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Figure 2. Diagram of RUR Operation 

 

 

 Once the process accounting data is staged on the 
compute nodes, the RUR data gathering stage collects 
these staged files from compute nodes, combining them 
into a single working file on the login node. This file is 
then provided to the process accounting post-processing 
plugin.  This plugin, at the option of the RUR 
configuration file, reduces the N records from N compute 
nodes, to a single record, including the sum of the 
processor times, the maximum of the high-water levels, 
and the maximum of the bytes read and written. This 
single, combined record is passed to the RUR output stage, 
which, by default, records it as a human-readable record in 
the LLM log stream for RUR. This record can be 
inspected on the SMW by the administrator 

VII. RUR AND GPU ACCOUNTING 

Customers running Cray systems with GPU accelerator 
nodes may wish to identify which users make use of the 
GPU, or simply use the CPU on the compute nodes. It may 
also be interesting to see to what extent users tax the GPU. 

To this end, RUR will support a plugin to gather GPU 
statistics. The pre-application phase of this plugin calls the 
CLE GPU-Accounting utility to clear its buffer of GPU 
statistics. Once the application has finished, the post-
application phase of the GPU plugin again calls the CLE 
GPU-Accounting utility, which queries the GPU driver for 
accounting data. This data is then written to the compute 
node staging file. This requires no run-time daemon to 
track accounting data, as that functionality is provided by 
the GPU driver.  

 

 

 

 

 Once the GPU accounting data is staged on the 
compute nodes, the RUR data gathering stage collects 
these staged files from compute nodes, combining them 
into a single working file on the login node. The GPU 

Apid: 2010, Jobid: 26410, uid: 3417, GPU-time: 
3100 GPU-utilization: 5100, highwater-memory: 
58 

Figure 3. GPU Accounting Data 
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Brief	
  Review	
  of	
  RUR	
  
RUR	
  provides	
  a	
  reliable,	
  high-­‐performance	
  framework	
  into	
  which	
  plugins	
  may	
  be	
  
inserted,	
  which	
  will	
  collect	
  data	
  about	
  the	
  usage	
  of	
  a	
  par:cular	
  resource.	
  RUR	
  is	
  
configurable,	
  extensible,	
  and	
  lightweight.	
  	
  
	
  



Quan:fying	
  RUR	
  Overhead	
  	
  
	
  Test	
  Plaaorm:	
  

Mars	
  at	
  NICS,	
  a	
  Cray	
  XE6/XK6	
  system,	
  running	
  Moab	
  and	
  
Torque.	
  
	
  
Test	
  Harness:	
  
The	
  Test	
  Harness	
  plaaorm	
  is	
  originally	
  developed	
  at	
  ORNL,	
  
and	
  has	
  been	
  used	
  in	
  the	
  acceptance	
  test	
  on	
  several	
  Cray	
  
systems	
  such	
  as	
  Jaguar,	
  Kraken,	
  Darter,	
  and	
  Titan.	
  The	
  Test	
  
Harness	
  includes	
  two	
  major	
  components：	
  
	
  	
  	
  	
  1,	
  Test	
  Harness	
  Python	
  library,	
  
	
  	
  	
  	
  2,	
  the	
  set	
  of	
  benchmarks	
  of	
  various	
  applica:ons.	
  	
  
	
  



1,	
  the	
  Test	
  Harness	
  ini:ally	
  compiles	
  and	
  links	
  the	
  
applica:ons,	
  
2,	
  submits	
  the	
  benchmark	
  runs	
  to	
  the	
  batch	
  system,	
  
3,	
  collects	
  the	
  job	
  outputs,	
  and	
  compares	
  the	
  results	
  
against	
  the	
  built	
  in	
  test,	
  
4,	
  the	
  Test	
  Harness	
  records	
  the	
  results	
  locally	
  and	
  
archives	
  the	
  job	
  data	
  into	
  the	
  High	
  Performance	
  Storage	
  
System	
  (HPSS)	
  at	
  Oak	
  Ridge	
  Na:onal	
  Laboratory	
  (ORNL)	
  
campus,	
  
5,	
  the	
  Test	
  Harness	
  automa:cally	
  restarts	
  the	
  process	
  
un:l	
  a	
  predetermined	
  :me	
  passes,	
  or	
  a	
  predetermined	
  
number	
  of	
  runs	
  have	
  completed.	
  	
  

Running	
  Test	
  Harness	
  



xc30/NAMD/Source/”Source	
  code”	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  /input_files/apoa1	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/dhfr	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/stmv	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/build_app.sh	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/[TestCase]:apoa1_32/Correct_Results/	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #same	
  for	
  each	
  [TestCase]	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/[TestCase]:apoa1_32/Scripts/archive.template.x	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #same	
  for	
  each	
  [TestCase]	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/build_executable.x	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #same	
  for	
  each	
  [TestCase]	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/check_executable.x	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #same	
  for	
  each	
  [TestCase]	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/pbs.template.x	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #same	
  for	
  each	
  [TestCase]	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/submit_executable.x	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #**	
  use	
  job_tag	
  to	
  dis:ngush	
  TestCase	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/size.txt	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #**	
  may	
  set	
  different	
  #	
  of	
  processor	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/RunArchive/[unique_id]/”results	
  directory”	
  	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/Status/rgt_status.txt	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/[unique_id]/job_id.txt	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #**	
  different	
  for	
  each	
  [unique_id]	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/job_status.txt	
  	
  	
  	
  	
  	
