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Explicit Vectorization with OpenMP* 4.0 
This lab introduces explicit vectorization techniques, using the SIMD-focused features 

introduced in OpenMP 4.0.  We follow a simple seven-step process: 

1. Identify hotspots that can benefit from SIMD instructions. 

2. Select a sufficiently wide data type, adjust floating-point accuracy, 

and consider mixed precision depending on algorithm phase. 

3. Re-arrange data for SIMD efficiency. 

4. Align data structures for SIMD efficiency. 

5. Convert code to SIMD form. 

6. Optimize memory access patterns. 

7. Further (instruction-level) optimization. 

This process can be applied to any code, and is not specific to OpenMP 4.0 – the 

conversion of the code to SIMD form could also make use of a compiler’s auto-

vectorization capabilities, array notation, SIMD intrinsics or inline assembly. 

Setup 

Building the Application 

Begin by loading the Intel Compiler 15.0 Beta on Beacon: 

 module swap intel-compilers intel-compilers/2015.0.008 

Decide whether you would like to work with C++ or Fortran.  The techniques covered in 

this lab are applicable to both, so you should choose whichever language is most familiar. 

For C++ (you can omit the target “c”): 

make c 

For Fortran: 

make fortran 

Initially the application will be compiled without vectorization according to the flag  

–no-vec specified in the Makefile. 

The optimization (and later vectorization) report will be redirected to the file 

nbody.optrpt. Please notice the new structure of the report! 

In order to build for an Intel® Xeon Phi™ coprocessor, type: 

make c_mic 

make fortran_mic 
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Configuring and Running the Application 

Please be patient when doing the first runs. Because of the included warm-up calculations 

and the deactivated vectorization the total execution time will be in the range of 1.5-2.5 

minutes. 

Host 

Before running the application, be sure to set the OpenMP thread affinity as below. The 

optional verbose flag will show the binding of threads to logical processors: 

 export KMP_AFFINITY=compact,granularity=fine[,verbose] 

Then, to execute the application, run: 

 ./nbody 262144 

Coprocessor 

The easiest way to execute the application built for Xeon Phi™ on the coprocessor is to run 

the script which will be used also in later investigations with the Intel® VTune™ Amplifier 

XE: 

 ./nbody_vtune.sh 

Background (optional): 

Have a look into the script. The application is started from the host on the 

coprocessor by using the tool micnativeloadex which will also resolve all 

required libraries (micnativeloadex –h will show the options). The tool 

micnativeloadex will not use the last core on the coprocessor by default. 

If the NFS export is enabled for your current working directory and the compiler 

paths you can issue an alternative command using ssh to start the application from 

the host on the coprocessor. It will exploit all cores on Xeon Phi™ including the last 

one which often works well for running native codes as in the present lab. You will 

find the ssh command commented out in the script nbody_vtune.sh as well. 

The third alternative is to login with ssh directly onto the coprocessor and execute 

the application as in the Xeon case. Without NFS you have to copy the application 

and required libraries over before; with NFS you have to setup the environment, in 

particular the paths to the libraries. 

 

Run the application now, and record the checksum and run time: 

Checksum:  
Run time:  
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Hotspots Analysis 

Analysis with Intel® VTune™ Amplifier 

Perform a hotspots analysis from the command-line: 

Host 

 amplxe-cl -collect hotspots -r nbody_hs -- ./nbody 262144 

Coprocessor 

 amplxe-cl -collect knc-hotspots -r nbody_hs -- ./nbody_vtune.sh 

 

And examine the output: 

 amplxe-cl -report hotspots -r nbody_hs 

Which function takes the most time? Record it below: 

Hotspot:  
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Selecting Floating-Point Precision 

Many applications use double precision by default, even though single precision may be 

adequate.  Our application has been configured to allow the floating-point precision to be 

changed at compile time, allowing us to investigate the impact of this decision on 

performance and accuracy.  Locate the #define statements at the top of the main file, and 

change the precision from double to single: 

For C++: 

 #define FPTYPE float 

 #define SQRT sqrtf 

For Fortran: 

 #define FPTYPE real 

 #define SQRT sqrt 

Build and re-run the application, then record the new checksum and run time: 

Checksum:  
Run time:  

 

Do the checksums match?  How has the run time changed? 

The impact of floating-point precision can be significant: double precision numbers are 

twice as large (in bytes) as single precision numbers, affecting both memory bandwidth 

requirements and the number of values that can be packed into SIMD units of a fixed bit-

width.  A speed-up of 2x is not unusual. 

