

Optimizing for MPI*/OpenMP* on

Intel® Xeon Phi™ Coprocessors

CUG 2014, Lugano, Switzerland

Jim Jeffers, John Pennycook, Hans Pabst, Heinrich Bockhorst, Intel Corporation

Vince Betro, Paul Peltz, National Institute for Computational Sciences, UTenn

Agenda

Aims

 Focus on techniques, not syntax.

 Maximise hands-on programming experience.

 Demonstrate performance gains for real-life applications.

FAQ Session

 E-mail your questions to: john.pennycook@intel.com

 Most frequent/interesting answered at the end of the day

2

mailto:john.pennycook@intel.com

Agenda

08:30 Introduction to Intel® Xeon Phi™ Coprocessors John Pennycook, Jim Jeffers

09:30 Cluster Administration Paul Peltz

09:45 Hands-on: Logging in and Running Applications

10:00 Break

10:30 MPI* and OpenMP* Vince Betro

11:00 Hands-on: MPI*, OpenMP* and Intel® Trace Analyzer and Collector (ITAC)

12:00 Lunch

13:00 Compiler-Assisted Offload Hans Pabst

13:30 Hands-on: Device Extensions in OpenMP* 4.0

14:30 Break

14:45 Vectorization John Pennycook

15:15 Hands-on: Explicit Vectorization with OpenMP* 4.0

16:15 Frequently Asked Questions All presenters

16:30 End

3

Intel® Xeon Phi™ Coprocessor High Performance Programming,

Jim Jeffers, James Reinders, (c) 2013, publisher: Morgan Kaufmann

It all comes down to
PARALLEL
PROGRAMMING !
(applicable to processors
and Intel® Xeon Phi™

coprocessors both)

Forward, Preface
Chapters:
1. Introduction
2. High Performance Closed Track

Test Drive!
3. A Friendly Country Road Race
4. Driving Around Town:

Optimizing A Real-World
Code Example

5. Lots of Data (Vectors)
6. Lots of Tasks (not Threads)

7. Offload
8. Coprocessor Architecture
9. Coprocessor System Software
10. Linux on the Coprocessor
11. Math Library
12. MPI

13. Profiling and Timing
14. Summary
Glossary, Index

Available since mid-February 2013.

This book belongs on the

bookshelf of every HPC
professional. Not only does it

successfully and accessibly teach
us how to use and obtain high
performance on the Intel MIC
architecture, it is about much

more than that. It takes us back to
the universal fundamentals of

high-performance computing
including how to think and reason

about the performance of

algorithms mapped to modern
architectures, and it puts into your

hands powerful tools that will be

useful for years to come.
—Robert J. Harrison

Institute for Advanced
Computational Science,
Stony Brook University

Learn more about this book:

lotsofcores.com

“© 2013, James Reinders & Jim Jeffers, book image used with permission

Introduction to Intel® Xeon Phi™ Coprocessors
Parallelism, Parallelism and More Parallelism

5

Parallelism in Modern Computer Architecture

Instruction-Level Parallelism (ILP)

 Pipelining

 Multiple instruction issue

 Out-of-Order execution

Vectorization (SIMD)

 Single instructions can be applied to more than one piece of data

Threading (MIMD)

 Multiple instances of a program can run simultaneously

6

Parallelism in Modern Computer Architecture

Instruction-Level Parallelism (ILP)

 Pipelining

 Multiple instruction issue

 Out-of-Order execution

Vectorization (SIMD)

 Single instructions can be applied to more than one piece of data

Threading (MIMD)

 Multiple instances of a program can run simultaneously

7

Heterogeneity in Architecture Designs

Multi-core

 High single-thread performance.

 Low number of threads.

 Suitable for any workload.

Many-core

 Low single-thread performance.

 High number of threads.

 Suitable for highly parallel workloads.

8

Knights Corner – the first Intel® Xeon Phi™ Coprocessor

Heterogeneity in Architecture Designs

Multi-core

 High single-thread performance.

 Low number of threads.

 Suitable for any workload.

Many-core

 Low single-thread performance.

 High number of threads.

 Suitable for highly parallel workloads.

9
† Peak electrical bandwidth.

Multi-core Many-core

Clock Rate ≈3 GHz ≈1 GHz

Cores 4 – 12 ≈60

Threads per

Core
1 – 2 4

Bandwidth†
≈60 GB/s ≈350 GB/s

Thermal
Design Power

≈115 W ≈225 W

Multi-core vs Many-core – Theoretical Peak Performance

Peak GFLOP/s in Single Precision

 Clock Rate x Cores x Ops/Cycle x SIMD

2 x Intel® Xeon® Processor E5-2670v2

 2.5 GHz x 20 cores x 2 ops x 8 SIMD

= 800 GFLOP/s

Intel® Xeon Phi™ Coprocessor 7120P

 1.24 GHz x 61 cores x 2 ops x 16 SIMD

= 2420.48 GFLOP/s

10

5

40

100

800

1.24

19.84

151.28

2420.48

1

10

100

1000

Scalar & ST Vector & ST Scalar & MT Vector & MT

G
F

LO
P

/s

2 x Processor Coprocessor

Note the logarithmic scale on the y-axis.
ST = Single Thread, MT = Multiple Threads

Architecture of an Intel® Xeon Phi™ Coprocessor Core

Two Pipelines

 Scalar unit based on Pentium® processors.

 Dual issue (vector + scalar)

512-bit Vector Processing Unit (VPU)

4 Hardware Threads

 Cannot issue instructions back to back from

same thread

 RR scheduling to hide 4 cycle latency

512 KB L2 Cache

11

Pipe 0 Pipe 1

VPU RF x87 RF Scalar RF

VPU

512b SIMD

Decode uCode

x87 ALU 0 ALU 1

T0 IP

T1 IP

T2 IP

T3 IP

TLB Miss

Handler

L2 TLB

L1 TLB and

32 KB

Code Cache

512 KB

L2 Cache

L2

Ctl

H
W

P

L1 TLB and 32KB

Data Cache

To On-Die Interconnect

4 Threads

In-Order

Code Cache Miss

TLB Miss

TLB Miss

DCache Miss

16B/Cycle (2 IPC)

Architecture of an Intel® Xeon Phi™ Coprocessor

Cache

 32 KB L1 / 512 KB L2 per core

 Fully coherent

Core Communication

 Bi-directional ring buffer

 8 GB GDDR5 shared by all cores

PCIe*

 Gen2

 16 channels

12

PCIe

Client

Logic

Core

L2

Core

L2 G
D

D
R

 M
C

G
D

D
R

 M
C

TD TD

C
o

re

L
2

C
o

re

L
2

GDDR MC

GDDR MC

T
D

T

D

Core

L2

Core

L2 G
D

D
R

 M
C

G
D

D
R

 M
C

TD TD

C
o

re

L
2

C
o

re

L
2

GDDR MC

GDDR MC

T
D

T

D

Unconstrained by PCIe*

offload bottlenecks

Excellent compute density

and power efficiency

High memory bandwidth through

integrated memory

Using Intel® cutting-edge

14nm transistor technology

Bootable host

processor…

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Future Intel® Xeon Phi™ Processor: Knights Landing

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.
Diagram is for conceptual purposes only and only illustrates a CPU and memory – it is not to scale, and is not representative of actual component layout.

Cache

Model

Let the hardware automatically

manage the integrated on-package

memory as an “L3” cache between

KNL CPU and external DDR

Flat

Model

Manually manage how your application

uses the integrated on-package

memory and external DDR for peak

performance

Knights Landing Integrated On-Package Memory

Consistent Tools & Programming Models

15

int main(int argc,

char* argv[]) {

 // example comment

 first_function();

 second_function();

 return 0;

}

Code

Compiler
Libraries

Parallel Models

Manycore

Intel® Xeon®

Processor
Intel®

Xeon Phi™

Coprocessor

Multicore

Intel® Xeon®

Processors

Wide Range of Development Options

Intel® Math Kernel Library
MPI*

OpenMP*

Intel® Threading Building Blocks

Intel® Cilk™ Plus

Pthreads*

16

Intel® Math Kernel Library

Auto-vectorization

Semi-auto Vectorization
(e.g. #pragma ivdep)

Explicit Vectorization
(e.g. Intel® Cilk™ Plus array notation)

OpenCL*

Intrinsics

Thread Parallelism Vector Parallelism

Ease of Use

Fine Control

Utilizing an Intel® Xeon Phi™ Coprocessor

Native

 Target Code:

Highly parallel (threaded

and vectorized) throughout.

 Potential Bottleneck:

Serial/scalar code.

Offload

 Target Code:

Mostly serial, but with

expensive parallel regions.

 Potential Bottleneck:

PCIe* data transfers.

17

Symmetric

 Target Code:

Highly parallel and performs

well on both platforms.

 Potential Bottleneck:

Load imbalance.

Hands-on:

Logging in and Running Applications
Using Beacon @ NICS

18

Legal Disclaimers
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY

INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES

NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR

WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY

RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE

INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND

THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT

OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER

OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or
instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from

future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current

characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go
to: http://www.intel.com/design/literature.htm

Knights Landing and other code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release.

Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of

Intel's internal code names is at the sole risk of the user

Intel, Look Inside, Xeon, Intel Xeon Phi, Pentium, Cilk, VTune and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2014 Intel Corporation

http://www.intel.com/design/literature.htm

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2,
SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability,

functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more

information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimers

Optimization Notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and

MobileMark*, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to

vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product

when combined with other products. For more information go to http://www.intel.com/performance.

Estimated Results Benchmark Disclaimer:

Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or

configuration may affect actual performance.

Software Source Code Disclaimer:

Any software source code reprinted in this document is furnished under a software license and may only be used or copied in accordance with the terms of that license.

 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software

without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons

to whom the Software is furnished to do so, subject to the following conditions:

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR

OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Legal Disclaimers

http://www.intel.com/performance

The above statements and any others in this document that refer to plans and expectations for the third quarter, the year and the future are forward-looking

statements that involve a number of risks and uncertainties. Words such as “anticipates,” “expects,” “intends,” “plans,” “believes,” “seeks,” “estimates,” “may,” “will,”

“should” and their variations identify forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also

identify forward-looking statements. Many factors could affect Intel’s actual results, and variances from Intel’s current expectations regarding such factors could

cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be the important

factors that could cause actual results to differ materially from the company’s expectations. Demand could be different from Intel's expectations due to factors

including changes in business and economic conditions; customer acceptance of Intel’s and competitors’ products; supply constraints and other disruptions affecting

customers; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Uncertainty in global economic and

financial conditions poses a risk that consumers and businesses may defer purchases in response to negative financial events, which could negatively affect product

demand and other related matters. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult

to reduce in the short term and product demand that is highly variable and difficult to forecast. Revenue and the gross margin percentage are affected by the

timing of Intel product introductions and the demand for and market acceptance of Intel's products; actions taken by Intel's competitors, including product offerings

and introductions, marketing programs and pricing pressures and Intel’s response to such actions; and Intel’s ability to respond quickly to technological

developments and to incorporate new features into its products. The gross margin percentage could vary significantly from expectations based on capacity

utilization; variations in inventory valuation, including variations related to the timing of qualifying products for sale; changes in revenue levels; segment product

mix; the timing and execution of the manufacturing ramp and associated costs; start-up costs; excess or obsolete inventory; changes in unit costs; defects or

disruptions in the supply of materials or resources; product manufacturing quality/yields; and impairments of long-lived assets, including manufacturing,

assembly/test and intangible assets. Intel's results could be affected by adverse economic, social, political and physical/infrastructure conditions in countries where

Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and

fluctuations in currency exchange rates. Expenses, particularly certain marketing and compensation expenses, as well as restructuring and asset impairment

charges, vary depending on the level of demand for Intel's products and the level of revenue and profits. Intel’s results could be affected by the timing of closing of

acquisitions and divestitures. Intel's results could be affected by adverse effects associated with product defects and errata (deviations from published

specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust, disclosure and other issues, such as the

litigation and regulatory matters described in Intel's SEC reports. An unfavorable ruling could include monetary damages or an injunction prohibiting Intel from

manufacturing or selling one or more products, precluding particular business practices, impacting Intel’s ability to design its products, or requiring other remedies

such as compulsory licensing of intellectual property. A detailed discussion of these and other factors that could affect Intel’s results is included in Intel’s SEC filings,

including the company’s most recent reports on Form 10-Q, Form 10-K and earnings release.