  	
  #	
  either	
  0	
  (success)	
  1(fail)	
  2(not	
  clear)	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/[TestCase]:dhfr_64/Correct_Results/	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #same	
  for	
  each	
  [TestCase]	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/[TestCase]:dhfr_64/Scripts/archive.template.x	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #same	
  for	
  each	
  [TestCase]	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/build_executable.x	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #same	
  for	
  each	
  [TestCase]	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/check_executable.x	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #same	
  for	
  each	
  [TestCase]	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/pbs.template.x	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #same	
  for	
  each	
  [TestCase]	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/submit_executable.x	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #**	
  use	
  job_tag	
  to	
  dis:ngush	
  TestCase	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/size.txt	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #**	
  may	
  set	
  different	
  #	
  of	
  processor	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/RunArchive/[unique_id]/”results	
  directory”	
  	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/Status/rgt_status.txt	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/[unique_id]/job_id.txt	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #**	
  different	
  for	
  each	
  [unique_id]	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/job_status.txt	
  	
  	
  	
  	
  	
  	
  #	
  either	
  0	
  (success)	
  1(fail)	
  2(not	
  clear)	
  
	
  
	
  
	
  
	
  
	
  

Structure	
  of	
  Test	
  Harness	
  



Test	
  Harness	
  Applica:ons	
  and	
  Benchmarks	
  

NAMD:	
  	
  a	
  parallel	
  molecular	
  dynamics	
  code	
  designed	
  for	
  
high-­‐performance	
  simula:on	
  of	
  large	
  bio-­‐molecular	
  
systems.	
  	
  
benchmark:	
  apoa1,	
  stmv	
  	
  
	
  
NWCHEM:	
  a	
  scalable	
  computa:onal	
  chemistry	
  package,	
  
ackling	
  molecular	
  systems	
  including	
  biomolecules,	
  
nanostructures,	
  ac:nide	
  complexes,	
  and	
  materials.	
  	
  
benchmark:	
  aump2,	
  c60_pbe0	
  	
  
	
  
GROMACS:	
  a	
  versa:le	
  package	
  to	
  perform	
  molecular	
  
dynamics,	
  i.e.	
  simulate	
  the	
  Newtonian	
  equa:ons	
  of	
  
mo:on	
  for	
  systems	
  with	
  hundreds	
  to	
  millions	
  of	
  par:cles.	
  	
  
benchmark:	
  d.dppc,	
  d.villin	
  	
  
	
  



of benchmarks from various applications. The Test Harness
initially compiles and links the applications, then submits
the benchmark runs to the batch system, collects the job
outputs, and compares the results against the built in test.
The Test Harness records the results locally and archives
the job data into the High Performance Storage System
(HPSS) at Oak Ridge National Laboratory (ORNL) campus.
The Test Harness automatically restarts the process until a
predetermined time passes, or a predetermined number of
runs have completed. During the simulation, the adminis-
trators can query the current status of the test runs and the
success rate of the test runs. NICS developed and maintains
a customized version of Test Harness for its computational
resources.

Three applications from the NICS Test Harness: NAMD,
NWCHEM, and GROMACS were selected. All three ap-
plications have large user communities and are actively
run on NICS resources. NAMD, is a parallel molecular
dynamics code designed for high-performance simulation of
large biomolecular systems. NWCHEM is a scalable com-
putational chemistry package, ackling molecular systems
including biomolecules, nanostructures, actinide complexes,
and materials. GROMACS is a versatile package to perform
molecular dynamics, i.e. simulate the Newtonian equations
of motion for systems with hundreds to millions of particles.

Two benchmarks were chosen for each applications. The
NAMD benchmarks were apoa1 and stmv. The NWCHEM
benchmarks were aump2 and c60 pbe0. The GROMACS
benchmarks were d.dppc and d.villin. All benchmark exam-
ples are available online. For each benchmark, two job sizes
were chosen. Combined with the enabling/disabling of RUR,
there are a total of 3⇥ 2⇥ 2⇥ 2 = 24 distinct sets of data.

The runs were completed in the following manner. RUR
was enabled on the system. Twelve jobs were submitted to
the batch system, distinguished by application, benchmark,
and job size. Each benchmark job that was submitted to the
batch system, in turn, created an auxilary job to run imme-
diately after the completion of the benchmark job. The RUR
output was recorded immediately before the benchmark job
was placed on the compute nodes, and again immediately
after the benchmark job completed. The auxiliary job would
then record the outcome of the benchmark job (pass, failed,
or inconclusive) in tabular form, archive the job results, and
restart the rebuilding of the application for a new run. The
auxiliary job only executes on the service nodes, thus there
is no RUR output generated. At any given time, there are
twelve sets of jobs running, eligible, or held on the system.
Each set of jobs is either the benchmark job or the auxiliary
job. This simulates a realistic workload on the system where
multiple users are performing various activities all at the
same time on the system.

Each set of tests were run continuosly for a 36 hour
test period. Each benchmark was compiled and executed
hundreds of times. After the completion of the initial 36

Benchmark Cores RUR Jobs Ave.
Run
Time

Std.
Dev.

stmv 128 on 388 129.71 0.37
128 off 398 129.68 0.45

stmv 256 on 227 89.73 1.47
256 off 240 88.49 1.29

apoa1 32 on 1102 81.67 0.42
32 off 1261 81.86 0.48

apoa1 64 on 1385 46.21 0.36
64 off 1519 46.25 0.78

c60 pbe0 32 on 60 322.81 2.69
32 off 52 322.60 2.88

c60 pbe0 64 on 98 167.45 1.21
64 off 80 167.64 1.38

aump2 32 on 56 349.77 2.71
32 off 60 349.67 2.05

aump2 64 on 89 184.92 1.41
64 off 75 185.50 2.05

d.dppc 64 on 71 114.02 0.16
64 off 55 114.05 0.16

d.dppc 128 on 96 64.68 0.16
128 off 77 64.77 0.18

d.villin 32 on 109 74.22 0.15
32 off 86 74.26 0.13

d.villin 64 on 134 44.85 0.37
64 off 104 44.92 0.35

Table I
A TABLE OF TEST HARNESS BENCHMARKS PERFORMANCE

hour test, RUR was disabled and the same set of runs were
started for the comparative 36 hour test.

