
Lustre Resiliency: Understanding Lustre Message Loss and Tuning for Resiliency

Chris Horn
Cray Inc.

Saint Paul, MN USA
hornc@cray.com

Abstract—Cray systems are engineered to withstand the loss

of components, however, Lustre, historically, has not been

as resilient in some cases. In this paper we discuss recent

enhancements made to Lustre to improve resiliency and best

practices for realizing Lustre RAS on Cray systems including

how to tune timeouts and configure certain Lustre features for

resiliency.

Keywords-Lustre; LNet; Resiliency; Availability; Serviceabil-

ity;

I. INTRODUCTION

The exchange of requests and replies between hosts forms
the basis of the Lustre protocol. One host will send a
message containing a request to another and await a reply
from that other host. The underlying network protocols used
to exchange messages are abstracted away via the Lustre
Network (LNet) software layer. The LNet layer is network-
type agnostic. It utilizes a Lustre Network Driver (LND)
layer to interface with the driver for a specific network
type.[1]

Historically, Lustre and LNet have had a poor track record
dealing gracefully with the loss of a request message or
the associated reply. This difficulty is largely due to their
reliance on internal timers and per-message timeouts to
infer message loss and the health of participating hosts. In
addition, there has long been a fundamental single point of
failure in the Lustre protocol whereby Lustre servers would
not re-send certain requests to clients which could result in
application failure.

Cray has worked with Seagate and the Lustre open source
community to address the flaw in the Lustre protocol, fix
new issues that were discovered as part of that effort, and
to tune Lustre, LNet, and LND timers and timeouts to
maximize the resiliency of Lustre in the face of message
loss. Changes are still landing to the canonical tree, but
we expect Lustre 2.8.0 to be fully resilient to lost traffic
such that clients can survive finite network disruptions
without application failure and message loss has minimal
performance impact.

This paper covers a number of topics as they relate to
Lustre resiliency. To provide some background we first dis-
cuss the role of Lustre evictions and locking in a Lustre file
system, the effects of message loss, and Lustre’s response
to some common component failures. Finally, we discuss

our recommendations for tuning Lustre to realize improved
resiliency on Cray systems.

II. UNDERSTANDING LUSTRE CLIENT EVICTIONS

An eviction in Lustre is an action taken by a server
when the server determines that the client can no longer
participate in file system operations. Servers take this action
to ensure the file system remains usable when a client fails
or otherwise misbehaves. When a client is evicted all of its
locks are invalidated. As a result, any of the client’s cached
inodes are invalidated and any dirty pages must be dropped.

Servers can evict clients if clients do not respond to certain
server requests in a timely manner, or if clients do not
communicate with the server at regular intervals. Evictions
of the latter sort are carried out by a server feature called
the ping evictor.

The ping evictor exists to prevent the problem of cas-
cading timeouts [2]. Since message timeouts are used to
determine a connection’s state a problem occurs where de-
pendencies between requests result in implicit dependencies
between connections. If a client holds a resource and dies
the server would not realize this until a conflicting request
for the resource is made. The server would then need to
wait for a message timeout to detect the failed client. This
can cascade as the number of resources held by a client
increases or the number of dead clients increases. The ping
evictor helps with this problem by proactively detecting
failed clients and reclaiming their resources via eviction.

Idle clients are expected to communicate with Lus-
tre servers at regular intervals by sending servers a
Portal RPC (PtlRPC) ping. The interval is equal to
obd_timeout / 4 where obd_timeout is a config-
urable Lustre parameter and defaults to 100 seconds for a 25
second ping interval (Note, Cray has historically used a 300
second obd_timeout). The ping evictor on a server keeps
track of these client pings. If a particular client has failed
to deliver a ping within 1.5*obd_timeout seconds1, and
the server has not seen any other RPC traffic from that client,
then the ping evictor will evict the client.

Clients can exhibit misbehavior for a number of reasons
including: client side bugs, a kernel panic or oops, heavy

1Servers are very conservative about evicting clients. Up to two pings
may be missed or lost.

load, and serious Lustre errors known as LBUGs. In addi-
tion, component failures external to the client may result in
client evictions. We’ll discuss this topic in more depth in
section V.

A client will learn that it has been evicted the next time it
connects to the server. When the client learns of its eviction
it must drop all locks since they’ve been invalidated by the
server, and it must drop all dirty pages since it no longer
has the requisite locks.

Clients may be unaware of their eviction if they do not
have any outstanding user request and previous requests
were buffered. This behavior is POSIX semantics, so appli-
cations need to check return codes or use fsync(2). Unaware
users may call this silent data corruption.

III. UNDERSTANDING LUSTRE LOCKING

In Lustre, shared resources are protected by locks, and
the most common resource is a file. When an application
wishes to read or modify a file in some way it contacts
the Metadata Server (MDS) for the open() system call.
The MDS provides striping information for the file. The
client will then enqueue a lock for each stripe of the file
to the respective Object Storage Target (OST) which are
hosted by Object Storage Servers (OSS). The OSS checks
whether the lock request conflicts with any other lock that
has already been granted, and sends a blocking callback
request to any client holding a conflicting lock. The response
to this blocking callback must, eventually, be a lock cancel.