Rev. 7/17/13

Legal Disclaimers

Administering the Phi in a
Cluster Environment

R. Glenn Brook

Director, Application Acceleration Center of Excellence
National Institute for Computational Sciences
glenn-brook@tennessee.edu

 Paul Peltz Jr

HPC Systems Administrator
National Institute for Computational Sciences
ppeltz@tennessee.edu

mailto:glenn-brook@tennessee.edu
mailto:glenn-brook@tennessee.edu
mailto:glenn-brook@tennessee.edu
mailto:ppeltz@tennessee.edu

The Beacon Project

• Funded by NSF to port and optimize scientific codes to the Intel® Xeon Phi™ coprocessor
• State-funded expansion focuses on energy efficiency, big data applications, and industry
• Example Codes: PSC, H3D, OMEN, ENZO, MADNESS, NWCHEM, Amber, MILC, and MAGMA

Intel, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and /or other countries.

Beacon
Cray CS300-AC™ Cluster Supercomputer

Peak Performance: 210.1 TFLOP/s

Nodes 4 service, 6 I/O, 48 compute

Interconnect FDR IB Fat Tree

Interconnect Bandwidth 56 GB/s(total)

CPU model Intel Xeon E5-2670

CPUs per node 2 8-core, 2.6GHz

Memory Bandwidth 128 GB/s (peak)

RAM per node 256 GB

SSD per node 2 x 480 GB (compute),16 x 300 GB (I/O)

Intel® Xeon Phi Coprocessors per node 4 x 5110P 60-core, 1.053GHz
8 GB GDDR5 RAM

Basic Environment

• Installation
• Diskfull

• CentOS 6.2

• Static IPs

• Workload Manager
• Torque 4.2.6/Moab 7.2

• MPSS 3.1.2
• In the process of upgrading cluster to MPSS 3.2.x (June)

• Site wide 1.3PB Lustre File System
• (/lustre/medusa)

• Local 17TB Lustre on ZFS based SSD file system
• (/lustre/scratch)

3

MPSS Installation Procedures

• Preparing the System

• Set up /etc/hosts to follow this format. Many scripts will depend on
this later.

• Generate ssh keys

• Install OFED Software Stack

4

10.39.20.12 beacon001 beacon001-eth0

10.39.20.13 beacon001-mic0

10.39.20.14 beacon001-mic1

10.39.20.15 beacon002 beacon002-eth0

10.39.20.16 beacon002-mic0

10.39.20.17 beacon002-mic1

MPSS Installation Procedures

• MPSS Stack Installation

• pdsh -w cluster[xxx-xxx] yum -y install --nogpgcheck --noplugins --
disablerepo=* $MPSS_LOCATION/*.rpm

• Install extra RPMS as necessary such as
$MPSS_LOCATION/ofed/*.rpm

• micctrl --initdefaults

• Copy the /etc/mpss/default.conf and /etc/mpss/mic0.conf files
to /etc

• Use these two files as the template for creating a mic-create-
conf.sh script to generate config files for each node

• Create ifcfg-micbr0 and ifcfg-micX files (External Bridging)

• micctrl --resetconfig

5

MPSS Upgrade Procedures

• MPSS Stack Removal

• pdsh -w cluster[xxx-xxx] $MPSS_LOCATION/uninstall.sh

• micctrl --initdefaults on test node

• update template files if necessary

• micctrl --resetconfig

• Upgrade firmware with micflash

6

Torque Prologue/Epilogue

• Prologue

• Set up users home env on MIC

• Copy ssh keys to $TMP

• Build .profile

• Check health of mpssd service and ofed-mic service

• Set up user account

• Export/Mount $TMP, $NODE:/opt/intel, /global/opt, and
/lustre/$USER

• Verify MIC’s /etc/hosts and fix if necessary

• copy over mpiexec.hydra and pmi_proxy to $TMP

7

Torque Prologue/Epilogue

• Epilogue

• Unmount all shared file systems

• Reboot MICs

• service ofed-mic stop

• service mpss restart

• micctrl -Rw

• micctrl -rwf

• service ofed-mic start

• Clean up old processes

8

Health Checking and Monitoring

• Ganglia

• Requires post MIC boot RPM installation currently

• CPU Metrics

• Intel disables these by default

• Our testing determined no measurable effect by having them
enabled

• CPU Metrics can be disabled with “gres=noganglia”

9

Scripting Common Commands

• ssh

• micssh replaces ssh

• adds -i $ssh_key option to ssh

• mpiexec

• micmpiexec replaces mpiexec

• replaces ssh with micssh

• passes the appropriate environment variables

• allows for debuggers such as ddt and totalview

10

Challenges

• Driver upgrade process (2 to 3.1 and 3.1 to 3.2)
• The ever changing default.conf and micX.conf files

• The micctrl gamble
• Intel wants to push everything to using micctrl

• we need a --dry-run flag

• Intel Compilers and Intel MPI

• Kernel Compatibility
• rpmbuild --rebuild

• sufficient for mpss driver

• difficult for OFED 1.5.4.1 (unless you use OFED-3.5)

• SSH Keys

• OFED 1.5.4.1 or 3.5

11

Acknowledgements

We wish to thank the National Science Foundation for their
support of the Beacon project, along with the State of
Tennessee.

Contact Information

Paul Peltz Jr

HPC Systems Administrator
National Institute for Computational Sciences
ppeltz@utk.edu

Vincent C. Betro, Ph.D.

Hans Pabst, Intel

Heinrich Blockhorst, Intel

Cray Users Group—May 5, 2014

OVERVIEW INFORMATION

2

Develop & Parallelize Today for Maximum
Performance

Use One Software Architecture Today. Scale Forward Tomorrow.

Cluster

Multicore
Cluster

Enabling & Advancing Parallelism

High Performance Parallel Programming

Intel tools, libraries and parallel models extend to multicore,
many-core and heterogeneous computing

3

Code

Compiler
Libraries

Parallel Models

Multicore
& Many-core

Cluster

Many-core

Multicore
CPU

Intel®
Xeon Phi™

Coprocessor

Multicore

Multicore
CPU

Preserve Your Development

Investment

Common Tools and Programming Models for Parallelism

4

Multicore

Many-core

Heterogeneous

Computing

Intel® CilkTM Plus

Intel® TBB Offload Pragmas

OpenCL*

OpenMP*

OpenMP*

Coarray

Offload Directives

Intel® MPI

Intel® MKL

C/C++

Fortran

Intel® C/C++ Compiler

Intel® Fortran Compiler

Develop Using Parallel Models that Support Heterogeneous Computing

Intel® MPI Library Overview

 Intel is a leading vendor of MPI
implementations and tools

 Optimized MPI application
performance
 Application-specific tuning

 Automatic tuning

 Low latency
 Industry leading latency

 Interconnect Independence &
Runtime Selection
 Multi-vendor interoperability

 Performance optimized support for the
latest OFED capabilities through DAPL
2.0

 More robust MPI applications
 Seamless interoperability with Intel®

Trace Analyzer and Collector

iWARPiWARP

5

Range of models to meet application needs

Foo()
Main()
Foo()
MPI_*()

Main()
Foo()
MPI_*()

Spectrum of Programming Models and Mindsets

Main()
Foo()
MPI_*()

Main()
Foo()
MPI_*()

Main()
Foo()
MPI_*() Multi-core

(Intel®

Xeon ®)

Many-core

(Intel®

Xeon Phi™)

Multi-Core Centric Many-Core Centric

Multi-Core Hosted

General purpose
serial and parallel

computing

Offload

Codes with highly-
parallel phases

Many Core Hosted

Highly-parallel codes

Symmetric

Codes with balanced
needs

6

Intel® Xeon ®
Intel® Xeon Phi™

Levels of communication speed

Current clusters are not homogenous regarding
communication speed:
– Inter node (InfiniBand*, Ethernet, etc)

– Intra node
 Inter sockets (Quick Path Interconnect)

 Intra socket

 Two additional levels to come with Intel® Xeon
Phi™ coprocessor:
– Host-coprocessor communication

– Inter coprocessor communication

7

Selecting network fabrics

 Intel® MPI automatically selects the best available network fabric
it can find.

– Use I_MPI_FABRICS to select a different
communication device explicitly

 The best fabric is usually based on InfiniBand* (dapl, ofa) for
inter node communication and shared memory for intra node

 Available for Intel® Xeon Phi™ coprocessor:

–shm, tcp, ofa, dapl

– Availability checked in the order shm:dapl,
shm:ofa, shm:tcp (intra:inter)

8

MPI vs OpenMP: What’s the Difference?

OpenMP is used in a shared memory space

Often referred to as threading, allows multiple
tasks to occur simultaneously which are:
– Embarrassingly parallel

– Are working in disjoint areas of memory

– Can have any “intersections” of threads be caught
using atomic or critical sections

Diagrams courtesy of Lawrence Livermore Nat’l Lab https://computing.llnl.gov/tutorials/parallel_comp/#MemoryArch

MPI vs OpenMP: What’s the Difference?

 MPI is used in a distributed memory space

 Often referred to as message passing, allows
multiple chunks of a problem’s domain to be
computed on simultaneously

 Each computer functions alone with the network
acting as the bridges between to update values
on process boundaries between iterations

Diagrams courtesy of Lawrence Livermore Nat’l Lab https://computing.llnl.gov/tutorials/parallel_comp/#MemoryArch

MPI vs OpenMP: What’s the Difference?

 The two paradigms can be used together

One example would be having a few MPI
ranks on each Xeon Phi and then having
many threads spawned by each rank

Another would be to have MPI tasks on CPUs
and offload threaded sections to Xeon Phis

Diagrams courtesy of Lawrence Livermore Nat’l Lab https://computing.llnl.gov/tutorials/parallel_comp/#MemoryArch

Xeon Phi Programming Models

Native Mode
– Everything runs on the MIC

– All libraries need to be recompiled with -mmic

Offload Mode
– Serial portion runs on host

– Parallel portions are offloaded and run on the MIC

Xeon Phi Programming Models

Native Mode
– Everything runs on the MIC

– All libraries need to be recompiled with –mmic

…is all we will discuss here. Offload will be covered
next by Hans, including OpenMP 4.0!

However, we will briefly chat about offload in terms
of having many MPI ranks do it.

CO-PROCESSOR OR HOST MPI

14

Intel MPI

 The installed Intel MPI library implements the
Message Passing Interface, version 2.2 (MPI-
2.2) specifications

 3 Programming models are supported
– Co-processor only model

– Symmetric model

– MPI offload model

 Intel MPI compilers have an extra ‘i’ in their
name: mpiicc, mpiicpc, mpiifort

MPI applications should be launched from the
host compute node using micmpiexec

Coprocessor-only Programming

Model

 MPI ranks on Intel® Xeon
Phi™ coprocessor(only)

 All messages into/out of
coprocessors

 Intel® CilkTM Plus,
OpenMP*, Intel®
Threading Building
Blocks, Pthreads used
directly within MPI
processes

CPU

CPU

Data

MPI

Data

N
e

tw
o

rk

Homogenous network
of many-core CPUs

Build Intel® Xeon Phi™ binary using the Intel® compiler.

Upload the binary to the Intel® Xeon Phi™ coprocessor.

Run instances of the MPI application on Intel® Xeon Phi™
coprocessor nodes.

16

Coprocessor-only Programming Model

 MPI ranks on the Intel® Xeon Phi™ coprocessor(s) only

 MPI messages into/out of the coprocessor(s)

 Threading possible

17

• Build the application for the Intel® Xeon Phi™ coprocessor

 # mpiicc -mmic -o test_hello.MIC test.c

• Launch the application on the coprocessor from host

 # export I_MPI_MIC=enable

 # mpirun -n 2 -host host-mic0 ./test_hello.MIC

• Alternatively: login to the Intel® Xeon Phi™ coprocessor and start the MPI

run there!

• No NFS: Upload the Intel® Xeon Phi™ executable and add working

directory flag

 # scp ./test_hello.MIC host-mic0:/my_mic_dir/

 # mpirun … –wdir /my_mic_dir/ …

17

Using Intel MPI: MIC 2 MIC

• If one MIC card is not sufficient for your domain

decomposition, you may use all MIC cards on the node

or even multiple MIC cards on multiple nodes.

• If you need to use MICs on multiple nodes, you must

request multiple nodes with qsub and check which ones

they are with “cat $PBS_NODEFILE”

• Note that the MIC requires the –wdir argument

Symmetric Programming Model

 MPI ranks on Intel® Xeon
Phi™ Architecture and host
CPUs

 Messages to/from any core

 Intel® CilkTM Plus, OpenMP*,
Intel® Threading Building
Blocks, Pthreads* used
directly within MPI processes

Heterogeneous
network of
homogeneous CPUs

CPU

CPU

Data

MPI

Data

N
e

tw
o

rk

Data

Data

Build binaries by using the resp. compilers targeting Intel® 64
and Intel® Xeon Phi™ Architecture.