After obtaining the full 24 sets of data, basic job statistics
were computed for both cases. These statistics included the
average runtime and standard deviation for each job. Table
I illustrates the average run time with RUR on and off.
These runtimes have no statistically significant difference.
The runtime difference between RUR on and RUR off is
well within the standard deviation of the average runtime.
Thus we conclude that RUR does not have any negative
impact on runtimes.

III. RUR CONFIGURATION EXPERIENCES AND
LIMITATIONS

RUR includes a two different types of plugins by default:
data plugins and output plugins. Data plugins record infor-
mation on the node immediately before a job is placed on the
compute node and immediately after the job is completed.
Output plugins are used to record this data. NICS enabled
all of the standard plugins described in the Cray system
software management guide [5]. This included the taskstats,
timestamp, memory, and energy plugins. The file output
plugin was enabled, and all results were stored on the
attached Lustre file system.

The standard RUR data plugins, and the file output plugin
are enabled by editing the basic alps.conf and rur.conf files
as shown in Apendix section. In order to enable RUR,
beyond setting the correct configuration option, ALPS needs
to be restarted on the login nodes. The file output plugin was
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•  TORQUE	
  version	
  5.0	
  added	
  a	
  field	
  in	
  its	
  accoun:ng	
  logs	
  for	
  
recoding	
  the	
  energy	
  used	
  by	
  a	
  job,	
  called	
  resources	
  
used.energy	
  used.	
  The	
  ini:al	
  implementa:on	
  of	
  this	
  can	
  be	
  
found	
  in	
  src/resmom/cray	
  energy.c	
  in	
  the	
  source	
  code.	
  This	
  
implementa:on	
  targets	
  RUR,	
  specifically	
  the	
  energy	
  plugin,	
  
as	
  its	
  underlying	
  data	
  gathering	
  infrastructure.	
  

•  The	
  RUR	
  energy	
  plugin	
  does	
  not	
  support	
  energy	
  
measurement	
  on	
  the	
  XE6/XK6	
  hardware	
  plaaorm,	
  but	
  that	
  
fact	
  was	
  not	
  documented	
  in	
  the	
  Cray	
  system	
  sonware	
  
manual	
  describing	
  RUR.	
  

•  NICS	
  has	
  requested	
  that	
  Cray	
  update	
  the	
  documenta:on.	
  



Genera:ng	
  Single	
  Job	
  Record:	
  
system	
  name,	
  job	
  id,	
  	
  
user	
  name,	
  group	
  name,	
  	
  
charge	
  account,	
  job	
  name,	
  	
  
number	
  of	
  processers	
  requested,	
  	
  
queue	
  name,	
  	
  
submit	
  :me,	
  start	
  :me,	
  	
  
end	
  :me,	
  wall	
  :me	
  requested,	
  	
  
allocated	
  host	
  list,	
  exit	
  status,	
  	
  
node	
  where	
  the	
  job	
  was	
  submiNed,	
  
user’s	
  batch	
  job	
  script.	
  

pbsacct	
  u:lity	
  
	
  

rchar,	
  wchar,	
  	
  
s:me,	
  u:me,	
  	
  
exitcode,	
  max_rss,	
  	
  
%_of_boot_mem,	
  	
  
Ac:ve(anon),	
  Ac:ve(file),	
  	
  
gid,	
  jid,	
  nid,	
  uid,	
  apid,	
  
APP_START,	
  APP_STOP	
  

RUR	
  data	
  
	
  

Aner	
  parsing	
  the	
  RUR	
  output	
  and	
  querying	
  the	
  pbsacct	
  database,	
  a	
  single	
  job	
  record	
  
can	
  be	
  generated	
  in	
  a	
  json	
  dic:onary	
  style.	
  Each	
  job	
  record	
  is	
  stored	
  in	
  a	
  file.	
  These	
  
records	
  can	
  be	
  injected	
  into	
  external	
  analysis	
  systems	
  for	
  further	
  processing,	
  such	
  as	
  
XDMoD.	
  



Integra:on	
  with	
  XDMoD	
  
•  The	
  XSEDE	
  Technology	
  Audit	
  Service	
  (TAS)	
  is	
  an	
  NSF	
  

funded	
  project	
  at	
  the	
  Center	
  for	
  Computa:onal	
  
Research	
  (CCR)	
  of	
  the	
  State	
  University	
  of	
  New	
  York	
  
(SUNY)	
  at	
  Buffalo	
  to	
  audit	
  the	
  XSEDE	
  project’s	
  ac:vi:es.	
  	
  

•  One	
  of	
  this	
  project’s	
  main	
  products	
  is	
  XSEDE	
  Metrics	
  on	
  
Demand	
  (XDMoD),	
  a	
  sonware	
  system	
  which	
  provides	
  
web-­‐based	
  access	
  to	
  metrics	
  and	
  analy:cs	
  for	
  the	
  
computa:onal	
  resources	
  of	
  the	
  XSEDE	
  service	
  providers	
  
(SPs).	
  	