Once all conflicting locks have been cancelled a comple-
tion callback request is sent to the enqueuing client which
grants the lock. The client must acknowledge receipt of the
completion callback before it may start using the lock.

There are three lock related requests that are only ever
sent from servers to clients. Two are the blocking and com-
pletion callback requests mentioned earlier, and the other
is the glimpse callback request. These RPCs are sometimes
referred to as Asynchronous System Trap (AST) RPCs or,
more commonly, as just ASTs.

When a server sends a blocking AST to a client, either
as a standalone message or embedded within a completion
AST, the server sets a timer after which the client shall be
evicted if it has not fulfilled the server’s request. This is
referred to as the lock callback timer.

The blocking AST informs the client that a previously
granted lock must be cancelled. The client must acknowl-
edge receipt of the blocking AST, finish any I/O occurring
under the lock, and then send a lock cancel request to the
server. If the lock has not been cancelled by the time the lock
callback timer has expired then the client shall be evicted.
The server will refresh the lock callback timer as the client
performs bulk reads and writes under the lock, so the client
is afforded sufficient time to complete its I/O.

To illustrate why evictions are necessary consider two
clients that want access to the same file. The first client,

the writer, creates a file, writes some data to the file, and
then promptly suffers a kernel panic. The second client, the
reader, wants to read the data written by the first client. The
reader requests a protected read lock for each stripe of the
file from the corresponding OST. Upon receipt of the lock
enqueue request, the OSS notes that it has already granted a
conflicting lock to the writer. As a result the server sends a
blocking AST to the writer, and it arms a lock callback timer
for the lock. Since the writer has crashed it will not be able
to fulfill the server’s request. At this point, the server cannot
grant the lock to the reader, and so the reader is unable to
complete its read(). When the lock callback timer expires
the server will evict the writer which will invalidate all of
the writer’s locks, and, since the writer no longer holds a
valid lock on the file, the server can grant the lock to the
reader.

IV. DROPPED RPCS AND LUSTRE

When a Lustre RPC is lost users may observe perfor-
mance degradation or, in the worst case, client eviction and
application failure. In this section we describe some of the
different issues that Lustre must deal with in order to recover
successfully from an RPC loss.

A. Detecting Message Loss With RPC Timeouts

When a client sends an RPC to a server, or a server
sends an RPC to a client, a timeout value is assigned to the
RPC. This timeout value is derived from Lustre’s Adaptive
Timeouts feature, and it accounts for the time it takes to
deliver the RPC (network latency) and the amount of time
the message recipient needs to process the request and send
a reply (service time). A host infers that a message has been
lost when this timeout expires and the host has not received a
response from the message recipient. This is in contrast to a
failure to send an RPC in the first place which can typically
be detected much sooner because LNDs will typically notify
upper layers when they are unable to send an RPC.

When an RPC timeout occurs the connection between the
sender and recipient is severed and the client must reconnect
to the server by sending a connect RPC. When a connection
is reestablished with the server the client must resend the
lost RPC. The client must do all of this without repeating
the cycle of lost RPCs, disconnections, reconnections, and
resends. In a routed environment this means we need to
avoid using any bad routes which may have been the culprit
in the initial lost RPC, or in the event of an HSN quiesce we
would ideally only try to send messages once the quiesce
was over. In the case of a lost lock cancel, or a reply to
blocking AST, the client must do all of this as quickly as
possible so as to avoid the lock callback timer expiration on
the server and subsequent eviction.

More information on Adaptive Timeouts is available in
VII-A.

B. Avoiding Bad Routes
When messages are dropped due to route or router failure

any LNet peer using that route or router, i.e. a Lustre client
or server, may be impacted, and since there are typically
many more clients than routers we can expect a relatively
large disruption from a single router failure. Using bad
routes wastes time and resources because there are a limited
number of messages that a peer can have in flight and
any message sent over a bad route will need to be resent.
Thus, it is very desirable to detect bad routes as quickly
as possible and remove them from an LNet peer’s routing
table. Traditionally route and router health is determined
by the LNet Router Pinger and Asymmetric Route Failure
Detection features. These features work in conjunction to
determine the health of both routers themselves and the
routes hosted by routers.

The router pinger on an LNet peer works by periodically
sending an LNet ping to each known router. If a peer receives
a response from the router within a timeout period then the
router is considered alive.

The Asymmetric Route Failure Detection feature works
by packing the router’s ping reply with additional informa-
tion about the status, up or down, of the router’s network
interfaces. When an LNet peer receives a ping reply it in-
spects the network interface status information to determine
for which remote networks the router should be used. If a
remote interface on the router is not healthy then that router
will not be used when sending messages to peers on the
associated remote network.