Upload the binary to the Intel® Xeon Phi™ coprocessor.

Run instances of the MPI application on different mixed nodes.

19

Symmetric model

 MPI ranks on the coprocessor(s) and host CPU(s)

 MPI messages into/out of the coprocessor(s) and host CPU(s)

 Threading possible

20

• Build the application for Intel®64 and the Intel® Xeon Phi™ Architecture

separately

 # mpiicc -o test_hello test.c

 # mpiicc –mmic -o test_hello.MIC test.c

• Launch the application on the host and the coprocessor

 # export I_MPI_MIC=enable

 # mpirun -n 2 -host <hostname> ./test_hello :

 -n 2 -host host-mic0 ./test_hello.MIC

• No NFS: Upload the Intel® Xeon Phi™ executable and add flag

 # scp ./test_hello.MIC host-mic0:/my_mic_dir/

 # mpirun … : –wdir /my_mic_dir/ …

20

Utilize the POSTFIX env variable

Support for NFS-shared cards

 Assumption: The current working directory is available with
identical path on the coprocessor (e.g. mounted)

 Specify the suffix of the coprocessor binary

 # export I_MPI_MIC_POSTFIX=.MIC

 Specify the node names in a file

 # cat mpi_hosts

 host

 host-mic0

 Execute in symmetric mode on the host and the coprocessor

 # export I_MPI_MIC=enable

 # mpirun –f mpi_hosts –n 4 ./test_hello

 The binary ./test_hello${I_MPI_MIC_POSTFIX} will be used
by mpirun on the coprocessor

21

Utilize the PREFIX env variable

Support for NFS-shared cards

 Assumption: The current working directory is available with
identical path on the coprocessor (e.g. mounted)

 Place the coprocessor binary in a separate directory, but with
identical basename of the host

 # mpiicc –mmic -o ./MIC/test_hello test.c
 Specify the prefix of the coprocessor binary

 # export I_MPI_MIC_PREFIX=./MIC/

 Execute in symmetric mode on the host and the coprocessor

 # export I_MPI_MIC=enable

 # mpirun –f mpi_hosts –n 4 ./test_hello

 The binary ${I_MPI_MIC_PREFIX}./test_hello will be used
by mpirun on the coprocessor

22

Launching an MPI Application with

Manually Specified Hosts

 Launch an MPI application on mic0 of the current
compute node with
o micmpiexec –n 1 –wdir $TMPDIR –host beacon#-
mic0 $TMPDIR/application.MIC

 Launch an MPI application on both mic0 and mic1
of the current compute node with
o micmpiexec –n 1 –wdir $TMPDIR –host beacon#-
mic0 $TMPDIR/application.MIC : -n 1 –wdir
$TMPDIR –host beacon#-mic1
$TMPIDR/application.MIC

 Launch an MPI application on both MICs and the
compute node with
o micmpiexec –n 1 –wdir $TMPDIR –host beacon#-
mic0 $TMPDIR/application.MIC : -n 1 –wdir
$TMPDIR –host beacon#-mic1
$TMPIDR/application.MIC : -n 1 –host beacon#
./application

Launching an MPI Application with

a Machine File

 The machine file needs to be of the form
<host>:<number of ranks>

 Sample machine file named hosts_file:
obeacon11:8

obeacon12:8

obeacon11-mic0:2

obeacon11-mic1:2

obeacon12-mic0:2

obeacon12-mic1:2

 Launch the MPI application using
omicmpiexec –machinefile hosts_file –n 16
./application : -n 8 –wdir $TMPDIR -
genv LD_LIBRARY_PATH
$TMPDIR/lib:/lib64:/lib
$TMPDIR/application.MIC

Launching an MPI Application with

Process Pinning

 export I_MPI_PIN=1

 export I_MPI_PIN_PROCESSOR_LIST="0-6,8-14"

 export I_MPI_DEBUG=4 or 5

Allows you to pin MPI processes to sockets on
the host.

Example of Native Mode MPI

application experiences

Both GROMACS and BLAST are bioinformatics packages used to look at

proteins, lipids, and nucleic acids, often for the purpose of Genomics research

or drug docking research.

Both use the MPI-OpenMP hybrid model of execution, where the problem is

decomposed in an embarrassingly parallel fashion over several MPI ranks and

then the consequent divisions are threaded in execution.

This approach allows the developers to take advantage of the large number of

threads available on the Intel Xeon Phi along with allowing them to decompose

the problem well so it fits on a given coprocessor.

MPI on HOST + OFFLOAD on PHI

27

MPI+Offload Programming Model

 MPI ranks on Intel® Xeon®
processors (only)

 All messages into/out of
host CPUs

 Offload models used to
accelerate MPI ranks

 Intel® CilkTM Plus,
OpenMP*, Intel®
Threading Building
Blocks, Pthreads* within
Intel® Xeon Phi™
coprocessors

Homogenous network
of heterogeneous nodes

CPU

CPU

MPI

Offload

Offload

N
e

tw
o

rk

Data

Data

28

Build Intel® 64 executable with included offload by using the Intel®
compiler.

Run instances of the MPI application on the host, offloading code
onto the coprocessor.

 Advantages of more cores and wider SIMD for certain applications

MPI+Offload Programming Model

 MPI ranks on the host CPUs only

 MPI messages into/out of the host CPUs

 Intel® Xeon Phi™ coprocessor as an accelerator

29

• Compile for MPI and internal offload

 # mpiicc –o test test.c

• Latest compiler compiles by default for offloading if offload construct is

detected!

– Switch off by -no-offload flag

• Execute on host(s) as usual
 # mpirun -n 2 ./test

• MPI processes will offload code for acceleration

29

Launching an MPI Application with Each

Rank Offloading to a Different Card

When specifying the target for offload by a given
rank, one can use mic:N, where N=0,1,2,3… for
as many Xeon Phis as are on the system.

Despite the fact that the pragmas are pre-
processed, one can use N as a variable to allow it
to depend on which MPI rank is calling the
offload at runtime.

MPI+Offload Support

How to control mapping of threads on the
coprocessor?
– How do I avoid that offload of first MPI process

interferes with offload of second MPI process, i.e.
by using identical cores/threads on the
coprocessor?

– Default: No special support (now). Offloads from
MPI processes handled by system like offloads
from independent processes (or users).

Define thread affinity manually per single MPI
process:
 # export OMP_NUM_THREADS=8

mpirun –env KMP_AFFINITY=proclist=[1-8],explicit –n 1

 –host myHost ./test_mpioffload :

 –env KMP_AFFINITY=proclist=[9-16],explicit –n 1

 –host myHost ./test_mpioffload : ...

 ... 31

MPI+Offload Support (ctd.)

Alternative: Use KMP_PLACE_THREADS and
Intel® MPI rank number PMI_RANK in a
wrapper script:

 # cat ./wrapoffload.sh

 cores=$(((OMP_NUM_THREADS+3)/4))

 offset=$((cores*PMI_RANK))

 export KMP_PLACE_THREADS=${cores}Cx4T,${offset}O

 ./test_mpioffload

 # export OMP_NUM_THREADS=8

 # mpirun –n 4 –host myHost ./wrapoffload.sh

 The mapping will be:

 MPI rank 0: KMP_PLACE_THREADS=2Cx4T,0O == [1-8]

 MPI rank 1: KMP_PLACE_THREADS=2Cx4T,2O == [9-16]

32

OFFLOADING TO MULTIPLE CARDS

FROM ONE OR MORE HOST

PROCESSES

33

Simulataneous Computing using

OpenMP

Any OMP call blocks until the statement
completes, unless the “nowait” modifier is
used

 To use both the host and MIC simultaneously,
multiple threads need to be executed on host
– One or more threads that contain an offload call

– Other threads have the host do some work

With OpenMP, this achieved using OpenMP
task calls

Offloading to multiple cards from

one host process

 Unoptimized fashion: http://software.intel.com/en-
us/forums/topic/393649

//Allocate memory on each of N mics

for(N=0; N<=1; N++){

#pragma offload_transfer target(mic:N) nocopy(pi: alloc_if(1) free_if(0)) signal(&test1[N])

}

for(N=0; N<=1; N++){

#pragma offload target(mic:N) in(N,num_steps,step,sum) inout(pi[N]) signal(&test[N]) wait(&test1[N])

 {

 #pragma omp parallel for reduction(+:sum)

 for (i=0;i<iter; i++)

 <parallel loop body>

 }

}

//Free memory on mic

for(N=0; N<=1; N++){

#pragma offload_transfer target(mic:N) nocopy(pi: alloc_if(0) free_if(1)) wait(&test[N])
}

http://software.intel.com/en-us/forums/topic/393649
http://software.intel.com/en-us/forums/topic/393649
http://software.intel.com/en-us/forums/topic/393649
http://software.intel.com/en-us/forums/topic/393649

Offloading to multiple cards from

one host process

 According to OpenMP 4.0 (and in my opinion to be
pedantic and make sure it behaves):

#pragma omp parallel

#pragma omp single

{

#pragma omp task

 #pragma omp target(mic) OR #pragma offload target(mic)

 {

 <various serial code>

 #pragma omp parallel for

 for (int i=0; i<limit; i++)

 <parallel loop body>

 }

#pragma omp task

 {<host code or another offload>}

}

Example of Offload Mode OpenMP

application experiences

NAMD (NAnoscale Molecular Dynamics program)

–freeware molecular dynamics simulation package

–uses Charm++ parallel programming model

–simulates large systems (millions of atoms)

Charm++ has been ported to the Intel Xeon Phi, and
NAMD is being run across several Intel Xeon Phis in
offload mode on Beacon and other resources.

http://en.wikipedia.org/wiki/Freeware
http://en.wikipedia.org/wiki/Molecular_dynamics
http://en.wikipedia.org/wiki/Molecular_dynamics
http://en.wikipedia.org/wiki/Charm++
http://en.wikipedia.org/wiki/Charm++
http://en.wikipedia.org/wiki/Charm++
http://en.wikipedia.org/wiki/Charm++
http://en.wikipedia.org/wiki/Charm++
http://en.wikipedia.org/wiki/Charm++
http://en.wikipedia.org/wiki/Charm++
http://en.wikipedia.org/wiki/Atom
http://en.wikipedia.org/wiki/Atom

Useful Environment Variables

 The following applies only to offload mode
execution

All environment variables defined on the host
are replicated on the MIC in offload mode

 To modify specific MIC vaules,
MIC_ENV_PREFIX must be defined

 For csh: setenv ENV_VARIABLE VALUE

 For sh: export ENV_VARIABLE=VALUE

OMP_NUM_THREADS=8

OMP_STACKSIZE=16M

MIC_ENV_PREFIX=MIC_

MIC_OMP_NUM_THREADS=96

MIC_OMP_STACKSIZE=4M

Useful Environment Variables part 2

 OFFLOAD_REPORT can be useful when trying to
debug code that offloads
o OFFLOAD_REPORT=1

oGives basic information (e.g. CPU time) about whether
code blocks marked for offload are running on the host or
coprocessor

o OFFLOAD_REPORT=2

oGives detailed information (e.g. CPU time and data transfer)
about the offload process

 Use MIC_HOST_LOG to output traces to a file
o MIC_HOST_LOG=~/app/mic.log

MPI+OPENMP ON CO-PROCESSOR

(OR HOST)

40

Running Hybrid Code in Native Mode

• One major advantage of running on the Xeon Phi is
that despite its lower clock speed per core, there
are an egregious number of threads that can be
spawned from LOCAL MPI ranks on a card

• Here, we will discuss a paradigm for doing this as
well as how to determine the optimal combination
of MPI ranks and threads such that your domain
fits on the cards and the threads remain saturated
throughout computation

Traditional Cluster Computing

• MPI is »the« portable cluster solution

• Parallel programs use MPI over cores inside the
nodes

– Homogeneous programming model

– "Easily" portable to different sizes of clusters

– No threading issues like »False Sharing«
(common cache line)

– Maintenance costs only for one parallelization model

42

Traditional Cluster Computing

(contd.)