  

•  The	
  XDMoD	
  (hNps:	
  //xdmod.ccr.buffalo.edu)	
  is	
  
designed	
  to	
  audit	
  and	
  facilitate	
  the	
  opera:on	
  and	
  
u:liza:on	
  of	
  XSEDE,	
  one	
  of	
  the	
  most	
  advanced	
  and	
  
robust	
  collec:on	
  of	
  integrated	
  advanced	
  digital	
  
resources	
  and	
  services	
  in	
  the	
  world.	
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Figure 1. A schematic show of a simple job structure

VI. INTEGRATION WITH XDMOD

The XSEDE Technology Audit Service (TAS) is an NSF
funded project at the Center for Computational Research
(CCR) of the State University of New York (SUNY) at
Buffalo to audit the XSEDE project’s activities. One of this
project’s main products is XSEDE Metrics on Demand (XD-
MoD), a software system which provides web-based access
to metrics and analytics for the computational resources of
the XSEDE service providers (SPs). The XDMoD (https:
//xdmod.ccr.buffalo.edu) is designed to audit and facilitate
the operation and utilization of XSEDE, the most advanced
and robust collection of integrated advanced digital resources
and services in the world. Similarly, Open XDMoD, the open
source version of XDMoD, is designed to provide similar
capabilities to academic and industrial HPC centers. The
XDMoD tool includes both a web-based interface and a back
end to collect and store job performance data. The level of
detail available in this data varies by system. For example,
the Stampede system at TACC uses the TACC Stats system
to provide very detailed information including hardware per-
formance counters, interconnect statistics, and Lustre statis-
tics. There is currently no real equivalent to TACC Stats
on Cray systems; however, the hope is that RUR might be
able to provide similar functionality. In this section, we will
discuss that possibility in detail, including an enumeration
of the development work needed to make it a reality.

The XDMoD is a package under active development.
The developers have identified a set of metrics for each
single job run on the supercomputer. These metrics aim to
represent the typical usage on the supercomputers. Analysis
of these metrics offers various information which helps staff
members and users to utilize the resources more efficiently.

The current set of metrics includes three subsets. The first
subset includes: organization name, machine name, local
job id, job name, project account, user name, job directory,

executable, exit status, number of granted processing ele-
ments (PEs), queue name, number of requested nodes, array
of allocated host names, actually used node count, shared
mode, actually used core count, available core count, submit
time, eligible time, start time, end time, wall time, requested
wall time, wait time, cput time, node time, error message.

The second subset includes: cpu idle percentage, cpu
system percentage, cpu user percentage, flops average per
core, clock ticks per instruction on average per core, L1D
cache load drop off percentage, clock ticks per l1d load on
average per core, total data transferred over the memory bus,
standard deviation of cpu user for all used cores, (max - min)
/ max cpu user over all used cores, memory usage including
system service per node, memory used by the OS including
the page and buffer caches per node.

The third subset includes a number of interconnection and
accelerator hardware counters, which relies on additional
plugins. It is beyond the scope of focus here.

The first subset can be extracted from the job accounting
data base. The second subset needs to combine both the job
accounting data and the RUR output.

Consider a simple job as shown in Figure 1. Each mint
green color box represnts one compute node. The job
requests 4 nodes, and there is only one aprun command
inside the job script, which uses all 4 nodes. The time spent
on the service node is ignorable.

In this case, the hostlist information from the accounting
data base is identical to enumerating the nid key in the RUR
memory plugin output. The walltime calculated from the
difference between start time and end time is about the same
as the difference between the APP START and APP STOP
from the RUR timestamp plugin. The sum of utime and
stime in RUR taskstats plugin output, the area of the red
dashline rectangle, can be approximated by the area of the
blue solid line rectangle, which is the Wall Time ⇥ Allocated
Compute Nodes.

Next, we study a complex job as in Figure 2. Still the job
requests 4 compute nodes, but only 3 of them are actually
used. There are 4 aprun commands in the job, labeled by
apidi, i from 1 to 4. apid1 command runs on 2 nodes. After
apid1 finishes, apid2 and apid3 commands start at the same
time, apid2 runs on 1 node, using only a portion of cores
on the node (such as having a -N option after aprun), apid3
runs on 2 nodes and finishes earlier than apid2. The apid4
command runs after both apid2 and apid3 finishes, and runs
on 3 nodes. After all the aprun commands finishes, there is
a significant span of the job executing system commands on
the service node.

We generate the metrics from the single job record of
above complex job. The metrics set is stored in a JSON-dict
format as the single job record. We customize the original
definitions of the metric to handle the job with multiple
aprun commands. We demonstrate how to obtain several
metrics below.

A	
  schema:c	
  show	
  of	
  a	
  simple	
  job	
  structure	
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Figure 2. A schematic show of a complex job structure

We first generate two extra key-value-pair items. The first
item has the key ”used nodes list”, and has the value as
a list of nids. The nid(s) in the list appear(s) at least once
as the value of the RUR memory plugin output ”nid” key.
In Figure 2 example, it is (”used nodes list”: [nid1, nid2,
nid3]). The second item has the key ”aprun nodes dict”, and
has the value as a dict with apid key and nodes list value.
The nodes list is the list of nid appear in each aprun memory
plugin output. In Figure2 example, it is (”aprun nodes dict”:
{apid1: [nid1, nid2], apid2: [nid1], apid3: [nid2, nid3],
apid4: [nid1, nid2, nid3]}). Then we also need a mapping
function ppnnid between nid and the number of cores on
the node. Since it is common that the Cray system has
heterogeneous structure, which includes more than one type
of node. For example, the Mars has both 32-core XE6 nodes
and 16-core XK6 nodes. If the user does not specify the
feature in the PBS option, it is highly possible that the
scheduler schedules a mixed node pool to the job.

The first metric we show is ”cpu idle percentage” (⇢), the
original definition is:

⇢ =

Pn
i=1 xi

n
(1)

where n is number of cores the job ran on. xi is cpu idle
percentage of each core. We calculate ⇢ as:

⇢ = 1�
Pk

i=1(utimei + stimei)

T ⇥N
(2)

where k is the number of aprun, utimei and stimei are
from the RUR taskstats plugin record with apidi, T is the
wall time elapsed for the whole job, N is the number of
cores actually assigned to the job, sum up the values of
ppnnid with the nid in array of allocated host names from
job accounting information. The idea is that the result needs
to include data from multiple aprun executions.

