Monitoring and Analyzing Job Performance
Using Resource Utilization Reporting (RUR) on
A Cray XE6/XK6 System

Shi-Quan Su, Troy Baer, Gary Rogers, Stephen McNally,
Robert Whitten, Lonnie Crosby,

National Institute for Computational Sciences
University of Tennessee, USA;

Research sponsors: the U.S. National Science Foundation

@ e
g
el

CUG Conférence 2015

Outline

Brief Review of RUR
Quantifying RUR Overhead
Integration with Torque
Generating Single Job Record
Integration with XDMoD

RUR Configuration Experiences

Discussions and Conclusions

Brief Review of RUR

RUR provides a reliable, high-performance framework into which plugins may be
inserted, which will collect data about the usage of a particular resource. RUR is

configurable, extensible, and lightweight.

Mom Node

Aprun/Apsched ——moHwm___ |

/

S

|

Data Gather \

Post- |
processing
+ Plugins

AA

Backing
Store + Plugins

Compute Nodes

App Launch
-\
Apinit 7 Application
\
Exit Message
anout Staging +
Plugins
000
SMW
Log File

LLM

>

Source: Resource Utilization Reporting Gathering and evaluating HPC system usage, Andrew Barry Cray Inc.

Quantifying RUR Overhead

Test Platform:

Mars at NICS, a Cray XE6/XK6 system, running Moab and
Torque.

Test Harness:

The Test Harness platform is originally developed at ORNL,
and has been used in the acceptance test on several Cray
systems such as Jaguar, Kraken, Darter, and Titan. The Test
Harness includes two major components:

1, Test Harness Python library,
2, the set of benchmarks of various applications.

Running Test Harness

1, the Test Harness initially compiles and links the
applications,

2, submits the benchmark runs to the batch system,

3, collects the job outputs, and compares the results
against the built in test,

4, the Test Harness records the results locally and
archives the job data into the High Performance Storage

System (HPSS) at Oak Ridge National Laboratory (ORNL)
campus,

5, the Test Harness automatically restarts the process
until a predetermined time passes, or a predetermined
number of runs have completed.

Structure of Test Harness

xc30/NAMD/Source/”Source code”
- - - - [/input_files/apoal

- - - ---/dhfr

— - - - ---/stmv

— - - --/build_app.sh

................ /[TestCase]:apoal_32/Correct_Results/ #same for each [TestCase]
---------------- /[TestCase]:apoal_32/Scripts/archive.template.x #same for each [TestCase]

— - - - - -/build_executable.x #same for each [TestCase]

— - - - - -/check_executable.x #same for each [TestCase]
ReeEEREEE - -/pbs.template.x #same for each [TestCase]

— - - - - -/submit_executable.x #** use job_tag to distingush TestCase
S— - -/size.txt #** may set different # of processor

/RunArchive/[unique_id]/”results directory”
/Status/rgt_status.txt

— _ . - - -/[unique_id]/job_id.txt #** different for each [unique_id]

, , - - - ----/job_status.txt # either O (success) 1(fail) 2(not clear)
................ /[TestCase]:dhfr_64/Correct_Results/ #same for each [TestCase]
---------------- /[TestCase]:dhfr_64/Scripts/archive.template.x #same for each [TestCase]

— - - - - -/build_executable.x #same for each [TestCase]

— - - - - -/check_executable.x #same for each [TestCase]
ReeEEREEE - -/pbs.template.x #same for each [TestCase]

— - - - - -/submit_executable.x #** use job_tag to distingush TestCase
— , . - - -/size.txt #** may set different # of processor

— - - - ------/RunArchive/[unique_id]/”results directory”

_ - - ------/Status/rgt_status.txt

— _ . - - -/[unique_id]/job_id.txt #** different for each [unique_id]
e S -----------/job_status.txt # either O (success) 1(fail) 2(not clear)

Test Harness Applications and Benchmarks

NAMD: a parallel molecular dynamics code designed for
high-performance simulation of large bio-molecular
systems.

benchmark: apoal, stmv

NWCHEM: a scalable computational chemistry package,
ackling molecular systems including biomolecules,
nanostructures, actinide complexes, and materials.

benchmark: aump2, c60 pbe0

GROMACS: a versatile package to perform molecular
dynamics, i.e. simulate the Newtonian equations of
motion for systems with hundreds to millions of particles.

benchmark: d.dppc, d.villin

TABLE OF TEST HARNESS BENCHMARKS PERFORMANCE

Benchmark Cores RUR Jobs Ave. Std.
Run Deyv.