See section V for a description of how these features
are used to respond to LNet router and route failure. For
more information on tuning the LNet router pinger and
asymmetric route failure detection features see VII.

C. Reconnecting with the Connect RPC
The first thing a client must do after experiencing an

RPC timeout is reestablish a connection with the target of
the lost RPC. This is accomplished via the connect RPC.
Lustre targets can be reached via multiple LNet nids for the
purposes of failover or a multi-homed server. Connect RPCs
are first sent using the LNet nid of the last known good
connection before trying any alternative nids in a round-
robin manner. Connect RPCs are sent on an interval, so if
one connection attempt is unsuccessful there may be a delay
until a client attempts the next one.

This is a significant complicating factor in a client’s ability
to reestablish connection with the server in a timely manner.
Consider the case of message loss due to a failed route.
During the time it takes to detect the failed remote interface
the client considers the bad route to be valid and will
continue to use it for sending RPCs to the servers. If it
happens to send the connect RPC using the bad route then
this RPC will eventually time out. As a result the client
will send subsequent connect RPCs to alternate nids where

the Lustre targets may not be available. These connection
attempts will be rejected, typically with -ENODEV, as those
resources are not available at that host. This delays the
process of reestablishing the connection even further.

We can see that the timing of our reconnect attempts is
important. The faster we reconnect the more time we’ll have
to resend important RPCs to mitigate performance impact or
avoid eviction, however, the faster we reconnect the more
likely we are to hit a bad route or attempt to send while the
network is otherwise unable to reliably deliver messages.

D. Resending Lost RPCs

The final action a client must take is to resend any RPCs it
thinks were lost. As with the connect RPC, the client must
take care to avoid bad routes when resending lost RPCs
to avoid repeating the lost RPC cycle. Lustre clients have
long had the ability to resend bulk RPCs, but not the ASTs
described in section III.

Lustre’s inability to resend ASTs was a single point of
failure in the Lustre protocol that could result in client
eviction whenever an AST was not delivered, or the reply to
an AST was lost. We’ll discuss the solution to this problem
in VI.

V. FAILURE SCENARIOS

There are a number of scenarios under which Lustre
messages may be lost. In this section we discuss some of
the more common scenarios and Lustre’s response.

A. LNet Routing

In this section we consider two resiliency issues specific
to LNet routing: LNet router node death, and the death of a
remote interface on an LNet router.

1) Router death: If a router node dies, e.g. because it
suffered a kernel panic, then any messages in transit to that
router and any messages buffered on that router at the time
it died will need to be resent. The LNet layer does not
track which routers are used to send particular messages,
and the Portal RPC (PtlRPC) layer does not have access
to this information either. As a result, PtlRPC and LNet
do not know to try a different router when a previous send
failed.2. We thus rely on the router pinger to determine router
aliveness. If a router ping was in flight at the time of the
panic then we should be able to mark the router down after
the ping timeout has expired. Otherwise we may need to wait
for the next ping interval in addition to the time needed for
the ping to timeout in order to mark the router as down.
During the time between the kernel panic and marking of
the router as down the router can still be used as a next-hop.

2All routes to a remote network are used in a round-robin manner

2) Remote Interface Death: As discussed in IV-B, LNet
peers rely on the Asymmetric Route Failure Detection
feature to determine the health of remote interfaces on
an LNet router node. For example, say a router has one
Infiniband (IB) interface configured on LNet o2ib0, another
infiniband interface configured on LNet o2ib1, and one
Aries interface on LNet gni0. The LNet nids for each of
these interfaces are 10.100.0.0@o2ib0, 10.100.1.1@o2ib1,
and 27@gni respectively.

A client on the gni LNet has two routes that utilize
27@gni for the remote networks o2ib0 and o2ib1. i.e. if the
client wants to send an RPC to a server on either o2ib0 or
o2ib1 it can use 27@gni as a next-hop for those messages.

Now suppose the router’s IB interface at
10.100.1.1@o2ib1 fails. After some period of time,
detailed below, the router marks that interface as down.
The client’s router pinger sends a ping to the router at
the next ping interval. Since the router node is up, and
the gni interface is healthy, the router will respond to the
client with the information that 10.100.0.0@o2ib0 is up
and 10.100.1.1@o2ib1 is down. The client sees that this
router’s interface for the o2ib1 network is down, so it will
no longer use 27@gni as a next-hop when it needs to send
messages to servers on the o2ib1 LNet. However, it will
continue to use 27@gni as a next-hop when it needs to
send messages to servers on the o2ib0 LNet.

When the router’s interface on o2ib1 eventually recovers
the router will mark that interface as alive as soon as it
sees traffic come over that interface.3 The next router ping
from the client will retrieve the updated information, and
the client will then begin using 27@gni as a next-hop for
sending messages to peers on the o2ib1 LNet.