The second metric is ”memory usage including system
service per node” (µ), the original definition is:

µ =

PH
i=1

xi
Ci

H
(3)

where xi is the mean memory used on node i, Ci is the
number of cores on node i and H is the number of nodes
on which the job ran. We calculate µ as:

µ =
kX

j=1

wj ⇥
Pnj

i=1 mi

nj
(4)

where k is the number of aprun, nj is the number of nodes
in the jth aprun, mi is the ”Active(anon)” value in the RUR
memory plugin output with apidj , and nidi. The wi is the
weight calculated as below:

wj =
(APP STOPj �APP STARTj) ⇤Nj)

T ⇥N
(5)

where APP STOPj and APP STARTj are values from
RUR timestamp plugin with apidj . T and N are defined
the same as above. The idea is that we weight the average
memory usage per node among different aprun commands
by node hour weight.

Finally we describe the designed workflow for injecting
RUR output to XDMoD. On Mars, RUR is configured to
write job performance data to a file on a Lustre scratch
file system. The data in that file would be validated and
filtered to remove potentially sensitive information. Then
the python script described in the section ”GENERATING
SINGLE JOB RECORD” will be run. The script combines
the RUR record labeled by (jobid, apid) to a single job record
(jobid), then executes system command ”jobinfo” to query
the pbs accounting data base with the jobid, and fills the
relevant result into the correct fields of the single job record.
Then the single job record will be passed into a Javascript
run by application ”node” to generate the desired metrics.
The metrics will be stored in the JSON-dict format file for
each jobid. The final ”single job record and metrics” files
would then be transferred to an instance of the XDMoD
system at CCR, where an automated pipeline would ingest
the data. CCR developers would then re-validate the data
before storing it in the central data warehouse. The front-
end XDMoD GUI would then pull data from the central data
warehouse per users online requests.

VII. CONCLUSIONS

The RUR provides a low noise, scalable approach to
collect performance data from the compute nodes. The RUR
framework allows users develop customized plugins for
various purposes. It appears that RUR is a stable utility going
forward serving the Cray community. There are substantial
development works from multiple aspects related to RUR.

The data generated by the default plugins show that RUR,
in its current state, is at best a supplement for the accounting
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Figure 2. A schematic show of a complex job structure

We first generate two extra key-value-pair items. The first
item has the key ”used nodes list”, and has the value as
a list of nids. The nid(s) in the list appear(s) at least once
as the value of the RUR memory plugin output ”nid” key.
In Figure 2 example, it is (”used nodes list”: [nid1, nid2,
nid3]). The second item has the key ”aprun nodes dict”, and
has the value as a dict with apid key and nodes list value.
The nodes list is the list of nid appear in each aprun memory
plugin output. In Figure2 example, it is (”aprun nodes dict”:
{apid1: [nid1, nid2], apid2: [nid1], apid3: [nid2, nid3],
apid4: [nid1, nid2, nid3]}). Then we also need a mapping
function ppnnid between nid and the number of cores on
the node. Since it is common that the Cray system has
heterogeneous structure, which includes more than one type
of node. For example, the Mars has both 32-core XE6 nodes
and 16-core XK6 nodes. If the user does not specify the
feature in the PBS option, it is highly possible that the
scheduler schedules a mixed node pool to the job.

The first metric we show is ”cpu idle percentage” (⇢), the
original definition is:

⇢ =

Pn
i=1 xi

n
(1)

where n is number of cores the job ran on. xi is cpu idle
percentage of each core. We calculate ⇢ as:

⇢ = 1�
Pk

i=1(utimei + stimei)

T ⇥N
(2)

where k is the number of aprun, utimei and stimei are
from the RUR taskstats plugin record with apidi, T is the
wall time elapsed for the whole job, N is the number of
cores actually assigned to the job, sum up the values of
ppnnid with the nid in array of allocated host names from
job accounting information. The idea is that the result needs
to include data from multiple aprun executions.

The second metric is ”memory usage including system
service per node” (µ), the original definition is:

µ =

PH
i=1

xi
Ci

H
(3)

where xi is the mean memory used on node i, Ci is the
number of cores on node i and H is the number of nodes
on which the job ran. We calculate µ as:

µ =
kX

j=1

wj ⇥
Pnj

i=1 mi

nj
(4)

where k is the number of aprun, nj is the number of nodes
in the jth aprun, mi is the ”Active(anon)” value in the RUR
memory plugin output with apidj , and nidi. The wi is the
weight calculated as below:

wj =
(APP STOPj �APP STARTj) ⇤Nj)

T ⇥N
(5)

where APP STOPj and APP STARTj are values from
RUR timestamp plugin with apidj . T and N are defined
the same as above. The idea is that we weight the average
memory usage per node among different aprun commands
by node hour weight.

Finally we describe the designed workflow for injecting
RUR output to XDMoD. On Mars, RUR is configured to
write job performance data to a file on a Lustre scratch
file system. The data in that file would be validated and
filtered to remove potentially sensitive information. Then
the python script described in the section ”GENERATING
SINGLE JOB RECORD” will be run. The script combines
the RUR record labeled by (jobid, apid) to a single job record
(jobid), then executes system command ”jobinfo” to query
the pbs accounting data base with the jobid, and fills the
relevant result into the correct fields of the single job record.
Then the single job record will be passed into a Javascript
run by application ”node” to generate the desired metrics.
The metrics will be stored in the JSON-dict format file for
each jobid. The final ”single job record and metrics” files
would then be transferred to an instance of the XDMoD
system at CCR, where an automated pipeline would ingest
the data. CCR developers would then re-validate the data
before storing it in the central data warehouse. The front-
end XDMoD GUI would then pull data from the central data
warehouse per users online requests.

VII. CONCLUSIONS

The RUR provides a low noise, scalable approach to
collect performance data from the compute nodes. The RUR
framework allows users develop customized plugins for
various purposes. It appears that RUR is a stable utility going
forward serving the Cray community. There are substantial
development works from multiple aspects related to RUR.