Time
Sty 128 on 388 129.71 0.37
128 off 398 129.68 0.45
Stmv 256 on 227 89.73 1.47
256 off 240 88.49 1.29
apoal 32 on 1102 81.67 0.42
32 off 1261 81.86 0.48
apoal 64 on 1385 46.21 0.36
64 off 1519 46.25 0.78
32 on 60 322.81 2.69
c60_pbed 32 off 52 322.60 2.88
64 on 98 167.45 1.21
c60_pbed 64 off 20 167.64 | 138
aump? 32 on 56 349.77 2.71
32 off 60 349.67 2.05
aump2 64 on 89 184.92 1.41
64 off 75 185.50 2.05
d.dppe 64 on 71 114.02 0.16
64 off 55 114.05 0.16
d.dppe 128 on 96 64.68 0.16
' 128 off 77 64.77 0.18
dvillin 32 on 109 74.22 0.15
' 32 off 86 74.26 0.13
dvillin 64 on 134 44 85 0.37
64 off 104 44.92 0.35

Integration with Torque

e TORQUE version 5.0 added a field in its accounting logs for
recoding the energy used by a job, called resources
used.energy used. The initial implementation of this can be
found in src/resmom/cray energy.c in the source code. This
implementation targets RUR, specifically the energy plugin,
as its underlying data gathering infrastructure.

 The RUR energy plugin does not support energy
measurement on the XE6/XK6 hardware platform, but that
fact was not documented in the Cray system software
manual describing RUR.

* NICS has requested that Cray update the documentation.

Generating Single Job Record:

rchar, wchar,

stime, utime,

exitcode, max_rss,

%_of boot_mem,
Active(anon), Active(file),
gid, jid, nid, uid, apid,
APP_START, APP_STOP

RUR data

system name, job id,

user name, group name,

charge account, job name,

number of processers requested,
gueue name,

submit time, start time,

end time, wall time requested,
allocated host list, exit status,

node where the job was submitted,
user’s batch job script.

pbsacct utility

After parsing the RUR output and querying the pbsacct database, a single job record
can be generated in a json dictionary style. Each job record is stored in a file. These
records can be injected into external analysis systems for further processing, such as

XDMoD.

Integration with XDMoD

The XSEDE Technology Audit Service (TAS) is an NSF
funded project at the Center for Computational
Research (CCR) of the State University of New York
(SUNY) at Buffalo to audit the XSEDE project’s activities.
One of this project’s main products is XSEDE Metrics on
Demand (XDMoD), a software system which provides
web-based access to metrics and analytics for the
computational resources of the XSEDE service providers
(SPs).

The XDMoD (https: //xdmod.ccr.buffalo.edu) is
designed to audit and facilitate the operation and
utilization of XSEDE, one of the most advanced and

robust collection of integrated advanced digital
resources and services in the world.

A schematic show of a simple job structure

Wall Time

—— —— s
aplun comand
 line executionon | | ..