IMPORTANT:  

Before changing the floating-point precision of your own applications, you should analyze 

the numerical stability of your algorithm and assess the correctness of this optimization.  
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Vectorization 

Edit the Makefile and comment the variable holding the -no-vec flag. This will enable 

the auto-vectorization by the compiler. Re-build the application either for the host or the 

coprocessor. Check the vectorization report in nbody.optrpt. 

Re-run the application now, and record the checksum and run time: 

Checksum:  
Run time:  

 

How much did the vectorization improve the performance; is this what you expected? 

 

Re-arrange Data for SIMD Efficiency 

The code uses an Array-of-Structures (AoS) to store its position and acceleration data – 

that is, the Position and Acceleration arrays store the 3D quantities contiguously in 

memory, as shown below: 

X Y Z X Y Z X Y Z X Y Z 

 

Do you think this layout is efficient for scalar execution?  What about for SIMD execution? 

To help with our investigation, our application produces copies of the input data arrays in 

both AoS and SoA formats (e.g. Position is split into Position_X, Position_Y and Position_Z).  

If the j loop in Perform_NBody() is vectorized, which form of the arrays will be better? 

Change the references to Position and/or Acceleration in Perform_NBody().  If you do 

decide to make any changes to the Acceleration array, remember to update the Checking() 

function as well! 

Build and re-run the application, then record the new checksum and run time: 

Checksum:  
Run time:  

 

How has the run time changed? 
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If the application runs slower, don’t panic!  The best data structure for scalar and SIMD 

execution are not always the same.  As a rule of thumb: 

Data Accessed by Scalar Code 

 Use AoS to improve cache locality. 

Data Accessed by SIMD Code with Linear Index 

 SIMD lanes will access contiguous data elements. 

 Use SoA (or AoSoA), to avoid gathers/scatters. 

Data Accessed by SIMD Code via Indirection 

 SIMD lanes may access non-contiguous data elements. 

 Use a new algorithm (to avoid indirection). 

OR  

 Use AoS to improve cache locality of gathers/scatters. 

Applying this rule to our application (assuming that the j loop will be vectorized), only the 

layout of the Position array needs to be adjusted for SIMD efficiency – the Acceleration 

array is only accessed by scalar code, and can stay in AoS. 
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Align Data Structures 

There are three steps to ensuring aligned data accesses in your SIMD applications: 

1. Align memory. 

2. Access memory in an aligned way. 

3. Tell the compiler. 

Align Memory 

Look at the j loop in Perform_NBody().  Which arrays do you think need to be aligned? 

When you have decided, update the definitions of these arrays to align them to a 64-byte 

boundary.  We use a 64-byte boundary here because current-generation Intel® Xeon Phi™ 

coprocessors have a 512-bit SIMD width (512 / 8 = 64); 16- and 32-byte boundaries are 

sufficient when aligning arrays for the 128- and 256-bit instructions in SSE and AVX 

respectively. 

For C++: 

 FPTYPE* array = (FPTYPE*)_mm_malloc(elements * sizeof(FPTYPE), 64); 

For Fortran: 

 FPTYPE, allocatable :: array(:) 

 !dir$ attributes align:64 :: array 

Access Memory in an Aligned Way 

An array will be “accessed in an aligned way” by a loop if: 

 The base address of the array is appropriately aligned; and 

 Every index used to access the array is a multiple of the SIMD width. 

Is this true of the j loop in Perform_NBody()? 

Tell the Compiler 

Even when an array has been aligned using a function call or attribute, the compiler is still 

often unable to determine whether all accesses to that array will be aligned. 

For best results, the programmer should tell the compiler all accesses are aligned when 

converting the code to SIMD form, as discussed in the next section. 
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Convert Code to SIMD Form 

We are finally ready to convert our application to SIMD form.  The OpenMP* 4.0 standard 

supports two different ways to do this: 

1. SIMD Loops 

Specify loops that should be vectorized by the compiler. 

 

2. SIMD Functions 

Specify functions that will be called by vectorized loops. 

The first of these methods is most applicable here, so go ahead and mark the j loop in 

Perform_NBody() as being a SIMD loop.  As a reminder, the syntax is as follows: 

For C: 

#pragma omp simd [clause[, clause …]] 

For Fortran: 

!$omp simd [clause[, clause …]] 

where clause can be any of the following: 

safelen(length) Maximum distance between two iterations executed 

concurrently by a SIMD instruction. 
linear(list[:linear-step]) List items are private and have a linear relationship 

with respect to the iteration space. 
aligned(list[:alignment]) List items are aligned to a platform-dependent value 

(or the value of the optional parameter). 