It should be noted that it takes a significant amount of
time to propagate router health information to peers, and
it takes additional time to propagate a change in remote
interface health to peers. Routers infer local interface health
by monitoring traffic over the interfaces. The router is aware
that peers will be sending router pings, and the longest
interval at which these pings will occur. Thus, if an interface
does not receive any traffic in this interval, plus the timeout
value for router pings, then the router will assume the
underlying interface is not healthy and will change its status
to down.

Using Lustre’s default values, it takes a router 110 sec-
onds, based on a 60 second ping interval plus a 50 second
ping timeout, to mark an interface down. As mentioned
previously, peers only learn about the interface status change
after pinging the router. With a 60 second ping interval and
50 second ping timeout the worst case to detect a failed
remote interface is on the order of 220 seconds. In practice
the worst case isn’t quite as bad if the local network is

3Peers on the o2ib1 LNet will be sending LNet pings to the ”down”
interface at an interval specified by the dead router check interval LNet
module parameter.

healthy since the peer should get a ping reply quickly. Thus,
it is generally closer to the time for the router to detect the
failed interface plus the ping interval or approximately 170
seconds.

B. Client Death

When a client dies it will eventually be evicted so that any
resources held by that client might be reclaimed. This will
be accomplished either via a lock callback timer expiration
or via the ping evictor. If the client holds a conflicting lock
then it may be evicted by a server issuing a blocking callback
for that lock. Otherwise it will eventually be evicted by all
Lustre servers when it fails to ping them after one and a half
times the obd_timeout.

C. Server Death

When a server dies in a high availability (HA) configura-
tion its resources (Lustre targets) should failover to its HA
partner. The Lustre recovery feature should generally ensure
the filesystem returns to a usable state. For more information
on Lustre recovery see [3].

D. Link Resiliency

Cray systems are engineered to withstand the loss of
certain components without requiring a system reboot. The
same technology is used to allow manual removal and
replacement of compute blades without a system reboot
(warm swap). This technology is collectively known as link
resiliency.[4]

Traffic on a Gemini or Aries HSN is routed over what
are termed links. A link is a software term for a connection
between two Gemini or Aries Link Control Blocks (LCBs).
A software daemon runs on each blade controller that is able
to detect failed links as well as power loss to a Gemini or
Aries Network Card. When a link failure is detected this
daemon sends an event which is received by a software
daemon, xtnlrd, running on the System Management
Workstation (SMW). The xtnlrd daemon is responsible
for coordinating the steps needed to recover from the failure.
The xtnlrd daemon also coordinates the steps needed to
fulfill a warm swap request.

At a high level the steps needed to recover from link
failure include computing new routes that do not use the
failed links, quiescing the network, installing the new routes,
and unquiescing the network. It is necessary to quiesce the
HSN in order to avoid inconsistent routing of traffic, dead
ends, or cycles when installing the new routes.

Lustre servers have no knowledge of an HSN quiesce.
While the HSN is quiesced servers will not see any traffic
from clients, and they will not be able to deliver messages
to clients. If clients do not resume communication with
servers in a timely manner, i.e. before the expiration of
any lock callback timers or the ping eviction timer, then
they will be evicted. Servers cannot distinguish between a

client caught up in an extended network outage and a client
that has crashed. Thus, it is crucial that clients, servers, and
routers do whatever they can to restore connectivity and
resume communication as quickly as possible. This includes
ensuring that the lock callback timer accommodates this time
span.

Another side effect of the HSN quiesce is that LNet
routers will be unable to respond to pings from a client’s
router pinger. This can result in routers being marked dead
and removed from the routing tables of the clients. If all
routers are marked down in this manner then client’s will
be unable to send messages to servers until the router pinger
has been able to mark routers back up.

VI. RESILIENCY ENHANCEMENTS

A number of enhancements have been made to improve
Lustre resiliency in the face of message loss. The primary
enhancement is the ability for servers to resend ASTs.
Additional enhancements were made to improve the success
rate of resending ASTs and avoid lock related evictions, as
well as improvements to file system performance in the face
of message loss. In this section we discuss these new features
and improvements. In the following section we discuss how
to tune Lustre for resiliency.

A. LDLM Resend
As discussed in IV-D, Lustre servers historically did not

resend ASTs. This meant that if an AST was lost then the
target of that AST would almost certainly be evicted. LDLM
resend is the primary enhancement made to fill this hole in
Lustre’s protocol.

Before the LDLM resend enhancement was implemented,
if a blocking or completion callback RPC was lost, because
it was, say, buffered on a router when the router suffered a
kernel panic, then the recipient of the RPC would be evicted
once the lock callback timer expired even though it never
received the RPC.

The LDLM resend enhancement allows servers to resend
these callback RPCs throughout the duration of the lock
callback timer. Callback RPCs, like most other RPCs in
Lustre, are assigned a timeout based on the adaptive timeouts
feature. If that timeout expires, and a reply has not been
received, then the server will resend the callback RPC.

See VII-B for information on tuning the lock callback
timer to allow the LDLM resend enhancement to function
properly.