The data generated by the default plugins show that RUR,
in its current state, is at best a supplement for the accounting
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We first generate two extra key-value-pair items. The first
item has the key ”used nodes list”, and has the value as
a list of nids. The nid(s) in the list appear(s) at least once
as the value of the RUR memory plugin output ”nid” key.
In Figure 2 example, it is (”used nodes list”: [nid1, nid2,
nid3]). The second item has the key ”aprun nodes dict”, and
has the value as a dict with apid key and nodes list value.
The nodes list is the list of nid appear in each aprun memory
plugin output. In Figure2 example, it is (”aprun nodes dict”:
{apid1: [nid1, nid2], apid2: [nid1], apid3: [nid2, nid3],
apid4: [nid1, nid2, nid3]}). Then we also need a mapping
function ppnnid between nid and the number of cores on
the node. Since it is common that the Cray system has
heterogeneous structure, which includes more than one type
of node. For example, the Mars has both 32-core XE6 nodes
and 16-core XK6 nodes. If the user does not specify the
feature in the PBS option, it is highly possible that the
scheduler schedules a mixed node pool to the job.

The first metric we show is ”cpu idle percentage” (⇢), the
original definition is:

⇢ =

Pn
i=1 xi

n
(1)

where n is number of cores the job ran on. xi is cpu idle
percentage of each core. We calculate ⇢ as:

⇢ = 1�
Pk

i=1(utimei + stimei)

T ⇥N
(2)

where k is the number of aprun, utimei and stimei are
from the RUR taskstats plugin record with apidi, T is the
wall time elapsed for the whole job, N is the number of
cores actually assigned to the job, sum up the values of
ppnnid with the nid in array of allocated host names from
job accounting information. The idea is that the result needs
to include data from multiple aprun executions.

The second metric is ”memory usage including system
service per node” (µ), the original definition is:

µ =

PH
i=1

xi
Ci

H
(3)

where xi is the mean memory used on node i, Ci is the
number of cores on node i and H is the number of nodes
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where APP STOPj and APP STARTj are values from
RUR timestamp plugin with apidj . T and N are defined
the same as above. The idea is that we weight the average
memory usage per node among different aprun commands
by node hour weight.

Finally we describe the designed workflow for injecting
RUR output to XDMoD. On Mars, RUR is configured to
write job performance data to a file on a Lustre scratch
file system. The data in that file would be validated and
filtered to remove potentially sensitive information. Then
the python script described in the section ”GENERATING
SINGLE JOB RECORD” will be run. The script combines
the RUR record labeled by (jobid, apid) to a single job record
(jobid), then executes system command ”jobinfo” to query
the pbs accounting data base with the jobid, and fills the
relevant result into the correct fields of the single job record.
Then the single job record will be passed into a Javascript
run by application ”node” to generate the desired metrics.
The metrics will be stored in the JSON-dict format file for
each jobid. The final ”single job record and metrics” files
would then be transferred to an instance of the XDMoD
system at CCR, where an automated pipeline would ingest
the data. CCR developers would then re-validate the data
before storing it in the central data warehouse. The front-
end XDMoD GUI would then pull data from the central data
warehouse per users online requests.
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The RUR provides a low noise, scalable approach to
collect performance data from the compute nodes. The RUR
framework allows users develop customized plugins for
various purposes. It appears that RUR is a stable utility going
forward serving the Cray community. There are substantial
development works from multiple aspects related to RUR.

The data generated by the default plugins show that RUR,
in its current state, is at best a supplement for the accounting
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We first generate two extra key-value-pair items. The first
item has the key ”used nodes list”, and has the value as
a list of nids. The nid(s) in the list appear(s) at least once
as the value of the RUR memory plugin output ”nid” key.
In Figure 2 example, it is (”used nodes list”: [nid1, nid2,
nid3]). The second item has the key ”aprun nodes dict”, and
has the value as a dict with apid key and nodes list value.
The nodes list is the list of nid appear in each aprun memory
plugin output. In Figure2 example, it is (”aprun nodes dict”:
{apid1: [nid1, nid2], apid2: [nid1], apid3: [nid2, nid3],
apid4: [nid1, nid2, nid3]}). Then we also need a mapping
function ppnnid between nid and the number of cores on
the node. Since it is common that the Cray system has
heterogeneous structure, which includes more than one type
of node. For example, the Mars has both 32-core XE6 nodes
and 16-core XK6 nodes. If the user does not specify the
feature in the PBS option, it is highly possible that the
scheduler schedules a mixed node pool to the job.

The first metric we show is ”cpu idle percentage” (⇢), the
original definition is:

⇢ =

Pn
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where n is number of cores the job ran on. xi is cpu idle
percentage of each core. We calculate ⇢ as:
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where k is the number of aprun, utimei and stimei are
from the RUR taskstats plugin record with apidi, T is the
wall time elapsed for the whole job, N is the number of
cores actually assigned to the job, sum up the values of
ppnnid with the nid in array of allocated host names from
job accounting information. The idea is that the result needs
to include data from multiple aprun executions.

The second metric is ”memory usage including system
service per node” (µ), the original definition is:
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where xi is the mean memory used on node i, Ci is the
number of cores on node i and H is the number of nodes
on which the job ran. We calculate µ as:
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where k is the number of aprun, nj is the number of nodes
in the jth aprun, mi is the ”Active(anon)” value in the RUR
memory plugin output with apidj , and nidi. The wi is the
weight calculated as below:
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where APP STOPj and APP STARTj are values from
RUR timestamp plugin with apidj . T and N are defined
the same as above. The idea is that we weight the average
memory usage per node among different aprun commands
by node hour weight.