 

private(list), lastprivate(list), reduction(reduction-identifier:list) and 

collapse(n) are also supported, with functionality matching that of omp for. 

Build and re-run the application, then record the new checksum and run time: 

Checksum:  
Run time:  

 

Do the checksums match?  How has the run time changed? 

If your code produces different answers to what you expected, then you may have 

forgotten a clause.  Repeat this exercise until you are happy with the checksum. 

Hint: Make sure that your variables are declared as private/reduction where appropriate. 
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Optimize Memory Access Patterns 

So far, this lab has focused upon converting code to SIMD form (and doing so efficiently).  

The application speed-up we have achieved is (hopefully!) impressive, but we should not 

stop here – we can tune and optimize SIMD code in exactly the same way as we can tune 

and optimize scalar code. 

Consider the memory-access pattern of our N-body application.  Since we use a naïve all-

pairs O(N^2) implementation, each body i is interacted with each body j and, for sufficiently 

large values of N, there are too many bodies to store in cache. 

Cache-blocking is a well-known optimization that targets situations such as these, and 

remains applicable for SIMD codes.  Block the j loop in Perform_NBody(), following a 

similar code structure to that below: 

#define CHUNK_SIZE 8192 

#pragma omp parallel 

for (int jj = 0; jj < number_of_bodies; jj += CHUNK_SIZE) 

{ 

 #pragma omp for 

 for (int i = 0; i < number_of_bodies; i++) 

 { 

  #pragma omp simd … 

  for (int j = jj; j < jj + CHUNK_SIZE; j++) 

  { 

   … 

  } 

 } 

} 

After applying this optimization, the code is able to keep a number of bodies 

(CHUNK_SIZE) in cache, and re-use this data for multiple iterations of the i loop. 

Build and re-run the application, then record the new checksum and run time: 

Checksum:  
Run time:  

 

How has the runtime changed?  Play with the block size until you are happy that you are 

seeing a performance improvement – the default size may not be optimal on all systems. 

That cache blocking improves performance here highlights the importance of designing 

SIMD-friendly algorithms and converting code to SIMD form before spending time 

exploring other optimization opportunities.  Codes that are compute-bound in scalar may 

be memory-bound in SIMD, and design decisions that are beneficial to scalar code may 

even be detrimental to SIMD code. 
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Further Optimization 

In applications where high-latency math operations are a performance bottleneck, 

significant performance gains can be realised by reducing the accuracy of the Intel® math 

library. 

To reduce the accuracy of the divide and sqrt operations in our N-body code, add the 

following two flags to the Makefile: 

 -fimf-domain-exclusion=15 -fimf-accuracy-bits=12 

The first of these flags informs the compiler that we do not require math functions to 

return correct results for “uncommon” inputs (i.e., extremes, NaNs, infinities and 

denormals), and the second informs the compiler exactly how much precision we need for 

the remaining “common” inputs.   The reader is referred to the Intel® Compiler 

documentation for an in-depth explanation of the operation of these flags. 

Build and re-run the application, then record the new checksum and run time: 

Checksum:  
Run time:  

 

How has the runtime changed? 

People often fear that adjusting FP accuracy (as suggested above) is beyond what they 

want. Two examples: (1) processing de-normalized FP numbers (rather than flushing them 

to zero) is often not supported in “real hardware” or may be unsupported on some non-

x86 architectures, and (2) consider calculating EXP(800) – did you know that the result is 

out of range with respect to double-precision? Therefore, it makes sense to eliminate such 

kind of input from the processing pipeline rather than processing it (normalized numbers, 

etc.). 

Homework: Outer-loop Vectorization, Array Notation and SIMD Intrinsics 

Assignment 1 

OpenMP 4.0 supports the application of its simd pragmas to outer- as well as inner-loops.  

Move the pragma from the j loop to the i loop, paying close attention to the clauses you 

supply. 

How does this affect performance?  Why? 

Assignment 2 

Re-write the j loop using array notation. 

Assignment 3 

Re-write the j loop using SIMD intrinsics.  You may find the Intel® Intrinsics Guide helpful: 

http://software.intel.com/sites/landingpage/IntrinsicsGuide/ 

http://software.intel.com/sites/landingpage/IntrinsicsGuide/