B. Router Failure Detection
Cray’s LND for its Aries HSN, gnilnd, has previously

utilized health information available on our high speed
network to inform routers about the aliveness of peers.
This is referred to as the peer health feature for routers.
We’ve recently extended our use of this health information
to clients. With this enhancement clients now receive an

event when a router node fails. Upon receipt of this event
gnilnd will notify LNet that the router is no longer alive and
thus remove it from the client’s routing table. This provides
us another agent, in addition to the router pinger, which can
remove bad routes from our routing tables and potentially
do so faster than relying on the router pinger.

C. Fast Reconnect
Lustre clients on the aries HSN have some knowledge

of an HSN quiesce due to the gnilnd. The gnilnd will
participate in quiesce by suspending all transmits until the
quiesce is over. While the quiesce is ongoing, connections
between gnilnd peers can timeout. Historically, gnilnd on a
client would only attempt to reestablish a connection with
a peer (router) when an upper layer generated a request.
We recently added a fast_reconnect feature, which
will force gnilnd on a client to quickly reconnect to routers
as soon as the quiesce is lifted. When a connection is
established, gnilnd will notify LNet, which will ensure the
router is considered alive and can be used as a next-hop for
future sends.

D. Minimizing Performance Impact
Cray has worked to minimize the performance impact

of message loss and resiliency events by fixing bugs and
employing defensive programming.. An example of the
former is a bug found in the early reply mechanism which
resulted in RPC timeouts being extended much longer than
they should be, and an example of the latter is an upstream
enhancement we’ve recently adopted which places a limit on
maximum bulk transfer times separate from the hard limit
defined for adaptive timeouts.

1) Early Replies: Early reply is a feature that allows
servers to request that clients extend their deadlines for
RPCs. Any RPC queued on a server for processing is
eligible for early replies. The early reply mechanism chooses
requests that are about to expire, but still queued for service,
and sends early replies for those requests to extend the
deadlines.

While testing Lustre resiliency in the face of LNet router
loss we found a bug in the early reply algorithm for
determining the extended deadline. This bug resulted in
deadlines set well beyond the maximum allowable service
time (see at max in Section VI. A.). In one instance we
noticed timeouts on servers of 1076 seconds, and associated
timeouts on clients of over 1300 seconds when the maximum
service time was configured to be 600 seconds. With the bug
fixed we were able to emplace effective bounds on maximum
service times and limit the performance impact of RPC loss
due to router failure.

2) Capping Bulk Transfer Times: A bulk transfer in
Lustre is performed for reads and writes. In either case a
client sends a bulk RPC request to the server describing the
transfer. The server then processes the request, performs any

necessary work to prepare for the transfer, and then initiates
the data transfer either from the client for writes or to the
client for reads.

Historically, bulk transfer times, i.e. the time to perform
the actual data transfer once all prerequisite work had
finished, were bounded by the maximum adaptive timeout.
Bulk data transfer messages are not resent, so when one is
lost there is no point in waiting such a long time. A change
was made to configure a static timeout for bulk transfer
separate from adaptive timeouts.

E. Peer Health
The LNet peer health feature is not a recent enhancement,

but it can play an important role in Lustre resiliency for
routed configurations. This feature can assist in efficiently
failing messages that are sent to dead peers. When this
feature is enabled, prior to sending traffic to a particular peer,
LNet will query the interface the peer is on to determine
whether the peer is alive or dead. If the peer is dead then
LNET will abort the send. This helps us avoid attempts
to communicate with known dead peers. Communicating
with dead peers wastes resources including network interface
credits, router buffer credits, etc., that could otherwise be
used to communicate with alive peers. This feature can be
used for messages sent to both Lustre clients and servers.
This feature should only be enabled on LNet routers other-
wise it can interfere with the LNet router pinger feature by
dropping the router pings being sent from clients and servers
to LNet routers.

VII. TUNING LUSTRE FOR RESILIENCY

There are a number of tunable parameters that can affect
the performance of Lustre on Cray hardware during and after
resiliency events. The goal is to survive transient network
failure without suffering any client evictions and with min-
imal impact on application performance. As the discussion
in IV outlined, there are a number of areas to consider in
the face of RPC loss. Our tuning recommendations strive to
strike a balance between the competing priorities of avoiding
client evictions where possible while maintaining the ability
to detect misbehaving clients in a reasonable time frame.

A. Adaptive Timeouts
In a Lustre file system servers keep track of the time it

takes for RPCs to be completed. This information is reported
back to clients who utilize the information to estimate the
time needed for future requests and set appropriate RPC
timeouts. Minimum and maximum service times can be
configured via the at_min and at_max kernel module
parameters, respectively.

