Changing Needs/Solutions/Roles

Rajeeb Hazra

Vice President, Data Center Group
General Manager, Enterprise & High Performance Computing Platforms
Intel Corporation
Three Decades of High Performance Computing

Vertically integrated

Cray - 1 (1975)
250 MFLOPS

- Fewer fast proprietary processors
- Custom software
- ~$5-8M System Cost
- Government labs

Connection Machine - 2 (1987)
2.5 GFLOPS

- Unix, VMS and proprietary programming models
- ~$5M System Cost
- Scientific & Commercial

Beowulf Cluster (1996)
1+ GFLOPS

- Commodity compute, network, & storage
- Standard Linux & parallel programming models
- ~$50K System cost
- Government Labs, Academia & Commercial

Democratized HPC
Intel’s Role: The x86 “Ecosystem”

The Past: ‘00–’05
Ad Hoc: Few, incompatible HPC system vendors
Intel: supply silicon

The Present: ‘06–Today
ICR Platform Spec: ecosystem of many compatible system & apps
Specification delivered to
Intel: enable interoperability

Is the Future More of the Present?
Technology Disruptions
- Integration
- Storage
- Re-architecture
- Software Transformation

Intensified Competition
- OpenPOWER™
- ARM®
- Indigenous CPU interests

Increased Demand
- New users & usages...
- Cloud makes HPC more accessible
- PayPal™
 - Real-time analytics using HPC

Channel Challenges
- Increasing complexity
- Software Fragmentation
- Differentiation
- New market makers
Intel’s HPC Scalable System Framework (SSF)

A design foundation enabling wide range of highly workload-optimized solutions

Small clusters to Supercomputers

Compute and Data-Centric Computing

Standards-Based Programmability

Intel® Xeon® Processors
Intel® Xeon Phi™ Coprocessors
In Package Memory

Intel® True Scale Fabric
Intel® Omni-Path Fabric
Intel® Ethernet
Intel® Silicon Photonics Technology

Next-generation NVM
Intel® SSDs
Intel® Lustre*-based Solutions

Intel® Software Tools
Intel Cluster Software
SSF: Enabling Configurability & Scalability from components to racks to clusters

- Intel Xeon or Xeon Phi processors based on workloads
- Compute flexibly aggregated
- Low latency compute to compute interconnect

- I/O Topologies for high performance
- Configurable I/O bandwidth director switch
- Burst buffer to decouple storage from I/O
SSF: Accommodating New Compute Paradigms

Today
- Multi-Core
- Many-Core

Next
- Integrating Mixed Cores

The Future
- Integrating FPGA, Accelerators….
SSF: Re-architecting The Memory-Storage Hierarchy

Today
- Processor
 - Local Memory
 - SSD Storage
 - Parallel File System (Hard Drive Storage)
 - Faster Checkpointing
 - Quicker Recovery
 - App Performance

Future
- Processor
 - Local Application Storage
 - Local Processing Node Temporal Storage
 - Faster Checkpointing
 - Quicker Recovery
 - App Performance

Better *data-intensive app performance and energy efficiency*

Compared to standard DDR memory
SSF: End The “Big Data vs. HPC” Debate

A single, broadly configurable, framework to meet both requirements from a hardware perspective.
Unlike accelerators, optimizations for Intel® Xeon Phi™ and Intel® Xeon® products share the same languages, directives, libraries, and tools.
Modernizing Community Codes
Together With You

Intel Parallel Computing Centers
50+ Centers
14 countries
80+ codes
Heading To The Era of SSF

ANL selected Intel and Cray for Extreme Scale HPC

Aurora
Argonne National Laboratory
>180PF
April ‘15

Trinity
NNSA†
>40PF
July ‘14

Cori
NERSC‡
>30PF
April ’14

Theta
Argonne National Laboratory
>8.5PF
>$200M

† Cray XC Series at National Nuclear Security Administration (NNSA).
‡ Cray XC Series at National Energy Research Scientific Computing Center (NERSC).
*Other names and brands may be claimed as the property of others.
Legal Notices and Disclaimers

• Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

• No computer system can be absolutely secure.

• Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

• Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

• This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

• Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/performance.

• Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

• Intel, the Intel logo, Xeon, Xeon Phi and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

• © 2015 Intel Corporation.