 Hardware trends

– Increasing number of cores per node - plus cores on
co-processors

– Increasing number of nodes per cluster

 Consequence: Increasing number of MPI processes per application

 Potential MPI limitations

– Memory consumption per MPI process, sum exceeds
the node memory

– Limited scalability due to exhausted interconnects (e.g.
MPI collectives)

– Load balancing is often challenging in MPI

43

Hybrid Computing

 Combine MPI programming model with threading model

 Overcome MPI limitations by adding threading:

– Potential memory gains in threaded code

– Better scalability (e.g. less MPI communication)

– Threading offers smart load balancing strategies

 Result: Maximize performance by exploitation of hardware (incl.

co-processors)

44

45

Example: MPI Load Imbalance

4 Cores per Node

Nodes

Proc 1 Proc 0 Proc 3 Proc 2

Proc 4 Proc 5

i

j
...

Difficult to

implement load

balancing in

nodes with MPI

Dark red =

high load

46

Example: Hybrid Load Balance

Nodes

T
h

re
a

d
 0

i

...

T
h

re
a

d
 1

T
h

re
a

d
 2

T
h

re
a

d
 3

T
h

re
a

d
 0

T
h

re
a

d
 1

T
h

re
a

d
 2

T
h
re

a
d
 3

Proc 0

Interleaved

OpenMP threads

improve total

load balancing

j

Dark red =

high load
4 Threads per Node on 4 Cores

Options for Thread Parallelism

Intel® Math Kernel Library

OpenMP*

Intel® Threading Building Blocks

Intel® Cilk™ Plus

Pthreads* and other threading libraries
Programmer control

Ease of use / code
maintainability

Choice of unified programming to target Intel® Xeon and Intel® Xeon Phi™!

Intel® MPI Support of Hybrid Codes

 Intel® MPI is strong in mapping control

 Sophisticated default or user controlled
– I_MPI_PIN_PROCESSOR_LIST for pure MPI
– For hybrid codes (default, takes precedence):
 I_MPI_PIN_DOMAIN =<size>[:<layout>]
 <size> =

 omp Adjust to OMP_NUM_THREADS
 auto #CPUs/#MPIprocs (default)
 <n> Number

 <layout> =
 platform According to BIOS numbering
 compact Close to each other
 scatter Far away from each other

 Naturally extends to hybrid codes on Intel® Xeon Phi™

48

* Although locality issues apply as well, multicore threading runtimes are by far more expressive, richer, and with lower overhead.

Intel® MPI Support of Hybrid Codes

 Define I_MPI_PIN_DOMAIN to split logical processors into non-
overlapping subsets

 Mapping rule: 1 MPI process per 1 domain

49

Pin OpenMP threads inside

the domain with
KMP_AFFINITY

(or in the code)

Intel® MPI Environment Support

 The execution command mpirun of Intel® MPI reads
argument sets from the command line:
– Sections between „:“ define an argument set

(alternatively a line in a configfile specifies a set)

– Host, number of nodes, but also environment can be set
independently in each argument set

mpirun –env I_MPI_PIN_DOMAIN 4 –host myXEON ...
 : -env I_MPI_PIN_DOMAIN 16 –host myMIC

 Adapt the important environment variables to the
architecture
– OMP_NUM_THREADS, KMP_AFFINITY for OpenMP

– CILK_NWORKERS for Intel® CilkTM Plus

50

* Although locality issues apply as well, multicore threading runtimes are by far more expressive, richer, and with lower overhead.

Coprocessor-only and Symmetric

Support

 Full hybrid support on Intel® Xeon from Intel ® MPI extends to the
Intel ® Xeon Phi™ coprocessor

 KMP_AFFINITY=balanced (only on the coprocessor) in addition
to scatter and compact

 KMP_PLACE_THREADS=<n>Cx<m>T,<o>O (<n>-Cores times <m>-

Threads with <o>-cores Offset, only on coprocessor) in addition

to KMP_AFFINITY for exact but still generic thread placement

 Recommendations:

– Explicitly control where MPI processes and
threads run in a hybrid application (according to
threading model)

– Avoid splitting cores among MPI processes, i.e.
I_MPI_PIN_DOMAIN should be a multiple of 4

– Try different KMP_AFFINITY and/or
KMP_PLACE_THREADS settings for your application

51

OS Thread Affinity Mapping

 The Intel® Xeon Phi™ coprocessor has N cores, each with 4
hardware thread contexts, for a total of M=4*N threads

 The OS maps “procs” to the M hardware threads:

 The OS runs on proc 0, which lives on core (N-1)!

– Rule of thumb: Avoid using OS procs 0, (M-3), (M-2), and (M-1) to
avoid contention with the OS

• Only less than 2% resources unused (1/#cores)
– Especially important when using the offload model due to data

transfer activity!

– But: Non-offload applications may slightly benefit from running on
core (N-1)

52

MIC core 0 1 … (N-2) (N-1)

MIC HW thread 0 1 2 3 0 1 … 3 0 1 2 3

OS “proc” 1 2 3 4 5 6 … (M-4) 0 (M-3) (M-2) (M-1)

OS Thread Affinity Mapping (ctd.)

 OpenMP library maps to the OS “procs”

 Examples (for non-offload apps which benefit from core N-1):
– KMP_AFFINITY=compact,granularity=thread,compact

– KMP_AFFINITY=balanced,granularity=thread

OMP_NUM_THREADS=n=M/2

53

MIC core 0 1 … (N-2) (N-1)

MIC HW thread 0 1 2 3 0 1 … 3 0 1 2 3

OS “proc” 1 2 3 4 5 6 … (M-4) 0 (M-3) (M-2) (M-1)

OpenMP thread 0 1 2 3 4 5 … (M-5) (M-4) (M-3) (M-2) (M-1)

MIC core 0 1 … (N-2) (N-1)

MIC HW thread 0 1 2 3 0 1 … 3 0 1 2 3

OS “proc” 1 2 3 4 5 6 … (M-4) 0 (M-3) (M-2) (M-1)

OpenMP thread 0 1 3 4 … (n-2) (n-1)

OS Thread Affinity Mapping (ctd.)

 Use balanced affinity to minimize False Sharing!

– KMP_PLACE_THREADS=2Cx2T,0O

– but still with implicit default mapping scatter,granularity=thread

– KMP_PLACE_THREADS=2Cx2T,0O and KMP_AFFINITY=balanced

54

MIC core 0 1 … (N-2) (N-1)

MIC HW thread 0 1 2 3 0 1 … 3 0 1 2 3

OS “proc” 1 2 3 4 5 6 … (M-4) 0 (M-3) (M-2) (M-1)

OpenMP thread 0 2 1 3

MIC core 0 1 … (N-2) (N-1)

MIC HW thread 0 1 2 3 0 1 … 3 0 1 2 3

OS “proc” 1 2 3 4 5 6 … (M-4) 0 (M-3) (M-2) (M-1)

OpenMP thread 0 1 2 3

Additional Resources

Other documentation, presentations, and
even a community forum can be found at
– http://software.intel.com/mic-developer

– http://www.openmp.org/mp-
documents/OpenMP4.0.0.pdf

Let’s do a Trace Analyzer Lab!

http://software.intel.com/en-us/articles/intelr-xeon-
phitm-advanced-workshop-labs

http://software.intel.com/mic-developer
http://software.intel.com/mic-developer
http://software.intel.com/mic-developer
http://software.intel.com/mic-developer
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

Contact

Vincent Betro
vbetro@tennessee.edu

Help
help@nics.utk.edu

mailto:vbetro@tennessee.edu
help@nics.utk.edu

OpenMP* 4.0 for HPC in a Nutshell

C U G 2 0 1 4 · L u g a n o

Hans Pabst, May 5th 2014
[Slides by Dr. M. Klemm, Intel Corp.]

*Other brands and names are the property of their respective owners.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components,
software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult
other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products.

Copyright © 2013 Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, and Cilk are trademarks of
Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

OpenMP API

• De-facto standard, OpenMP 4.0 out since July 2013

• API for C/C++ and Fortran for shared-memory
parallel programming

• Based on directives (pragmas in C/C++)

• Portable across vendors and platforms

• Supports various types of parallelism

Evolution of Hardware (at Intel)

Images not intended to reflect actual die sizes

64-bit Intel®
Xeon®

processor

Intel® Xeon®
processor

5100 series

Intel® Xeon®
processor

5500 series

Intel® Xeon®
processor

5600 series

Intel® Xeon®
processor E5-
2600v2 series

Intel®
Xeon Phi™ Co-

processor
7120P

Frequency 3.6GHz 3.0GHz 3.2GHz 3.3GHz 2.7GHz 1.238MHz

Core(s) 1 2 4 6 12 61

Thread(s) 2 2 8 12 24 244

SIMD width
128

(2 clock)
128

(1 clock)
128

(1 clock)
128

(1 clock)
256

(1 clock)
512

(1 clock)

Levels of Parallelism in OpenMP 4.0

Cluster Group of computers
communicating through fast interconnect

Coprocessors/Accelerators Special compute devices
attached to the local node through special interconnect

Node Group of processors
communicating through shared memory

Socket Group of cores
communicating through shared cache

Core Group of functional units
communicating through registers

Hyper-Threads Group of thread contexts sharing functional units

Superscalar Group of instructions sharing functional units

Pipeline Sequence of instructions sharing functional units

Vector Single instruction using multiple functional units

OpenMP 4.0 SIMD

OpenMP 4.0 for Devices

OpenMP 4.0 Affinity OpenMP 4.0 Affinity OpenMP 4.0 Affinity OpenMP 4.0 Affinity

OpenMP Intro in Three Slides (1)

#pragma omp parallel

{

 #pragma omp for

 for (i = 0; i<N; i++)

 {…}

 #pragma omp for

 for (i = 0; i< N; i++)

 {…}

} join

distribute work

distribute work

barrier

fork

barrier

OpenMP Intro in Three Slides (2)

double a[N];

double l,s = 0;

#pragma omp parallel for reduction(+:s) private(l) \

 schedule(static,4)

for (i = 0; i<N; i++)

{

 l = log(a[i]);

 s += l;

}

7

distribute work

b
a
rr

ie
r

s=0

s’=0 s’’=0 s’’’=0 s’’’’=0

s’+= s’’ s’’’+= s’’’’

s’+= s’’’

s = s’

OpenMP Intro in Three Slides (3)

#pragma omp parallel

#pragma omp single

for(e = l->first; e ; e = e->next)

 #pragma omp task

 process(e);

fork

join

OpenMP 4.0 for Devices

Device Model

• OpenMP 4.0 supports accelerators/coprocessors

• Device model:
• One host

• Multiple accelerators/coprocessors of the same kind

Host
Coprocessors

OpenMP 4.0 for Devices - Constructs

• Transfer control [and data] from the host to the device

• Syntax (C/C++)
#pragma omp target [data] [clause[[,] clause],…]

structured-block

• Syntax (Fortran)
!$omp target [data] [clause[[,] clause],…]

structured-block

!$omp end target [data]

• Clauses
device(scalar-integer-expression)

map(alloc | to | from | tofrom: list)

if(scalar-expr)

Execution Model

• The target construct transfers the control flow
to the target device
• Transfer of control is sequential and synchronous

• The transfer clauses control direction of data flow

• Array notation is used to describe array length

• The target data construct creates a scoped
device data environment
• Does not include a transfer of control

• The transfer clauses control direction of data flow

• The device data environment is valid through the lifetime of
the target data region

• Use target update to request data transfers
from within a target data region

Execution Model

• Data environment is lexically scoped
• Data environment is destroyed at closing curly brace

• Allocated buffers/data are automatically released

Host Device

#pragma omp target \

alloc(…)

1

from(…)

4

to(…)

2

pA

 map(alloc:...) \

 map(to:...) \

{ ... }

3

 map(from:...)