1) at min: This is the minimum processing time that a
server will report back to a client. Note, it is not actually
the minimum amount of time a server will take to process
a request. For Lustre clients on an Aries or Gemini HSN

Cray’s recommendation is to set this to 40 seconds. When
an RPC is lost we want it to timeout quickly so that we
can resend it and minimize performance impact and avoid
client eviction. However, we also want to avoid unnecessary
timeouts due to transient network quiesces. The 40 second
value factors into our calculation for an appropriate LDLM
timeout as discussed in section VII-B

Our recommendation for Lustre servers is also 40 seconds.
2) at max: This is the maximum amount of time that a

server can take to process a request. If a server has reached
this value then the RPC times out. For Lustre clients on
an Aries or Gemini HSN Cray’s recommendation is to set
this to 400 seconds. Our goal with this value is to provide
servers ample time to process requests when they are under
heavy load, but also limit the potential worst case I/O delay
for requests which will not be processed.

The worst case I/O delay on a client resulting from
message loss, assuming the underlying network recovers and
is healthy, is equal to the largest potential RPC timeout that a
client can set. Since clients must account for network latency
to and from a server, in addition to server processing time,
the largest potential RPC timeout is larger than at_max. In
fact, Lustre uses the same adaptive timeout mechanism to
track and estimate network latency with the same lower and
upper bounds as service time estimates. Thus, the largest
potential RPC timeout that a client can set is 2*at_max.
By lowering at_max from 600 to 400 seconds we reduce
the worst case I/O delay from 1200 seconds, or 20 minutes,
to 800 seconds or just over 13 minutes.

Our recommendation for Lustre servers is also 400 sec-
onds.

B. LDLM Timeouts
The timeouts for LDLM RPCs use the same adaptive

timeout mechanism as other RPCs, however the lower bound
for the server’s lock callback timer can be configured via the
ldlm_enqueue_min parameter. Per our previous discus-
sion we know that servers must afford the client enough
time to timeout a lost RPC, reconnect to the target of the
lost RPC, and resend the lost RPC. In addition, since no
traffic flows during an HSN quiesce we need to account for
the time spent in, and time to recover from, a quiesce as
well.

We also know that lock callback timers are used to
prevent misbehaving clients from hoarding resources and
hindering file system usability, so we need to balance
between the competing goals of allowing clients and servers
enough time to recover from a network outage (larger
ldlm_enqueue_min) and quickly detecting misbehaving
clients (lower ldlm_enqueue_min).

Figure 1 shows the variables which must be considered
in setting an appropriate ldlm_enqueue_min.

As mentioned in the previous section, both network
latency and RPC service times have a lower bound of

ldlm enqueue min = max(2 ⇤ net latency,

net latency +

quiescent time) +

2 ⇤ service time

Figure 1. Equation for ldlm enqueue min

at_min. The quiescent_time in this formula is to
account for the time it takes all Lustre clients to reestab-
lish connections with all Lustre targets following an HSN
quiesce. We’ve experimentally determined an average time
to be approximately 140 seconds, but it is possible that this
value may vary based on different factors such as the number
of Lustre clients, the number of Lustre targets, the number
of Lustre file systems mounted on each client, etc. Thus,
given an at_min of 40 seconds, we calculate an appropriate
ldlm_enqueue_min as:

ldlm enqueue min = max(2 ⇤ 40, 40 + 140) + 2 ⇤ 40
= 180 + 80 = 260

The value for Lustre servers should match that of clients.

C. Router Pinger
The goal of tuning the router pinger is to quickly de-

tect bad routes and routers, so that they can be removed
from routing tables. The interval at which LNet peers send
pings to routers and the timeout value of each ping are
configured via kernel module parameters. The ping interval
can be configured separately for live and dead routers. The
live_router_check_interval specifies the time in-
terval after which the router pinger will ping all live routers,
and the dead_router_check_interval specifies the
same only for dead routers. The router_ping_timeout
parameter specifies how long a peer will wait for a response
to a router ping before deciding the router is dead. The
router_ping_timeout should generally be no less than
the LND timeout.

1) Servers: Since there are typically fewer servers than
routers we can safely use a more frequent router ping interval
and a lower ping timeout on external servers. In addition,
since external servers are unable to subscribe to node failure
events in the same fashion as Lustre clients on the HSN it is
import to lower the ping interval and timeout so that servers
can detect failed routers more quickly. Cray recommends
setting both the live and dead router check interval to 35
seconds, and the router ping timeout to 10 seconds.

2) Clients: Since there are typically many more clients
than routers we recommend using the default ping interval
and timeout to avoid overwhelming routers with pings. The
default values for Cray’s Lustre clients are 60 second ping

intervals for both live and dead routers, and a 50 second
ping timeout. The ping interval can be increased further for
very large systems.

3) Routers: While routers usually do not ping
other routers they do need to be aware of when
to expect pings from other peers. Specifically, they
need to be aware of the longest ping interval and
timeout, so that they can detect when a network
interface is malfunctioning as described in V-A2.
Thus, the router’s live_router_check_interval
should be equal to the maximum of the server’s
live_router_check_interval and the client’s
live_router_check_interval. The same holds
for the router’s dead_router_check_interval and
router_ping_timeout.