~ compute nodes ||

Record in RUR Memory Plugin Output

A schematic show of a complex job structure

Allocated Compute Nodes

“
P - pp—p————— Ve N
: |
: apid_1, code funning on !
i compute nodes i
N)
5 :
: 5 : apid_3, code running on :
j apid_s,¢co e: I compute nodes]
1 runningon e e L L L LT Heeemee e ————— ,
1
O i compute ;
E | li node |
= 1
© .-
2 | fpeseeermereremeenpeneneneneaana. Jeseemememeneaaas !
apid_4, code running on compute nodes !
1
1

e | N I

Wall Time Spent on Waiting for

Commands Running on Service Node(s)
v A A A

nid 1 nid 2 nid_3 nid 4
g v

Y
Record in RUR Memory Plugin Output

“cpu idle percentage” (p)

2?21 L

—_— where n is number of cores the job ran on. x is cpu idle
p - percentage of each core. :

Zle (uttme; + stime;)
T x N

where k is the number of aprun, utime and stime are from the RUR
taskstats plugin record with apid, T is the wall time elapsed for the
whole job, N is the number of cotes actually assigned to the job, sum
up the values of ppn with the nid in array of allocated host names
from job accounting Mformation

“memory usage including system service per node” (u)

1=]_ C?j where x_is the mean memory used on node i, C is the

M —_— number'of cores on node i and H is the number'of nodes on which the
job ran.

H

k ¥
> . 2imy | . e
1— where k is the number of aprun, n is the number of nodes in the jth
— w; X j
aprun, m is the ”Active(anon)” value in the RUR memory plugin
] .
T 5 output with apid , and nid . The w_is the weight calculated as below:
j=1 J oo
(APP_STOP; — APP_START)) x N,)
w,; =
J

T x N

where AP P ST OP and AP P ST ART are values from RUR timestamp
plugin with apid . J J
J

XDMoD Website Interface

® 00 XDMoD Portal

- @ . -@ hitps @ xdmod.ccr.buffalo.edu/#tg_

= Apple YouTube Wikipedia News Y Popular ¥

XDMOD Hello, Sign In to view personalized information. |5 Sign Up @ About [Contact Us ~ @ Help~
Summary Usage About

Role: l[]NICS ~ | Duration: {2 Previous month~ Start: 2015-03-01 [9 End: 2015-03-31 = : Refresh ‘\?Fillerv @Displayv Top 10 Expon @Prim

NICS's View <« [NICS/Jobs Summary = -]+
Title: Allocation Usage Rate (XD SU/Hour) CPU Hours: Per Job
N Service Provider = NICS Service Provider = NICS
Legend: v 40k 10k
Font Size:

@
1Y

4 % Jobs Summary
iflll Aliocation Usage Rate

. 0k < 0k
illl cPU Hours: Per Job o 2 © e S & Q © o =
dlli cPU Hours: Total o m on o - o ” N = m
(=] o o (=] o o (=] o o o
ol Job Size: Max th th h h A A h h A "
- o — - — - — — — — —
il Job Size: Min S 2 4 S 4 & b 4 4 Q
E[ﬂﬂ Job Size: Normalized
EmﬂJob Size: Per Job
i Job Size: Weighted By XD SUs CPU Hours: Total Job Size: Max (Core Count)
Emﬂ NUs Charged: Per Job Service Provider = NICS Service Provider = NICS
allli NUs Charged: Total 500k 10k

Eﬂﬂ Node Hours: Per Job
Eﬂ'ﬂ Node Hours: Total
E[ﬂﬂ Number of Allocations: Active 250k /\ . Sk N

Emﬂ Number of Institutions: Active

Eﬂﬂ Number of Jobs Ended iption A
ofll] Number of Jobs Running = XSEDE: Summarizes jobs reported to the XSEDE central database (excludes non-XSEDE usage of the resource).
Number of Jobs Started = Allocation Usage Rate (XD SU/Hour): The rate of XSEDE allocation usage in XD SUs per hour.
g g
alli Number of Jobs Submitted = CPU Hours: Per Job: The average CPU hours (number of CPU cores x wall time hours) per XSEDE job.
i Number of Jobs via Gateway For each job, the CPU usage is aggregated. For example, if a job used 1000 CPUs for one minute, it would be aggregated as 1000 CPU minutes or
16.67 CPU hours.

il Number of Pis: Active Std Dev: CPU Hours: Per Job: The standard error of the average CPU hours by each XSEDE job.