Example

#pragma omp target data device(0) map(alloc:tmp[:N]) map(to:input[:N)) map(from:res)

 {

#pragma omp target device(0)

#pragma omp parallel for

 for (i=0; i<N; i++)

 tmp[i] = some_computation(input[i], i);

 update_input_array_on_the_host(input);

#pragma omp target update device(0) to(input[:N])

#pragma omp target device(0)

#pragma omp parallel for reduction(+:res)

 for (i=0; i<N; i++)

 res += final_computation(input[i], tmp[i], i)

 }

h
o
s
t

ta
rg

e
t

h
o
s
t

ta
rg

e
t

h
o
s
t

teams Construct

• Support multi-level parallel devices

• Syntax (C/C++):
#pragma omp teams [clause[[,] clause],…]
structured-block

• Syntax (Fortran):
!$omp teams [clause[[,] clause],…]
structured-block

• Clauses
num_teams(integer-expression)
num_threads(integer-expression)
default(shared | none)
private(list), firstprivate(list)
shared(list), reduction(operator : list)

Offloading SAXPY to a Coprocessor

• SAXPY

int main(int argc, const char* argv[]) {

 float *x = (float*) malloc(n * sizeof(float));

 float *y = (float*) malloc(n * sizeof(float));

 // Define scalars n, a, b & initialize x, y

#pragma omp target data map(to:x[0:n])

 {

#pragma omp target map(tofrom:y)

#pragma omp teams num_teams(num_blocks) num_threads(nthreads)

 for (int i = 0; i < n; i += num_blocks){

 for (int j = i; j < i + num_blocks; j++) {

 y[j] = a*x[j] + y[j];

 } }

 }

 free(x); free(y); return 0;

}

 all do the same

Offloading SAXPY to a Coprocessor

• SAXPY: Coprocessor/Accelerator

int main(int argc, const char* argv[]) {

 float *x = (float*) malloc(n * sizeof(float));

 float *y = (float*) malloc(n * sizeof(float));

 // Define scalars n, a, b & initialize x, y

#pragma omp target data map(to:x[0:n])

{

#pragma omp target map(tofrom:y)

#pragma omp teams num_teams(num_blocks) num_threads(bsize)

#pragma omp distribute

 for (int i = 0; i < n; i += num_blocks){

#pragma omp parallel for

 for (int j = i; j < i + num_blocks; j++) {

 y[j] = a*x[j] + y[j];

 } }

} free(x); free(y); return 0; }

 all do the same

 workshare (w/o barrier)

 workshare (w/ barrier)

Offloading SAXPY to a Coprocessor

• SAXPY: Combined Constructs int main(int argc, const char* argv[]) {

 float *x = (float*) malloc(n * sizeof(float));

 float *y = (float*) malloc(n * sizeof(float));

 // Define scalars n, a, b & initialize x, y

#pragma omp target map(to:x[0:n]) map(tofrom:y)

 {

#pragma omp teams distribute parallel for \

 num_teams(num_blocks) num_threads(bsize)

 for (int i = 0; i < n; ++i){

 y[i] = a*x[i] + y[i];

 }

 }

 free(x); free(y); return 0;

}

OpenMP 4.0 Affinity

NUMA is here to Stay…

• (Almost) all multi-socket compute servers are NUMA
systems

• Different access latencies for different memory locations

• Different bandwidth observed for different memory locations

• Example: Intel® Xeon E5-2600v2 Series processor

Xeon® E5-2600v2 Xeon® E5-2600v2

Thread Affinity – Why It Matters?

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00
1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

G
B

/s
ec

 [
h

ig
h

er
 is

 b
et

te
r]

of threads/cores

STREAM Triad, Intel® Xeon E5-2697v2

compact, par scatter, par compact, seq scatter, seq

Thread Affinity – Processor Binding

Binding strategies depends on machine and the app

• Putting threads far, i.e. on different packages
• (May) improve the aggregated memory bandwidth

• (May) improve the combined cache size

• (May) decrease performance of synchronization constructs

• Putting threads close together, i.e. on two
adjacent cores which possible share the cache
• (May) improve performance of synchronization constructs

• (May) decrease the available memory bandwidth and cache
size (per thread)

Thread Affinity in OpenMP* 4.0

• OpenMP 4.0 introduces the concept of places…
• set of threads running on one or more processors

• can be defined by the user

• pre-defined places available:
• threads one place per hyper-thread

• cores one place exists per physical core

• sockets one place per processor package

… and affinity policies…
• spread spread OpenMP threads evenly among the places

• close pack OpenMP threads near master thread

• master collocate OpenMP thread with master thread

• … and means to control these settings
• Environment variables OMP_PLACES and OMP_PROC_BIND

• clause proc_bind for parallel regions

p0

p1

p2

p3

p4

p5

p6

p7

p0

p1

p2

p3

p4

p5

p6

p7

p0

p1

p2

p3

p4

p5

p6

p7

Thread Affinity Example

• Example (Intel® Xeon Phi™ Coprocessor):
Distribute outer region, keep inner regions close

OMP_PLACES=cores(8); OMP_NUM_THREADS=4,4

#pragma omp parallel proc_bind(spread)
proc_bind(close) #pragma omp parallel

We’re Almost Through

• OpenMP 4.0 is a major leap for OpenMP
• New kind of parallelism has been introduced

• Support for heterogeneous systems with coprocessor devices

• OpenMP 4.0 has more to offer!
• Improved Fortran 2003 support

• User-defined reductions

• Task dependencies

• Cancellation

• Video series including this content
• http://software.intel.com/en-us/videos/part-1-of-5-openmp-

40-for-simd-and-affinity-features-with-intel-xeon-processors-
and-intel

The last Slide…

• OpenMP 4.0 support in Intel® Compiler
• Introduced Intel® Composer XE 2013 SP1

• SIMD Constructs (except combined constructs)

• OpenMP for devices (except combined constructs)

• OpenMP Affinity

• Feature-complete in Intel® Composer XE 2015

• Intel® Software Development Tools 2015 Beta
• Try out: http://bit.ly/sw-dev-tools-2015-beta

Optimization Techniques for

Implicit and Explicit Vectorization

CUG 2014, Lugano, Switzerland

What is SIMD?

Scalar Code

 Executes code one element at a time.

Vector Code

 Executes code multiple elements at a time.

 Single Instruction Multiple Data.

[Scalar] 1 elem at a time
addss xmm1, xmm2

[SSE] 4 elems at a time
addps xmm1, xmm2

[AVX] 8 elems at a time

vaddps ymm1, ymm2, ymm3

[MIC / AVX-512] 16 elems at a time

vaddps zmm1, zmm2, zmm3

2

Preparing Code for SIMD

3

Identify Hotspots

Integer

or FP?

Can

convert

to SP?

Change to SP

Re-layout data for SIMD efficiency

Align data structures

Convert code to SIMD form

Follow SIMD coding guidelines

Optimize memory access patterns

and prefetch (if appropriate)

Further optimization

Integer FP

Yes

No

Precision is
important:
impacts the
SIMD width.

Session Plan

Hands-off

 Data Layout and Alignment

 Implicit Vectorization

 Explicit Vectorization

 SIMD Intrinsics

Hands-on

 Explicit Vectorization with OpenMP* 4.0

4

Session Plan

Hands-off

 Data Layout and Alignment

 Implicit Vectorization

 Explicit Vectorization

 SIMD Intrinsics

Hands-on

 Explicit Vectorization with OpenMP* 4.0

5

Data Layout – Why It’s Important

Instruction-Level

 Hardware is optimized for contiguous loads/stores.

 Support for non-contiguous accesses differs with hardware.

(e.g. AVX2/KNC gather)

Memory-Level

 Contiguous memory accesses are cache-friendly.

 Number of memory streams can place pressure on prefetchers.

6

Data Layout – Common Layouts

Array-of-Structs (AoS)

 Pros:

Good locality of {x, y, z}.

1 memory stream.

 Cons:

Potential for gather/scatter.

Struct-of-Arrays (SoA)

 Pros:

Contiguous load/store.

 Cons:

Poor locality of {x, y, z}.

3 memory streams.

7

Hybrid (AoSoA)

 Pros:

Contiguous load/store.

1 memory stream.

 Cons:

Not a “normal” layout.

x x x x x x

y y y y y y

z z z z z z

x x

x x

x x

y y

y y

y y

z z

z z

z z

x x

x x

x x

y y

y y

y y

z z

z z

z z

Data Alignment – Why It’s Important

8

0 1 2 3 … … 6 7 8 9 … … … … … …

Cache Line 0 Cache Line 1

0 1 2 3 6 7 8 9

Aligned Load

 Address is aligned.

 One cache line.

 One instruction.

Unaligned Load

 Address is not aligned.

 Potentially multiple cache lines.

 Potentially multiple instructions.

Data Alignment – Why It’s Important

Cache Associativity

 L1 and L2 on Knights Corner are 8-way associative.

 L1: 8 cache lines that are 32KB/8 = 4KB apart.

 L2: 8 cache lines that are 512KB/8 = 64KB apart.

Set Conflicts

 Occur when references are a multiple of 4K (L1) or 64K (L2) apart.

 Look for high cache miss rate, even though working set < cache capacity.

 Solution is to pad arrays appropriately.

9

Data Alignment – Sample Applications

1) Align Memory

 _mm_malloc(bytes, 64) / !dir$ attributes align:64

2) Access Memory in an Aligned Way

 for (i = 0; i < N; i++) { array[i] … }

3) Tell the Compiler

 #pragma vector aligned / !dir$ vector aligned

 __assume_aligned(p, 16) / !dir$ assume_aligned (p, 16)

 __assume(i % 16 == 0) / !dir$ assume (mod(i, 16) .eq. 0)

10

Data Alignment – Real-life Applications

0 1 2 3 4 5 6 7

8 9 …

Data

Data Alignment – Real-life Applications

0 1 2 3 4 5 6 7

8 9 …

Data

Data Alignment – Real-life Applications

0 1 2 3 4 5 6 7 8 9

…

Data

Halo

Data Alignment – Real-life Applications

0 1 2 3 4 5 6 7 8 9

…

Data

Halo

Data Alignment – Real-life Applications

0 1 2 3 4 5 6 7 8 9 …

Not strictly

necessary…

Data

Halo

Padding

Data Alignment – Real-life Applications

0 1 2 3 4 5 6 7 8 9 …

Not strictly

necessary…

Data

Halo

Padding

Session Plan

Hands-off

 Data Layout and Alignment

 Implicit Vectorization

 Explicit Vectorization

 SIMD Intrinsics

Hands-on

 Explicit Vectorization with OpenMP* 4.0

17

Implicit Vectorization

 Very powerful, but a compiler cannot make unsafe assumptions.

18

int* g_size;

void not_vectorizable

(float* a, float* b, float* c, int* ind) {

 for (int i = 0; i < *g_size; i++) {

 int j = ind[i];

 c[j] += a[i] + b[i];

 }

}

 Unsafe Assumptions:

 a, b and c point to different arrays.

 Value of global g_size is loop-invariant.

 ind[i] is a one-to-one mapping.

Implicit Vectorization

 Very powerful, but a compiler cannot make unsafe assumptions.

19

int* g_size;

void vectorizable

(float* restrict a, float* restrict b, float* restrict c, int* restrict ind) {

 int size = *g_size;

 #pragma ivdep

 for (int i = 0; i < size; i++) {

 int j = ind[i];

 c[j] += a[i] + b[i];

 }

}

 Safe Assumptions:

 a, b and c point to different arrays. (restrict)

 Value of global g_size is loop-invariant. (pointer dereference outside loop)

 ind[i] is a one-to-one mapping. (#pragma ivdep)

Implicit Vectorization – Improving Performance

Getting code to vectorize is only half the battle

 “LOOP WAS VECTORIZED” != “the code is optimal”

 Vectorized code can be slower than the scalar equivalent.

Compiler will always choose correctness over performance

 “Hints” and pragmas can’t possibly cover all the situations…

 … but we can usually rewrite loop bodies to assist the compiler.

20

Implicit Vectorization – Common Code Transformations

21

Pattern: Memory access guarded by conditional.

Issue: Compiler cannot assume memory is safe to access.

Original: if (condition) a[i] += result;

Transform: a[i] += (condition) ? result : 0;

Pattern: Error checking within a vectorizable loop.

Issue: Number of loop iterations unknown at compile time.

Original: if (error condition) { exit }

Transform: if (error condition) { error = true; } … if (error) exit

Implicit Vectorization – Common Code Transformations

22

Pattern: Loading neighbour values, with a branch for boundary conditions.

Issue(s): Compiler may generate a gather; array[position-1] may be unsafe.

Original: double left = (column > 0) ? array[position -1] : boundary

Transform: Pad array with appropriate halo data: avoids branch and ensures load is safe.

Pattern: Loop contains OpenMP atomics, intrinsics, inline assembly

Issue: Compiler cannot vectorize these things.

Original: for (…) {
 // vectorizable
 // non-vectorizable
}

Transform: Separate vectorizable and non-vectorizable code into two loops.

Session Plan

Hands-off

 Data Layout and Alignment

 Implicit Vectorization

 Explicit Vectorization

 SIMD Intrinsics

Hands-on

 Explicit Vectorization with OpenMP* 4.0

23

Explicit Vectorization

Compiler Responsibilities

 Allow programmer to declare that code can and should be run in SIMD.