D. Asymmetric Route Failure Detection

The asymmetric route failure detection feature
is enabled by default starting in Lustre 2.4.0.
It can be explicitly enabled or disabled via the
avoid_asym_router_failure LNet module
parameter.

E. Lustre Network Driver Tuning

1) Servers and Clients: Internal testing revealed the
default ko2iblnd timeout is unnecessarily high.
Cray recommends lowering the ko2iblnd timeout
and ko2iblnd keepalive parameters to 10 and
30 seconds respectively, so that the o2iblnd can
better detect transmission problems. As discussed
in VI-E, the peer health feature should be disabled
by setting ko2iblnd peer_timeout=0 and
kgnilnd peer_health=0.

2) Routers: Internal testing revealed the default
ko2iblnd timeout is unnecessarily high. Cray
recommends lowering the ko2iblnd timeout to 10
seconds, so that the o2iblnd can better detect transmission
problems. The peer health feature should be enabled
for the o2iblnd by setting peer_timeout equal to
the sum of the server’s ko2iblnd timeout and
ko2iblnd keepalive, or 40 seconds, and for kgnilnd
by setting kgnilnd peer_health=1.

F. Parameters by Node Type

This section provides an overview of all our recommended
parameters by type of Lustre node. This is intended as a
reference for the recommendations laid out in this paper,
and not a comprehensive guide to all module parameters
needed for a functional Lustre filesystem. Please refer to
S-0010-5203 in Craydoc for complete documentation.

Figure 2 contains a sample modprobe configuration file
for an LNet router node. Figure 3 contains a sample mod-
probe configuration file for a Sonexion or CLFS Lustre
server. Figure 4 contains a sample modprobe configuration

file for a Lustre client on an Aries or Gemini HSN, and
figure 5 contains a sample modprobe configuration file for
a CDL client.

options ko2iblnd timeout=10
Server’s ko2iblnd timeout +
Server’s ko2iblnd keep_alive
options ko2iblnd peer_timeout=40
options kgnilnd peer_health=1

max(server’s router_ping_timeout,
client’s router_ping_timeout)
options lnet router_ping_timeout=50
max(server’s live_router_check_interval,
client’s live_router_check_interval)
options lnet live_router_check_interval=60
max(server’s dead_router_check_interval,
client’s dead_router_check_interval)
options lnet dead_router_check_interval=60

Figure 2. Sample modprobe.conf for an LNet router

options ko2iblnd timeout=10
options ko2iblnd peer_timeout=0
options ko2iblnd keepalive=30

options lnet router_ping_timeout=10
options lnet live_router_check_interval=35
options lnet dead_router_check_interval=35
options lnet avoid_asym_router_failure=1

options ptlrpc at_max=400
options ptlrpc at_min=40
options ptlrpc ldlm_enqueue_min=260

Figure 3. Sample modprobe.conf for a Sonexion or CLFS server

options kgnilnd peer_health=0

options lnet router_ping_timeout=50
options lnet live_router_check_interval=60
options lnet dead_router_check_interval=60
options lnet avoid_asym_router_failure=1

options ptlrpc at_max=400
options ptlrpc at_min=40
options ptlrpc ldlm_enqueue_min=260

Figure 4. Sample modprobe.conf for an Aries or Gemini Lustre client

VIII. SITE-SPECIFIC TUNING

The recommendations laid out in VII were shown to
eliminate client evictions from LNet route and router failure,

options ko2iblnd timeout=10
options ko2iblnd peer_timeout=0
options ko2iblnd keepalive=30

options ptlrpc at_max=400
options ptlrpc at_min=40
options ptlrpc ldlm_enqueue_min=260

Figure 5. Sample modprobe.conf for an CDL client

as well as link resiliency events, on a 19 cabinet XC30, but
it is unlikely that we can provide one set of settings for
every system configuration. Thus we should consider ways
in which these parameters may need to be modified.

Based on our understanding of Lustre’s resiliency fea-
tures, the Lustre protocol, and the effects of the different
tunable parameters, we can reason about how the parameter
settings might be tweaked to maintain resiliency under
different conditions and system configuration. Relevant fac-
tors may include routed vs. non-routed filesystems, scale,
workload, and network technology.

For example, if server performance profiling indicates that
servers are rarely, if ever, under heavy load then at_max
might be lowered to further reduce worst case client side
timeouts. Similarly, if servers are frequently under high load
it may be desirable to increase at_max to allow servers
additional time to process requests and avoid unnecessary
RPC timeouts. Figure 6 displays a Lustre error message
which may indicate the need to increase at_max to allow
servers additional time to process requests.

Lustre: ost_io: This server is not able to

keep up with request traffic (cpu-bound).

Figure 6. Sample error message indicating slow request processing

It is also likely that the lock callback timer will need to be
adjusted to account for system configuration. We can look at
certain messages that appear in the console log as a starting
point for determining the length of the quiescent time in
determining an appropriate ldlm_enqueue_min. Figure
7 shows messages printed to the console log as part of a link
resiliency event. The message originate from a single client,
and they indicate the beginning of the resiliency event as
well as when the client was able to reconnect to the Lustre
targets. The timestamps indicate that it took this client 125
seconds to recover from the link resiliency event.