Finally we describe the designed workflow for injecting
RUR output to XDMoD. On Mars, RUR is configured to
write job performance data to a file on a Lustre scratch
file system. The data in that file would be validated and
filtered to remove potentially sensitive information. Then
the python script described in the section ”GENERATING
SINGLE JOB RECORD” will be run. The script combines
the RUR record labeled by (jobid, apid) to a single job record
(jobid), then executes system command ”jobinfo” to query
the pbs accounting data base with the jobid, and fills the
relevant result into the correct fields of the single job record.
Then the single job record will be passed into a Javascript
run by application ”node” to generate the desired metrics.
The metrics will be stored in the JSON-dict format file for
each jobid. The final ”single job record and metrics” files
would then be transferred to an instance of the XDMoD
system at CCR, where an automated pipeline would ingest
the data. CCR developers would then re-validate the data
before storing it in the central data warehouse. The front-
end XDMoD GUI would then pull data from the central data
warehouse per users online requests.
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the node. Since it is common that the Cray system has
heterogeneous structure, which includes more than one type
of node. For example, the Mars has both 32-core XE6 nodes
and 16-core XK6 nodes. If the user does not specify the
feature in the PBS option, it is highly possible that the
scheduler schedules a mixed node pool to the job.

The first metric we show is ”cpu idle percentage” (⇢), the
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where k is the number of aprun, utimei and stimei are
from the RUR taskstats plugin record with apidi, T is the
wall time elapsed for the whole job, N is the number of
cores actually assigned to the job, sum up the values of
ppnnid with the nid in array of allocated host names from
job accounting information. The idea is that the result needs
to include data from multiple aprun executions.

The second metric is ”memory usage including system
service per node” (µ), the original definition is:
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weight calculated as below:
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where APP STOPj and APP STARTj are values from
RUR timestamp plugin with apidj . T and N are defined
the same as above. The idea is that we weight the average
memory usage per node among different aprun commands
by node hour weight.

Finally we describe the designed workflow for injecting
RUR output to XDMoD. On Mars, RUR is configured to
write job performance data to a file on a Lustre scratch
file system. The data in that file would be validated and
filtered to remove potentially sensitive information. Then
the python script described in the section ”GENERATING
SINGLE JOB RECORD” will be run. The script combines
the RUR record labeled by (jobid, apid) to a single job record
(jobid), then executes system command ”jobinfo” to query
the pbs accounting data base with the jobid, and fills the
relevant result into the correct fields of the single job record.
Then the single job record will be passed into a Javascript
run by application ”node” to generate the desired metrics.
The metrics will be stored in the JSON-dict format file for
each jobid. The final ”single job record and metrics” files
would then be transferred to an instance of the XDMoD
system at CCR, where an automated pipeline would ingest
the data. CCR developers would then re-validate the data
before storing it in the central data warehouse. The front-
end XDMoD GUI would then pull data from the central data
warehouse per users online requests.
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from the RUR taskstats plugin record with apidi, T is the
wall time elapsed for the whole job, N is the number of
cores actually assigned to the job, sum up the values of
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RUR timestamp plugin with apidj . T and N are defined
the same as above. The idea is that we weight the average
memory usage per node among different aprun commands
by node hour weight.
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RUR output to XDMoD. On Mars, RUR is configured to
write job performance data to a file on a Lustre scratch
file system. The data in that file would be validated and
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SINGLE JOB RECORD” will be run. The script combines
the RUR record labeled by (jobid, apid) to a single job record
(jobid), then executes system command ”jobinfo” to query
the pbs accounting data base with the jobid, and fills the
relevant result into the correct fields of the single job record.
Then the single job record will be passed into a Javascript
run by application ”node” to generate the desired metrics.
The metrics will be stored in the JSON-dict format file for
each jobid. The final ”single job record and metrics” files
would then be transferred to an instance of the XDMoD
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end XDMoD GUI would then pull data from the central data
warehouse per users online requests.

VII. CONCLUSIONS

The RUR provides a low noise, scalable approach to
collect performance data from the compute nodes. The RUR
framework allows users develop customized plugins for
various purposes. It appears that RUR is a stable utility going
forward serving the Cray community. There are substantial
development works from multiple aspects related to RUR.

The data generated by the default plugins show that RUR,
in its current state, is at best a supplement for the accounting

where	
  x
i	
  
is	
  the	
  mean	
  memory	
  used	
  on	
  node	
  i,	
  C

i	
  
is	
  the	
  

number	
  of	
  cores	
  on	
  node	
  i	
  and	
  H	
  is	
  the	
  number	
  of	
  nodes	
  on	
  which	
  the	
  
job	
  ran.	
  	
  

where	
  k	
  is	
  the	
  number	
  of	
  aprun,	
  n
j	
  
is	
  the	
  number	
  of	
  nodes	
  in	
  the	
  jth	
  

aprun,	
  m
i	
  
is	
  the	
  ”Ac:ve(anon)”	
  value	
  in	
  the	
  RUR	
  memory	
  plugin	
  

output	
  with	
  apid
j
,	
  and	
  nid

i
.	
  The	
  w

i	
  
is	
  the	
  weight	
  calculated	
  as	
  below:	
  

where	
  AP	
  P	
  	
  ST	
  OP
j	
  
and	
  AP	
  P	
  	
  ST	
  ART

j	
  
are	
  values	
  from	
  RUR	
  :mestamp	
  

plugin	
  with	
  apid
j
.	
  