 Generate the code the programmer asked for.

Programmer Responsibilities

 Correctness (e.g. no dependencies, no invalid memory accesses).

 Efficiency (e.g. alignment, loop order, masking).

24

Explicit Vectorization – Motivating Example 1

 The two += operators have different meaning from each other.

 The programmer should be able to express those differently.

 The compiler has to generate different code.

 The variables i, p and step have different “meaning” from each other.

25

float sum = 0.0f;

float *p = a;

int step = 4;

#pragma omp simd reduction(+:sum) linear(p:step)

for (int i = 0; i < N; ++i) {

 sum += *p;

 p += step;

}

Explicit Vectorization – Motivating Example 2

 mandel() function is called from a loop over X/Y points.

 We would like to vectorize that outer loop.

 Compiler creates a vectorized function that acts on a vector of 16 c values.

26

#pragma omp declare simd simdlen(16)

uint32_t mandel(fcomplex c)

{

 uint32_t count = 1; fcomplex z = c;

 for (int32_t i = 0; i < max_iter; i += 1) {

 z = z * z + c;

 int t = cabsf(z) < 2.0f;

 count += t;

 if (!t) { break;}

 }

 return count;

}

Explicit Vectorization – Performance Impact

M. Klemm, A. Duran, X. Tian, H. Saito, D. Caballero, and X. Martorell, “Extending OpenMP with Vector Constructs for Modern
Multicore SIMD Architectures. In Proc. of the Intl. Workshop on OpenMP”, pages 59-72, Rome, Italy, June 2012. LNCS 7312.

3.66x

2.04x 2.13x

4.34x

1.47x

2.40x

0.00x

0.50x

1.00x

1.50x

2.00x

2.50x

3.00x

3.50x

4.00x

4.50x

5.00x

Mandelbrot Volume

Rendering

BlackScholes Fast Walsh Perlin Noise SGpp

R
e

la
ti

v
e

 S
p

e
e

d
-u

p

(h
ig

h
e

r
is

 b
e

tt
e

r)

ICC auto-vec

ICC SIMD directive

Explicit Vectorization – Array Notation

“Long Form”
C[0:N] = A[0:N] + B[0:N];

D[0:N] = C[0:N] * C[0:N];

“Short Form”
for (i = 0; i < N; i += V) {

 C[i:V] = A[i:V] + B[i:V];

 D[i:V] = C[i:V] * C[i:V];

}

28

 Long form is more elegant, but short form is better for performance.

 Imagine each array assignment as a for loop:

 For large N, long form will not keep C[0:N] in cache.

 For appropriate V, short form keeps C[i:V] in registers.

 Some differences between Intel® Cilk™ Plus notation (C/C++) and Fortran 90.

Explicit Vectorization – OpenMP* SIMD Loops

29

safelen (length) Maximum distance between two iterations executed

concurrently by a SIMD instruction.

linear (list[:linear-step]) List items are private and have a linear relationship

with respect to the iteration space.

aligned (list[:alignment]) List items are aligned to a platform-dependent value

(or the value of the optional parameter).

See: OpenMP 4.0 Specification http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

private (list), lastprivate (list), reduction (reduction-identifier:list) and collapse (n)

are also supported, with functionality matching that of omp for.

#pragma omp simd / !$omp simd => for/do loop is a SIMD loop.

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

Explicit Vectorization – OpenMP* SIMD Functions

30

simdlen (length) Maximum number of concurrent arguments to the

function (i.e. maximum SIMD width).

uniform (argument-list) List items have the same value for all SIMD lanes,

and can therefore be broadcast.

inbranch

notinbranch

Function always called inside a conditional.

Function never called inside a conditional.

See: OpenMP 4.0 Specification http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

linear (argument-list[:linear-step]) and aligned (argument-list[:alignment])

are also supported, with functionality matching that of omp simd.

#pragma omp declare simd / !$omp declare simd => function will be called from a SIMD loop.

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

Implicit vs Explicit Vectorization – Important Differences

Implicit

 Automatic dependency analysis.

(e.g. recognises SIMD reductions)

 Recognizes idioms with data dependencies.

(e.g. array[i++] = x; -> vcompress)

 Non-inline functions will be scalarized.

 Limited support for outer-loop vectorization

(only with –O3).

Explicit

 No dependency analysis.

(e.g. SIMD reductions must be declared)

 Recognizes idioms without data

dependencies.

 Non-inline functions can be vectorized.

 Outer loops can be vectorized.

31

Session Plan

Hands-off

 Data Layout and Alignment

 Implicit Vectorization

 Explicit Vectorization

 SIMD Intrinsics

Hands-on

 Explicit Vectorization with OpenMP* 4.0

32

SIMD Intrinsics – An Introduction

33

Intrinsic Functions

 Substituted by compiler for specific instruction(s).

 Higher level of abstraction than assembly.

SIMD Intrinsics

 Explicit vectorization at an instruction level.

 Direct manipulation of SIMD and mask registers.

// Scalar code for vector add.

for (int i = 0; i < N; i++) {

 c[i] = a[i] + b[i];

}

// SIMD intrinsics for vector add.

for (int i = 0; i < N; i += 8) {

 __m512 ai = _mm512_load_pd(&a[i]);

 __m512 bi = _mm512_load_pd(&b[i]);

 __m512 ci = _mm512_add_pd(ai, bi);

 _mm512_store_pd(&c[i], ci);

}

SIMD Intrinsics – When and How?

34

When to Use Intrinsics

 You think you can beat the compiler (after asm inspection).

 Your code absolutely needs to run as fast as possible.

 Nothing else works -- intrinsics should be your last resort!

Common Use-cases

 Utilizing particular instructions (e.g. bit-manipulation, cryptography).

 “Horizontal” vectorization (e.g. computing dot products of SIMD registers).

 Exploiting memory layout knowledge (e.g. AoS to SoA transpose).

SIMD Intrinsics – Intel® Intrinsics Guide

35

Available at: http://software.intel.com/sites/landingpage/IntrinsicsGuide/

Expand any intrinsic for a
detailed description.

Filter by ISA.

Filter by
functionality.

http://software.intel.com/sites/landingpage/IntrinsicsGuide/
http://software.intel.com/sites/landingpage/IntrinsicsGuide/
http://software.intel.com/sites/landingpage/IntrinsicsGuide/

SIMD Intrinsics – Performance Impact

36

“Ninja” Performance Gap

 The gap between naïve code and the best-optimized code.

 Average speed-up of 24x on Sandy Bridge and Knights Ferry.

Closing the Gap

 Apply well-known algorithmic techniques (e.g. cache blocking).

 Use a recent compiler, and explicit vectorization features.

 Average speed-up of only ~1.3x from intrinsics.

N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyanskiy, M. Girkar and P. Dubey, “Can Traditional Programming
Bridge the Ninja Performance Gap for Parallel Computing Applications?”, in Proceedings of the International Symposium on
Computer Architecture (ISCA), Portland, OR, 2012

Hands-on:

Explicit Vectorization with OpenMP* 4.0
Accelerating N-Body Codes with SIMD Instructions

37

Optimization Techniques for Implicit and Explicit Vectorization

38

Summary

 Intel® Composer XE provides many alternative methods for vectorization.

 Generating vector code is not complicated:

 Compiler reports / tools help with auto-vec.

 Explicit vectorization an industry standard (OpenMP* 4.0).

 Extensions to existing languages allow you to target vector architectures while keeping

your source code readable, maintainable, and familiar.

Legal Disclaimers
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY

INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES

NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR

WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY

RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE

INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND

THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT

OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER

OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or

instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current

characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go

to: http://www.intel.com/design/literature.htm

Knights Landing and other code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release.

Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of

Intel's internal code names is at the sole risk of the user

Intel, Look Inside, Xeon, Intel Xeon Phi, Pentium, Cilk, VTune and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2014 Intel Corporation

http://www.intel.com/design/literature.htm

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2,
SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimers

Optimization Notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and

MobileMark*, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to

vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product

when combined with other products. For more information go to http://www.intel.com/performance.

Estimated Results Benchmark Disclaimer:

Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or

configuration may affect actual performance.

Software Source Code Disclaimer:

Any software source code reprinted in this document is furnished under a software license and may only be used or copied in accordance with the terms of that license.

 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons

to whom the Software is furnished to do so, subject to the following conditions:

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR

OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

Legal Disclaimers

http://www.intel.com/performance

The above statements and any others in this document that refer to plans and expectations for the third quarter, the year and the future are forward-looking

statements that involve a number of risks and uncertainties. Words such as “anticipates,” “expects,” “intends,” “plans,” “believes,” “seeks,” “estimates,” “may,” “will,”

“should” and their variations identify forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also

identify forward-looking statements. Many factors could affect Intel’s actual results, and variances from Intel’s current expectations regarding such factors could

cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be the important

factors that could cause actual results to differ materially from the company’s expectations. Demand could be different from Intel's expectations due to factors

including changes in business and economic conditions; customer acceptance of Intel’s and competitors’ products; supply constraints and other disruptions affecting

customers; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Uncertainty in global economic and

financial conditions poses a risk that consumers and businesses may defer purchases in response to negative financial events, which could negatively affect product

demand and other related matters. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult

to reduce in the short term and product demand that is highly variable and difficult to forecast. Revenue and the gross margin percentage are affected by the

timing of Intel product introductions and the demand for and market acceptance of Intel's products; actions taken by Intel's competitors, including product offerings

and introductions, marketing programs and pricing pressures and Intel’s response to such actions; and Intel’s ability to respond quickly to technological

developments and to incorporate new features into its products. The gross margin percentage could vary significantly from expectations based on capacity

utilization; variations in inventory valuation, including variations related to the timing of qualifying products for sale; changes in revenue levels; segment product

mix; the timing and execution of the manufacturing ramp and associated costs; start-up costs; excess or obsolete inventory; changes in unit costs; defects or

disruptions in the supply of materials or resources; product manufacturing quality/yields; and impairments of long-lived assets, including manufacturing,

assembly/test and intangible assets. Intel's results could be affected by adverse economic, social, political and physical/infrastructure conditions in countries where

Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and

fluctuations in currency exchange rates. Expenses, particularly certain marketing and compensation expenses, as well as restructuring and asset impairment

charges, vary depending on the level of demand for Intel's products and the level of revenue and profits. Intel’s results could be affected by the timing of closing of

acquisitions and divestitures. Intel's results could be affected by adverse effects associated with product defects and errata (deviations from published

specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust, disclosure and other issues, such as the

litigation and regulatory matters described in Intel's SEC reports. An unfavorable ruling could include monetary damages or an injunction prohibiting Intel from

manufacturing or selling one or more products, precluding particular business practices, impacting Intel’s ability to design its products, or requiring other remedies

such as compulsory licensing of intellectual property. A detailed discussion of these and other factors that could affect Intel’s results is included in Intel’s SEC filings,

including the company’s most recent reports on Form 10-Q, Form 10-K and earnings release.

Rev. 7/17/13

Legal Disclaimers

Optimizing for MPI*/OpenMP* on

Intel® Xeon Phi™ Coprocessors

CUG 2014, Lugano, Switzerland

Frequently Asked Questions

2

Levels of Parallelism

3

Cluster Group of computers

communicating through fast interconnect

Coprocessors/Accelerators Special compute devices

attached to the local node through special interconnect

Node Group of processors

communicating through shared memory

Socket Group of cores

communicating through shared cache

Core Group of functional units

communicating through registers

Hyper-Threads Group of thread contexts sharing functional units

Superscalar Group of instructions sharing functional units

Pipeline Sequence of instructions sharing functional units

Vector Single instruction using multiple functional units

Levels of Parallelism in OpenMP* 4.0

4

Cluster Group of computers

communicating through fast interconnect

Coprocessors/Accelerators Special compute devices

attached to the local node through special interconnect

Node Group of processors

communicating through shared memory

Socket Group of cores

communicating through shared cache

Core Group of functional units

communicating through registers

Hyper-Threads Group of thread contexts sharing functional units

Superscalar Group of instructions sharing functional units

Pipeline Sequence of instructions sharing functional units

Vector Single instruction using multiple functional units

Levels of Parallelism in MPI* + OpenMP* 4.0

5

Cluster Group of computers

communicating through fast interconnect

Coprocessors/Accelerators Special compute devices

attached to the local node through special interconnect

Node Group of processors

communicating through shared memory

Socket Group of cores

communicating through shared cache

Core Group of functional units

communicating through registers

Hyper-Threads Group of thread contexts sharing functional units

Superscalar Group of instructions sharing functional units

Pipeline Sequence of instructions sharing functional units

Vector Single instruction using multiple functional units

Summary

6

Compilation

 Single toolchain for CPU and MIC; can often just add “-mmic”.