gl Number of Resources: Active Std Err of the Avg: The standard deviation of the sample mean, estimated by the sample estimate of the population standard deviation (sample
il Number of Users: Active standard deviation) divided by the square root of the sample size (assuming statistical independence of the values in the sample).
lli User Expansion Factor = CPU Hours: Total: The total CPU hours (number of CPU cores x wall time hours) used by XSEDE jobs.

iflll wait Hours: Per Job For each job, the CPU usage is aggregated. For example, if a job used 1000 CPUs for one minute, it would be aggregated as 1000 CPU minutes or
A VAIA G Lasien: Tasal 18 R7 P11 hniire

Example of analyzing RUR data via XDMoD

Mars RUR data

30M 60 1500 0.08
25M 50 1250
0.06
2
20M 40 1000 §
5 |2 % | 00s 5
€ 15M |2 30 750 = 0.04 ©
o o =
2 S - -
°
10M 20 500 =
0.02
5M 10 250
oM 0 0 0
nwchem gromacs namd
Application

s Avg CPU %: User: weighted by core-hour il Avg CPU %: System: weighted by core-hour
B Number of Jobs Ended W Avg: Memory: Per Core weighted by core-hour @ Wall Hours: Per Job
(bytes)

2015-03-01 to 2015-04-15 Src: SUPREMM. Powered by XDMoD/Highcharts

RUR Configuration Experiences

alps.conf

apsys
prologPath /opt/cray/rur/default/bin/rur_prologue.py
epilogPath /opt/cray/rur/default/bin/rur_epilogue.py
prologTimeout 60
epilogTimeout 60

/apsys

[globall]
rur: False

[rur_stage]
stage_timeout: 10
stage_dir: /tmp/rur/

[rur_gather]
gather_timeout: 10
gather_dir: /tmp/rur/

[rur_post]
post_timeout: 10
post_dir: /tmp/rur/

[plugins]
gpustat: false
taskstats: true
timestamp: true
enerqgy: false
memory: true

[outputplugins]
1llm: false
file: true
user: false

rur.conf

[gpustat]
stage: /opt/cray/rur/default/bin/gpustat_stage.py

post: /opt/cray/rur/default/bin/gpustat_post.py
[taskstats]

stage: /opt/cray/rur/default/bin/taskstats_stage.py
post: /opt/cray/rur/default/bin/taskstats_post.py
[energy]

stage: /opt/cray/rur/default/bin/energy_stage.py
post: /opt/cray/rur/default/bin/energy_post.py
[timestamp]

stage: /opt/cray/rur/default/bin/timestamp_stage.py
post: /opt/cray/rur/default/bin/timestamp_post.py
[memory]

stage: /opt/cray/rur/default/bin/memory_stage.py
post: /opt/cray/rur/default/bin/memory_post.py
[11m]

output: /opt/cray/rur/default/bin/llm_output.py

[file]

output: /opt/cray/rur/default/bin/file_output.py
arg: /lustre/medusa/grogers/RUR/output/rur.output
[user]

output: /opt/cray/rur/default/bin/user_output.py
arg: single

Discussions and Conclusions

* The RUR provides a low noise, scalable
approach to collect performance data from
the compute nodes.

* The RUR framework allows users develop
customized plugins for various purposes.

* |t appears that RUR is a stable utility going
forward serving the Cray community. There
are substantial development works from
multiple aspects related to RUR.

Discussions and Conclusions

 The data generated by the default plugins show
that RUR, in its current state, is at best a
supplement for the accounting data recorded by
whatever resource management system the
site implements.

* The existing plugins can give additional
data on CPU time, memory, energy, and GPU
usage on the compute nodes that is not typically
available in the resource manager accounting
logs on Cray systems.

Conclusions and Discussions

* However, most of the deeper performance
information desired by third-party analytics
systems such as XDMoD and provided by
other monitoring systems such as TACC Stats
are not available through RUR. Specifically,
plugins for processor performance counters,
interconnect performance counters, and file
system performance counters (such as for
Lustre) are not currently available for RUR on
XE6/XK6 platforms.

THANK YOU

