright 2014 Cray Inc.

21

1

● OpenACC
● Added in 2.0

● Currently no full implementations
● Why?

● OpenMP
● parallel inside of teams is allowed

● teams inside of teams is not allowed.

C O M P U T E | S T O R E | A N A L Y Z E

What is next

5.May.14 Copyright 2014 Cray Inc.

21

2

● OpenACC
● Tools interfaces

● Better user defined type support

● …

● OpenMP
● What is next

● Unstructured data

● Declare target deferred_map

● Interoperability with accelerated libraries

● Multiple devices

● User defined type support

C O M P U T E | S T O R E | A N A L Y Z E

Cray Comparative Debugger (CCDB)

Copyright 2014 Cray Inc.

21

3

● What is comparative debugging?
● Data centric approach
● Two applications, same data
● Key idea: The data should match
● Quickly isolate deviating variables

● CCDB

● NOT a traditional debugger!
● Assists with comparative debugging
● GUI hides the complexity and helps automate process

● Creates automatic comparisons
● Based on symbol name and type
● Allows user to create own comparisons
● Error and warning epsilon tolerance
● Scalable

● How does this help me?
● Algorithm re-writes
● Language ports
● Different libraries/compilers
● New architectures

5.May.14

C O M P U T E | S T O R E | A N A L Y Z E

Launching the Applications

5.May.14 Copyright 2014 Cray Inc.

21

4

● Faulty application
● OpenACC on X86 + K20

● Reference application
● MPI on X86

C O M P U T E | S T O R E | A N A L Y Z E

Comparative Debugging from Output

5.May.14 Copyright 2014 Cray Inc.

21

5

● Setup breakpoint where result is printed

C O M P U T E | S T O R E | A N A L Y Z E

Compare Variables

5.May.14 Copyright 2014 Cray Inc.

21

6

C O M P U T E | S T O R E | A N A L Y Z E

Verify Failing Comparisons

5.May.14 Copyright 2014 Cray Inc.

21

7

C O M P U T E | S T O R E | A N A L Y Z E

Go Back to Where Results Agree

5.May.14 Copyright 2014 Cray Inc.

21

8

C O M P U T E | S T O R E | A N A L Y Z E

Continue to Next Assignment to X

5.May.14 Copyright 2014 Cray Inc.

21

9

C O M P U T E | S T O R E | A N A L Y Z E

What is in test_kernel_1d?

5.May.14 Copyright 2014 Cray Inc.

22

0

C O M P U T E | S T O R E | A N A L Y Z E

In conclusion

5.May.14 Copyright 2014 Cray Inc.

22

1

● This has been a brief tutorial introducing OpenACC

● We only covered a part of the standard

● But... you can do a lot of acceleration using just this

● And if you have any questions, please ask!

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2014 Cray Inc.

22

3

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: ACE,
APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI,
NODEKARE, THREADSTORM. The following system family marks, and associated model number marks,
are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

Copyright 2013 Cray Inc.

5.May.14