 Support for industry standards (including MPI* and OpenMP*).

Optimization

 Biggest benefits from tuning memory and vector behaviour.

 Straightforward parallel tuning techniques still apply.

 Intel tools can help to identify optimization opportunities (and are always improving).

 “Dual-Transforming-Tuning Advantage”; optimize for processor and coprocessor.

Legal Disclaimers
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY

INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES

NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR

WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY

RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE

INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND

THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT

OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER

OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or
instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from

future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current

characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go
to: http://www.intel.com/design/literature.htm

Knights Landing and other code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release.

Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of

Intel's internal code names is at the sole risk of the user

Intel, Look Inside, Xeon, Intel Xeon Phi, Pentium, Cilk, VTune and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2014 Intel Corporation

http://www.intel.com/design/literature.htm

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2,
SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability,

functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more

information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimers

Optimization Notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and

MobileMark*, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to

vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product

when combined with other products. For more information go to http://www.intel.com/performance.

Estimated Results Benchmark Disclaimer:

Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or

configuration may affect actual performance.

Software Source Code Disclaimer:

Any software source code reprinted in this document is furnished under a software license and may only be used or copied in accordance with the terms of that license.

 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software

without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons

to whom the Software is furnished to do so, subject to the following conditions:

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR

OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Legal Disclaimers

http://www.intel.com/performance

The above statements and any others in this document that refer to plans and expectations for the third quarter, the year and the future are forward-looking

statements that involve a number of risks and uncertainties. Words such as “anticipates,” “expects,” “intends,” “plans,” “believes,” “seeks,” “estimates,” “may,” “will,”

“should” and their variations identify forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also

identify forward-looking statements. Many factors could affect Intel’s actual results, and variances from Intel’s current expectations regarding such factors could

cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be the important

factors that could cause actual results to differ materially from the company’s expectations. Demand could be different from Intel's expectations due to factors

including changes in business and economic conditions; customer acceptance of Intel’s and competitors’ products; supply constraints and other disruptions affecting

customers; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Uncertainty in global economic and

financial conditions poses a risk that consumers and businesses may defer purchases in response to negative financial events, which could negatively affect product

demand and other related matters. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult

to reduce in the short term and product demand that is highly variable and difficult to forecast. Revenue and the gross margin percentage are affected by the

timing of Intel product introductions and the demand for and market acceptance of Intel's products; actions taken by Intel's competitors, including product offerings

and introductions, marketing programs and pricing pressures and Intel’s response to such actions; and Intel’s ability to respond quickly to technological

developments and to incorporate new features into its products. The gross margin percentage could vary significantly from expectations based on capacity

utilization; variations in inventory valuation, including variations related to the timing of qualifying products for sale; changes in revenue levels; segment product

mix; the timing and execution of the manufacturing ramp and associated costs; start-up costs; excess or obsolete inventory; changes in unit costs; defects or

disruptions in the supply of materials or resources; product manufacturing quality/yields; and impairments of long-lived assets, including manufacturing,

assembly/test and intangible assets. Intel's results could be affected by adverse economic, social, political and physical/infrastructure conditions in countries where

Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and

fluctuations in currency exchange rates. Expenses, particularly certain marketing and compensation expenses, as well as restructuring and asset impairment

charges, vary depending on the level of demand for Intel's products and the level of revenue and profits. Intel’s results could be affected by the timing of closing of

acquisitions and divestitures. Intel's results could be affected by adverse effects associated with product defects and errata (deviations from published

specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust, disclosure and other issues, such as the

litigation and regulatory matters described in Intel's SEC reports. An unfavorable ruling could include monetary damages or an injunction prohibiting Intel from

manufacturing or selling one or more products, precluding particular business practices, impacting Intel’s ability to design its products, or requiring other remedies

such as compulsory licensing of intellectual property. A detailed discussion of these and other factors that could affect Intel’s results is included in Intel’s SEC filings,

including the company’s most recent reports on Form 10-Q, Form 10-K and earnings release.

Rev. 7/17/13

Legal Disclaimers

Intel® Xeon Phi™ Product Family
Intel ® ITAC

Heinrich Bockhorst, May 5th 2014

Software and Services Group
Intel Corporation

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Introduction – What is Tracing?

• Record program execution

– Program events such as function enter/exit, communication

• 1:1 protocol of the actual program execution

– Sampling gathers statistical information

• Accurate data

• Easily get loads of data

2

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Event based approach

• Event = time stamp + thread ID + description

– Function entry/exit

– Messages

– Collective operations

– Counter samples

• Strengths:

– Predict detailed program behavior

– Record exact sequence of program states – keep timing
consistent

– Collect information about exchange of messages: at what
times and in which order

– Detect temporal dependencies

3

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Compare the event
timelines of two
communication profiles

Blue = computation
Red = communication

Chart showing how the
MPI processes interact

Intel® Trace Analyzer and Collector

4

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Intel® Trace Analyzer and Collector Overview

• Intel® Trace Analyzer and
Collector helps the developer:
– Visualize and understand parallel

application behavior
– Evaluate profiling statistics and

load balancing
– Identify communication hotspots

• Features

– Event-based approach
– Low overhead
– Excellent scalability
– Comparison of multiple profiles
– Powerful aggregation and filtering

functions
– Fail-safe MPI tracing
– Provides API to instrument user

code
– MPI correctness checking
– Idealizer

5

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Profiles: Flat Function Profile

• Statistics about functions

6

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Timelines: Event Timeline

• Get impression of program structure

• Display functions, messages and collective operations for each
process/thread along time-axis

• Retrieval of detailed event information

7

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Communication Profiles

• Statistics about point-to-point or collective communication

• Generic matrix supports grouping by several attributes in each
dimension
Sender, Receiver, Data volume per msg, Tag, Communicator, Type

• Available attributes: Count, Bytes transferred, Time, Transfer rate

8

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

View - zooming

9

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Aggregation Example

10

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. 11

Full ITAC Functionality on Intel® Xeon Phi™

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

ITAC Prerequisites

• Set ITAC environment (per user)
source /opt/intel/itac/8.1.2.033/intel64/bin/itacvars.sh impi4

– Identical for host and the coprocessor

• No NFS: Upload ITAC library manually
sudo scp /opt/intel/itac/8.1.2.033/mic/slib/libVT.so host-

mic0:/lib64/

12

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

ITAC Usage with Intel® Xeon Phi™
Coprocessor

• Run with –trace flag (without linkage) to create a trace file

– MPI+Offload
mpirun –trace -n 2 ./test

– Coprocessor only

 # mpirun –trace -n 2 -wdir /tmp

 -host host-mic0 ./test_hello.MIC

– Symmetric

 # mpirun –trace -n 2 -host michost./test_hello :

 -wdir /tmp -n 2 -host host-mic0

 ./test_hello.MIC

• Flag „-trace“ will implicitly pre-load libVT.so
(which finally calls libmpi.so to execute the MPI call)

• Set VT_LOGFILE_FORMAT=stfsingle to create a single trace

13

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

ITAC Usage with Intel® Xeon Phi™:
Compilation Support

• Compile and link with „–trace“ flag

 # mpiicc -trace -o test_hello test.c

 # mpiicc –trace –mmic -o test_hello.MIC test.c

– Linkage of libVT library

• Compile with –tcollect flag

 # mpiicc –tcollect -o test_hello test.c

 # mpiicc –tcollect –mmic -o test_hello.MIC test.c

– Linkage of libVT library

– Will do a full instrumentation of your code, i.e. All user functions
will be visible in the trace file

– Maximal insight, but also maximal overhead

• Use the VT API of ITAC to manually instrument your code.

• Run Intel® MPI program as usual without „-trace“ flag

 # mpirun ...

14

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Improving Load Balance: Real World Case

15

Host
16 MPI procs x
1 OpenMP thread

Coprocessor
8 MPI procs x
28 OpenMP threads

Collapsed data
per node and
coprocessor

Too high load on Host
= too low load on Coprosseor

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Improving Load Balance: Real World Case

16

Collapsed data
per node and
coprocessor

Host
16 MPI procs x
1 OpenMP thread

Coprocessor
24 MPI procs x
8 OpenMP threads

Too low load on Host
= too high load on Coprocessor

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Improving Load Balance: Real World Case

17

Collapsed data
per node and
coprocessor

Host
16 MPI procs x
1 OpenMP thread

Coprocessor
16 MPI procs x
12 OpenMP thrds

Perfect balance
Host load = Coprocessor load

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Ideal Interconnect Simulator (Idealizer)

• What is the Ideal Interconnect Simulator?

– Using a ITAC trace of an MPI application, simulate it under
ideal conditions

 Zero network latency

 Infinite network bandwidth

 Zero MPI buffer copy time

 Infinite MPI buffer size

– Only limiting factors are concurrency rules, e.g.,

 A message can not be received before it is sent

 An All-to-All collective may end only when the last
thread starts

18

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Ideal Interconnect Simulator (Idealizer)

Actual trace

Idealized
Trace

19

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Building Blocks: Elementary Messages

MPI_Recv

MPI_Isend MPI_Isend P1

P2

Early Send /
Late Receive

MPI_Isend

MPI_Recv

P1

P2

Late Send /
Early Receive

MPI_Recv

zero duration

zero duration

MPI_Isend

zero duration

MPI_Recv

Load imbalance

20

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Building Blocks: Collective Operations

Actual trace
(Gigabit Ethernet)

Simulated trace
(Ideal interconnect) Same timescale in both figures

Same
MPI_Alltoallv

Legend:
257 = MPI_Alltoallv
506 = User_Code

21

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Application Imbalance Diagram: Total

22

"calculation"

"load imbalance"

"interconnect" Faster network

Change parallel
decomposition

Change algorithm

MPI

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Application Imbalance Diagram: Breakdown

23

MPI_Recv
MPI_Allreduce

MPI_Alltoallv
"load imbalance"

"interconnect"

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Online Resources

• Intel® MPI Library product page
www.intel.com/go/mpi

• Intel® Trace Analyzer and Collector product page
www.intel.com/go/traceanalyzer

• Intel® Clusters and HPC Technology forums
http://software.intel.com/en-us/forums/intel-clusters-and-hpc-
technology/

• Intel® Xeon Phi™ Coprocessor Developer
Community
http://software.intel.com/en-us/mic-developer

24

http://www.intel.com/go/mpi
http://www.intel.com/go/traceanalyzer
http://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology/
http://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology/
http://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology/
http://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology/
http://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology/
http://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology/
http://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology/
http://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology/
http://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology/
http://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology/
http://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology/
http://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology/
http://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology/
http://software.intel.com/en-us/mic-developer
http://software.intel.com/en-us/mic-developer
http://software.intel.com/en-us/mic-developer
http://software.intel.com/en-us/mic-developer
http://software.intel.com/en-us/mic-developer
http://software.intel.com/en-us/mic-developer

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Summary

• The ease of use of Intel® MPI and related tools like
the Intel Trace Analyzer and Collector extends from
the Intel Xeon architecture to the Intel® Xeon
Phi™ coprocessor.

25

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Legal Disclaimer & Optimization Notice

•INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO

ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND

INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR

WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,

COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

•Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,

operations and functions. Any change to any of those factors may cause the results to vary. You should consult other

information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance

of that product when combined with other products.

•Copyright © 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core, VTune, and Cilk are

trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

26

Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Products Division

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. 27

VTune for
Intel® Xeon Phi™ Coprocessors

Heinrich Bockhorst, May 5th 2014

Software and Services Group
Intel Corporation

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Agenda

Start tuning on host

Overview of Intel® VTune™ Amplifier XE

Efficiency metrics

Problem areas

2

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Performance Analysis Methodology
Optimization: A Top-down Approach

System Config,
BIOS, OS,

Network I/O,
Disk I/O,

Database Tuning,
etc.

Application Design
Algorithmic Tuning

Driver Tuning
Parallelization

Cache/Memory
Instructions

SIMD
others

System

Application

Processor

3

Use top down approach

Understand application
and system characteristics

– Use appropriate tools at
each level

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Performance Analysis Methodology
Optimization: A Top-down Approach

System Config,
BIOS, OS,

Network I/O,
Disk I/O,

Database Tuning,
etc.