XDMoD	
  Website	
  Interface	
  



Example	
  of	
  analyzing	
  RUR	
  data	
  via	
  XDMoD	
  



data recorded by whatever resource management system the
site implements. The existing plugins can give additional
data on CPU time, memory, energy, and GPU usage on the
compute nodes that is not typically available in the resource
manager accounting logs on Cray systems. However, most
of the deeper performance information desired by third-
party analytics systems such as XDMoD and provided by
other monitoring systems such as TACC Stats [10] are not
available through RUR. Specifically, plugins for processor
performance counters, interconnect performance counters,
and file system performance counters (such as for Lustre) are
not currently available for RUR on XE6/XK6 platforms. In
principle, Cray customer sites could implement plugins for
processor and Lustre file system performance counters, but it
would be difficult for anyone other than Cray to implement
a plugin for interconnect performance counters.
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apsys

prologPath /opt/cray/rur/default/bin/rur_prologue.py

epilogPath /opt/cray/rur/default/bin/rur_epilogue.py

prologTimeout 60

epilogTimeout 60

/apsys

rur.conf

[global]

rur: False

[rur_stage]

stage_timeout: 10

stage_dir: /tmp/rur/

[rur_gather]

gather_timeout: 10

gather_dir: /tmp/rur/

[rur_post]

post_timeout: 10

post_dir: /tmp/rur/

[plugins]
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taskstats: true

timestamp: true
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memory: true
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file: true

user: false
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[user]

output: /opt/cray/rur/default/bin/user_output.py

arg: single
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data recorded by whatever resource management system the
site implements. The existing plugins can give additional
data on CPU time, memory, energy, and GPU usage on the
compute nodes that is not typically available in the resource
manager accounting logs on Cray systems. However, most
of the deeper performance information desired by third-
party analytics systems such as XDMoD and provided by
other monitoring systems such as TACC Stats [10] are not
available through RUR. Specifically, plugins for processor
performance counters, interconnect performance counters,
and file system performance counters (such as for Lustre) are
not currently available for RUR on XE6/XK6 platforms. In
principle, Cray customer sites could implement plugins for
processor and Lustre file system performance counters, but it
would be difficult for anyone other than Cray to implement
a plugin for interconnect performance counters.
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APPENDIX

alps.conf

apsys

prologPath /opt/cray/rur/default/bin/rur_prologue.py

epilogPath /opt/cray/rur/default/bin/rur_epilogue.py

prologTimeout 60

epilogTimeout 60

/apsys

rur.conf

[global]

rur: False

[rur_stage]

stage_timeout: 10

stage_dir: /tmp/rur/

[rur_gather]

gather_timeout: 10

gather_dir: /tmp/rur/

[rur_post]

post_timeout: 10

post_dir: /tmp/rur/

[plugins]

gpustat: false

taskstats: true

timestamp: true

energy: false

memory: true

[outputplugins]

llm: false

file: true

user: false

[gpustat]

stage: /opt/cray/rur/default/bin/gpustat_stage.py

post: /opt/cray/rur/default/bin/gpustat_post.py

[taskstats]

stage: /opt/cray/rur/default/bin/taskstats_stage.py

post: /opt/cray/rur/default/bin/taskstats_post.py

[energy]

stage: /opt/cray/rur/default/bin/energy_stage.py

post: /opt/cray/rur/default/bin/energy_post.py

[timestamp]

stage: /opt/cray/rur/default/bin/timestamp_stage.py

post: /opt/cray/rur/default/bin/timestamp_post.py

[memory]

stage: /opt/cray/rur/default/bin/memory_stage.py

post: /opt/cray/rur/default/bin/memory_post.py

[llm]

output: /opt/cray/rur/default/bin/llm_output.py

[file]

output: /opt/cray/rur/default/bin/file_output.py

arg: /lustre/medusa/grogers/RUR/output/rur.output

[user]

output: /opt/cray/rur/default/bin/user_output.py

arg: single
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Discussions	
  and	
  Conclusions	
  

•  The	
  RUR	
  provides	
  a	
  low	
  noise,	
  scalable	
  
approach	
  to	
  collect	
  performance	
  data	
  from	
  
the	
  compute	
  nodes.	
  	
  

•  The	
  RUR	
  framework	
  allows	
  users	
  develop	
  
customized	
  plugins	
  for	
  various	
  purposes.	
  	
  

•  It	
  appears	
  that	
  RUR	
  is	
  a	
  stable	
  u:lity	
  going	
  
forward	
  serving	
  the	
  Cray	
  community.	
  There	
  
are	
  substan:al	
  development	
  works	
  from	
  
mul:ple	
  aspects	
  related	
  to	
  RUR.	
  	
  



•  The	
  data	
  generated	
  by	
  the	
  default	
  plugins	
  show	
  
that	
  RUR,	
  in	
  its	
  current	
  state,	
  is	
  at	
  best	
  a	
  
supplement	
  for	
  the	
  accoun:ng	
  data	
  recorded	
  by	
  
whatever	
  resource	
  management	
  system	
  the	
  
site	
  implements.	
  	
  

•  The	
  exis:ng	
  plugins	
  can	
  give	
  addi:onal	
  
data	
  on	
  CPU	
  :me,	
  memory,	
  energy,	
  and	
  GPU	
  
usage	
  on	
  	
  the	
  compute	
  nodes	
  that	
  is	
  not	
  typically	
  
available	
  in	
  the	
  resource	
  manager	
  accoun:ng	
  
logs	
  on	
  Cray	
  systems.	
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•  However,	
  most	
  of	
  the	
  deeper	
  performance	
  
informa:on	
  desired	
  by	
  third-­‐party	
  analy:cs	
  
systems	
  such	
  as	
  XDMoD	
  and	
  provided	
  by	
  
other	
  monitoring	
  systems	
  such	
  as	
  TACC	
  Stats	
  
are	
  not	
  available	
  through	
  RUR.	
  Specifically,	
  
plugins	
  for	
  processor	
  performance	
  counters,	
  
interconnect	
  performance	
  counters,	
  and	
  file	
  
system	
  performance	
  counters	
  (such	
  as	
  for	
  
Lustre)	
  are	
  not	
  currently	
  available	
  for	
  RUR	
  on	
  
XE6/XK6	
  plaaorms.	
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