IX. FUTURE WORK

Cray is continually working to improve Lustre resiliency.
This section provides a brief look at some of our current
work and future plans.

In order to enhance our ability to test Lustre resiliency,
we’ve developed a Network Request Scheduler (NRS) policy

21:26:51.388273-05:00 c1-0c2s5n0 LNet: Quiesce start: hardware quiesce
21:27:06.393195-05:00 c1-0c2s5n0 LNet: Quiesce complete: hardware quiesce
21:27:13.429388-05:00 c1-0c2s5n0 LNet: Quiesce start: hardware quiesce
21:27:23.435159-05:00 c1-0c2s5n0 LNet: Quiesce complete: hardware quiesce
21:28:24.938501-05:00 c1-0c2s5n0 Lustre: snx11023-OST0009-osc-ffff880833997000: Connection restored to
snx11023-OST0009 (at 10.149.4.7@o2ib)
21:28:49.952123-05:00 c1-0c2s5n0 Lustre: snx11023-OST0002-osc-ffff880833997000: Connection restored to
snx11023-OST0002 (at 10.149.4.5@o2ib)

21:29:05.252357-05:00 c1-0c2s5n0 Lustre: snx11023-OST000c-osc-ffff880833997000: Connection restored to

snx11023-OST000c (at 10.149.4.8@o2ib)

Figure 7. These messages indicate 124 seconds for a client to recover from a link resiliency event

for fault injection. The NRS policy, termed NRS Delay,
allows us to simulate high server load in resiliency testing
by selectively introducing delays into server side request
processing. We’ll be sharing this work with the community
in https://jira.hpdd.intel.com/browse/LU-6283

Another area we’d like to improve is in our ability to
control RPC timeouts. As discussed in VII-A, the worst
case RPC timeouts are 2*at_max. This is because an RPC
timeout is the sum of the estimated network latency and
estimated service time. The upper and lower bounds of both
of these estimates cannot currently be configured separately.
If we were able to configure them separately then we might
be able to lower the worst-case timeouts further.

We’re also working on infrastructure to remove Lustre’s
dependence on the ping evictor to maintain client connec-
tions. This has two primary benefits. One, we’ll be able to
eliminate Lustre client pings which can be a source of jitter
and I/O disruption [5]. Secondly, we will be able to reclaim
resources from failed clients more quickly.

Lastly, work on this paper has revealed that we should
be able to create guidelines for site specific tuning. It is
unlikely that we can determine a one size fits all solution for
configuring Lustre, so providing guidelines for determining
appropriate configuration settings is crucial to ensuring every
system has optimal resiliency.

X. CONCLUSION

Historically, Lustre has done a poor job of handling
message loss in a graceful manner. A flaw in the Lustre
protocol would often result in client eviction whenever
certain RPCs were lost, and lost messages could also cause
performance degradation. Cray has worked with our support
vendor and the Lustre open source community to address the
flaw in the Lustre protocol and minimize the performance
impact of message loss.

The LDLM resend enhancement has addressed the flaw in
the Lustre protocol, while additional enhancements, such as
those made to LNet router failure detection and fast gnilnd
reconnects, have helped increase the effectiveness of LDLM
resend while also helping to mitigate the performance impact
of message loss.

The tuning recommendations and best practices laid out
in this paper work in concert with these new capabilities to

achieve improved Lustre and LNet resiliency.

ACKNOWLEDGMENT

Cray would like to thank the Lustre engineers at Seagate
who were instrumental in development of the LDLM resend
feature. We would also like to thank the Lustre open source
community for their contributions and code review, and our
customers who push us to improve the state of the art in
Lustre.

REFERENCES

[1] F. Wang, S. Oral, G. Shipman, O. Drokin, T. Wang, and
I. Huang. Understanding Lustre Filesystem Internals Oak
Ridge National Laboratory, National Center for Computational
Sciences, Tech. Rep., 2009, technical Report ORNL/TM-
2009/117.

[2] Peter Braam, Alex Tomas. (2008, February 9). The cascad-
ing timeouts problem and the solution [Online]. Available:
http://wiki.lustre.org/images/f/f0/Cascading-timeouts-hld.pdf

[3] Intel. (2015). Lustre Operations Manual [Online]. Available:
https://wiki.hpdd.intel.com/display/PUB/Documentation

[4] Cray. (2014, October). Network Resiliency for
Cray XC Systems S-0041-C [Online]. Available:
http://docs.cray.com/books/S-0041-C/S-0041-C.pdf

[5] C. Spitz, et. al. (2012). Minimizing Lustre Ping Effects at Scale
on Cray Systems [Paper presented at the Cray User Group
conference, Stuttgart, Germany, April 29 - May 3, 2012].