Application Design
Algorithmic Tuning

Driver Tuning
Parallelization

Cache/Memory
Instructions

SIMD
others

System

Application

Processor

VTune™ Amplifier
XE can help here

4

Use top down approach

Understand application
and system characteristics

– Use appropriate tools at
each level

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Start with host-based profiling to
identify vectorization/ parallelism/
offload candidates

Start with representative/reasonable workloads!

Use Intel® VTune™ Amplifier XE to gather hot spot data

• Tells what functions account for most of the run time

• Often, this is enough

– But it does not tell you much about program structure

5

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Start with host-based profiling to
identify vectorization/ parallelism/
offload candidates

Start with representative/reasonable workloads!

Use Intel® VTune™ Amplifier XE to gather hot spot data

• Tells what functions account for most of the run time

• Often, this is enough

– But it does not tell you much about program structure

6

Alternately, profile functions & loops using Intel® Composer XE

• Build with options

 -profile-functions -profile-loops=all -profile-loops-

report=2

• Run the code (which may run slower) to collect profile data
• Look at the resulting dump files, or open the xml file with the data

viewer loopprofileviewer.sh located in the compiler ./bin directory

• Tells you
which loops and functions account for the most run time
how many times each loop executes (min, max and average)

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Correctness/Performance Analysis of
Parallel code
Intel® Inspector XE and thread-reports in VTune™ Amplifier XE
are not available on the Intel® Xeon Phi™ coprocessor

So…

7

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Correctness/Performance Analysis of
Parallel code
Intel® Inspector XE and thread-reports in VTune™ Amplifier XE
are not available on the Intel® Xeon Phi™ coprocessor

So…

• Use Intel Inspector XE on your code with offload disabled (on host)
to identify correctness errors (e.g., deadlocks, races)

– Once fixed, then enable offload and continue debugging on the coprocessor

8

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Correctness/Performance Analysis of
Parallel code
Intel® Inspector XE and thread-reports in VTune™ Amplifier XE
are not available on the Intel® Xeon Phi™ coprocessor

So…

• Use Intel Inspector XE on your code with offload disabled (on host)
to identify correctness errors (e.g., deadlocks, races)

– Once fixed, then enable offload and continue debugging on the coprocessor

• Use VTune Amplifier XE’s parallel performance analysis tools to find
issues on the host by running your program with offload disabled

– Fix everything you can

– Then study scaling on the coprocessor using lessons from host tuning to
further optimize parallel performance

– Be wary of synchronization across more than a handful of threads

– Pay attention to load balance.

9

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Agenda

Start tuning on host

Overview of Intel® VTune™ Amplifier XE

Efficiency metrics

Problem areas

10

 Copyright© 2014, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization
Notice

Intel® VTune™ Amplifier XE
Tune Applications for Scalable Multicore Performance

• Fast, Accurate Performance Profiles
– Hotspot (Statistical call tree)
– Hardware-Event Based Sampling

• Thread Profiling
– Visualize thread interactions on timeline

– Balance workloads

• Easy set-up
– Pre-defined performance profiles
– Use a normal production build

• Compatible
– Microsoft*, GCC*, Intel compilers

– C/C++, Fortran, Assembly, .NET*
– Latest Intel processors

and compatible processors1

• Find Answers Fast
– Filter out extraneous data
– View results tied to source/assembly lines

– Event multiplexing

• Windows* or Linux*
– Visual Studio* Integration (Windows)
– Standalone user interface and command line
– 32 and 64-bit

11

1 IA-32 and Intel® 64 architectures.
Many features work with compatible processors.
Event based sampling requires a genuine Intel Processor.

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

VTune™ Amplifier XE visualizes performance

12

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

VTune™ Amplifier XE visualizes performance

13

 Instructions Navigator New Open Properties New Open Compare

 Project Result

Toolbar

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

VTune™ Amplifier XE visualizes performance

14

Project

Navigator

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

VTune™ Amplifier XE visualizes performance

15

Result Display

Tabs

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

VTune™ Amplifier XE visualizes performance

16

Result Analysis
Type

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

VTune™ Amplifier XE visualizes performance

17

Result Viewpoint

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

VTune™ Amplifier XE visualizes performance

18

Viewpoint
Alternates

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

VTune™ Amplifier XE visualizes performance

19

Result Components

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

VTune™ Amplifier XE visualizes performance

20

Grid Pane

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

VTune™ Amplifier XE visualizes performance

21

Grid Pane

Grouping pull-down

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

VTune™ Amplifier XE visualizes performance

22

Stack

Pane

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

VTune™ Amplifier XE visualizes performance

23

Timeline

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

VTune™ Amplifier XE visualizes performance

24

Filter/Options

Bar

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

VTune™ Amplifier XE visualizes performance

25

5/7/2014

Source View /

Per line localization

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

VTune™ Amplifier XE visualizes performance

26

5/7/2014

Source View /

View / Hot spot
Navigation controls

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

VTune™ Amplifier XE visualizes performance

27

5/7/2014

Assembly View /

View / Hot spot
Navigation controls

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

VTune™ Amplifier XE visualizes performance

28

5/7/2014

Assembly View /

Assembly
groupings

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

For event collection the coprocessor is
treated as a special HW architecture

29

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Project properties provides the means
to invoke data collection by target type

30

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Launch Application serves many uses,
from host/offload to native execution

31

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Search directories have been reorganized to

speed symbol resolution during finalization

32

• Enumerate source directories under this tab

• Put library paths here

Notable coprocessor library paths:
 /lib/firmware/mic
 /usr/linux-k1om-4.7/linux-k1om/lib64
 /opt/intel/composerxe/lib/mic
 /opt/intel/composerxe/tbb/lib/mic
 /opt/intel/composerxe/mkl/lib/mic
 /opt/intel/mpi-rt/4.1.0/mic

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

General Exploration runs a set of
events to drive top-down analysis

33

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Agenda

Start tuning on host

Overview of Intel® VTune™ Amplifier XE

Efficiency metrics

Problem areas

34

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Cycles Per Instruction (CPI), a standard
measure, has some special kinks

• Threads on each Intel® Xeon™ Phi core share a clock

• If all 4 HW threads are active, each gets ¼ total cycles

• Multi-stage instruction decode requires two threads
to utilize the whole core – one thread only gets half

• With two ops/per cycle (U-V-pipe dual issue):

35

5/7/2014

Threads
per Core

Best CPI
per Core

1 1.0

2 0.5

3 0.5

4 0.5

Threads
per Core

Best CPI
per Core

Best CPI
per Thread

1 x 1.0 = 1.0
2 x 0.5 = 1.0
3 x 0.5 = 1.5
4 x 0.5 = 2.0

• To get thread CPI, multiply by the active threads

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

As an efficiency metric, CPI must be
considered carefully: it IS a ratio

• Changes in CPI absent major code changes can
indicate general latency gains/losses

• Note the effect on CPI from applied optimizations

• Reduce high CPI through optimizations that target
latency

• Better prefetch

• Increase data reuse through better blocking

Metric Formula Investigate if

CPI per
Thread

CPU_CLK_UNHALTED/
INSTRUCTIONS_EXECUTED

> 4.0, or increasing

CPI per
Core

(CPI per Thread) / Number of
hardware threads used

> 1.0, or increasing

36

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Two more examples why absolute CPI
value is less important than changes

• Scaling data from a typical lab workload:

• Observed CPIs from several tuned workloads:

Metric 1
hardware
thread /
core

2
hardware
threads /
core

3
hardware
threads /
core

4
hardware
threads /
core

CPI per
Thread

5.24 8.80 11.18 13.74

CPI per
Core

5.24 4.40 3.73 3.43

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

37

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Efficiency Metric: Compute to Data
Access Ratio
• Measures an application’s computational density,

and suitability for Intel® Xeon Phi™ coprocessors

• Increase computational density through
vectorization and reducing data access (see cache
issues, also, DATA ALIGNMENT!)

Metric Formula Investigate if

Vectorization
Intensity

VPU_ELEMENTS_ACTIVE /
VPU_INSTRUCTIONS_EXECUTED

L1 Compute to
Data Access
Ratio

VPU_ELEMENTS_ACTIVE /
DATA_READ_OR_WRITE

< Vectorization
Intensity

L2 Compute to
Data Access
Ratio

VPU_ELEMENTS_ACTIVE /
DATA_READ_MISS_OR_
WRITE_MISS

< 100x L1 Compute
to Data Access Ratio

38

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Agenda

Start tuning on host

Overview of Intel® VTune™ Amplifier XE

Efficiency metrics

Problem areas*

*tuning suggestions requiring deeper understanding of architectural tradeoffs
and application data handling details are highlighted with this “ninja” notation

39

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Problem Area: L1 Cache Usage
• Significantly affects data access latency and
therefore application performance

• Tuning Suggestions:
– Software prefetching

– Tile/block data access for cache size

– Use streaming stores

– If using 4K access stride, may be experiencing conflict
misses

– Examine Compiler prefetching (Compiler-generated L1
prefetches should not miss)

Metric Formula Investigate if

L1
Misses

DATA_READ_MISS_OR_WRITE_MISS +
L1_DATA_HIT_INFLIGHT_PF1

L1 Hit
Rate

(DATA_READ_OR_WRITE – L1 Misses) /
DATA_READ_OR_WRITE

< 95%

40

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Problem Area: Data Access Latency
• Significantly affects application performance

• Tuning Suggestions:
– Software prefetching

– Tile/block data access for cache size

– Use streaming stores

– Check cache locality – turn off prefetching and use
CACHE_FILL events - reduce sharing if needed/possible

– If using 64K access stride, may be experiencing conflict
misses

Metric Formula Investigate if

Estimated
Latency
Impact

(CPU_CLK_UNHALTED
 – EXEC_STAGE_CYCLES
 – DATA_READ_OR_WRITE)
 / DATA_READ_OR_WRITE_MISS

>145

41

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Problem Area: TLB Usage
• Also affects data access latency and therefore

application performance

• Tuning Suggestions:
– Improve cache usage & data access latency

– If L1 TLB miss/L2 TLB miss is high, try using large pages

– For loops with multiple streams, try splitting into multiple
loops

– If data access stride is a large power of 2, consider
padding between arrays by one 4 KB page

Metric Formula Investi-
gate if:

L1 TLB miss ratio DATA_PAGE_WALK/DATA_READ_OR_WRITE > 1%

L2 TLB miss ratio LONG_DATA_PAGE_WALK
 / DATA_READ_OR_WRITE

> .1%

L1 TLB misses per
L2 TLB miss

DATA_PAGE_WALK / LONG_DATA_PAGE_WALK > 100x

42

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Problem Area: VPU Usage

• Indicates whether an application is vectorized
successfully and efficiently

• Tuning Suggestions:
– Use the Compiler vectorization report!

– For data dependencies preventing vectorization, try using
Intel® Cilk™ Plus #pragma SIMD (if safe!)

– Align data and tell the Compiler!

– Restructure code if possible: Array notations, AOS->SOA

Metric Formula Investigate if

Vectorization
Intensity

VPU_ELEMENTS_ACTIVE /
VPU_INSTRUCTIONS_EXECUTED

<8 (DP),
<16(SP)

43

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Problem Area: Memory Bandwidth

• Can increase data latency in the system or become
a performance bottleneck

• Tuning Suggestions:

– Improve locality in caches

– Use streaming stores

– Improve software prefetching

Metric Formula Investigate if

Memory
Bandwidth

(UNC_F_CH0_NORMAL_READ +
UNC_F_CH0_NORMAL_WRITE+
UNC_F_CH1_NORMAL_READ +
UNC_F_CH1_NORMAL_WRITE) X
64/time

 < 80GB/sec
(practical peak
140GB/sec)

(with 8 memory
controllers)

44

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Final caution: coprocessor collections
can generate dense volumes of data
Example: DGEMM on 60+ cores

Tip: Use a CPU Mask to reduce data volume while
maintaining equivalent accuracy.

45

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Summary

• Vectorization, Parallelism, and Data locality are
critical to good performance for the Intel® Xeon
Phi™ Coprocessor

• Event names can be misleading – we recommend
using the metrics given in this presentation or our
tuning guide at http://software.intel.com/en-
us/articles/optimization-and-performance-tuning-
for-intel-xeon-phi-coprocessors-part-2-
understanding

• Intel® VTune™ Amplifier XE supports collecting all
of the above metrics, as well as providing special
analysis types like General Exploration and
Memory Bandwidth

46

http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Please return your evaluation
forms!

47

5/7/2014

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core,
VTune, and Cilk are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimer & Optimization Notice

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

48

48

