
Monitoring	
 and	
 Analyzing	
 Job	
 Performance	

Using	
 Resource	
 U:liza:on	
 Repor:ng	
 (RUR)	
 on	

A	
 Cray	
 XE6/XK6	
 System	
 	

Shi-­‐Quan	
 Su,	
 Troy	
 Baer,	
 Gary	
 Rogers,	
 Stephen	
 McNally,	

Robert	
 WhiNen,	
 Lonnie	
 Crosby,	

Na#onal	
 Ins#tute	
 for	
 Computa#onal	
 Sciences	
 	

	
 University	
 of	
 Tennessee,	
 USA;	
 	

	
 	

CUG	
 Conference	
 2015	

Research	
 sponsors:	
 the	
 U.S.	
 Na2onal	
 Science	
 Founda2on	
 	

Outline	

•  Brief	
 Review	
 of	
 RUR	

•  Quan:fying	
 RUR	
 Overhead	

•  Integra:on	
 with	
 Torque	

•  Genera:ng	
 Single	
 Job	
 Record	

•  Integra:on	
 with	
 XDMoD	

•  RUR	
 Configura:on	
 Experiences	

•  Discussions	
 and	
 Conclusions	

	

�	
 �	
 �	

Figure 2. Diagram of RUR Operation

 Once the process accounting data is staged on the
compute nodes, the RUR data gathering stage collects
these staged files from compute nodes, combining them
into a single working file on the login node. This file is
then provided to the process accounting post-processing
plugin. This plugin, at the option of the RUR
configuration file, reduces the N records from N compute
nodes, to a single record, including the sum of the
processor times, the maximum of the high-water levels,
and the maximum of the bytes read and written. This
single, combined record is passed to the RUR output stage,
which, by default, records it as a human-readable record in
the LLM log stream for RUR. This record can be
inspected on the SMW by the administrator

VII. RUR AND GPU ACCOUNTING

Customers running Cray systems with GPU accelerator
nodes may wish to identify which users make use of the
GPU, or simply use the CPU on the compute nodes. It may
also be interesting to see to what extent users tax the GPU.

To this end, RUR will support a plugin to gather GPU
statistics. The pre-application phase of this plugin calls the
CLE GPU-Accounting utility to clear its buffer of GPU
statistics. Once the application has finished, the post-
application phase of the GPU plugin again calls the CLE
GPU-Accounting utility, which queries the GPU driver for
accounting data. This data is then written to the compute
node staging file. This requires no run-time daemon to
track accounting data, as that functionality is provided by
the GPU driver.

 Once the GPU accounting data is staged on the
compute nodes, the RUR data gathering stage collects
these staged files from compute nodes, combining them
into a single working file on the login node. The GPU

Apid: 2010, Jobid: 26410, uid: 3417, GPU-time:
3100 GPU-utilization: 5100, highwater-memory:
58

Figure 3. GPU Accounting Data

Source:	
 Resource	
 U2liza2on	
 Repor2ng	
 Gathering	
 and	
 evalua:ng	
 HPC	
 system	
 usage,	
 Andrew	
 Barry	
 Cray	
 Inc.	

Brief	
 Review	
 of	
 RUR	

RUR	
 provides	
 a	
 reliable,	
 high-­‐performance	
 framework	
 into	
 which	
 plugins	
 may	
 be	

inserted,	
 which	
 will	
 collect	
 data	
 about	
 the	
 usage	
 of	
 a	
 par:cular	
 resource.	
 RUR	
 is	

configurable,	
 extensible,	
 and	
 lightweight.	
 	

	

Quan:fying	
 RUR	
 Overhead	
 	

	
 Test	
 Plaaorm:	

Mars	
 at	
 NICS,	
 a	
 Cray	
 XE6/XK6	
 system,	
 running	
 Moab	
 and	

Torque.	

	

Test	
 Harness:	

The	
 Test	
 Harness	
 plaaorm	
 is	
 originally	
 developed	
 at	
 ORNL,	

and	
 has	
 been	
 used	
 in	
 the	
 acceptance	
 test	
 on	
 several	
 Cray	

systems	
 such	
 as	
 Jaguar,	
 Kraken,	
 Darter,	
 and	
 Titan.	
 The	
 Test	

Harness	
 includes	
 two	
 major	
 components：	

	
 	
 	
 	
 1,	
 Test	
 Harness	
 Python	
 library,	

	
 	
 	
 	
 2,	
 the	
 set	
 of	
 benchmarks	
 of	
 various	
 applica:ons.	
 	

	

1,	
 the	
 Test	
 Harness	
 ini:ally	
 compiles	
 and	
 links	
 the	

applica:ons,	

2,	
 submits	
 the	
 benchmark	
 runs	
 to	
 the	
 batch	
 system,	

3,	
 collects	
 the	
 job	
 outputs,	
 and	
 compares	
 the	
 results	

against	
 the	
 built	
 in	
 test,	

4,	
 the	
 Test	
 Harness	
 records	
 the	
 results	
 locally	
 and	

archives	
 the	
 job	
 data	
 into	
 the	
 High	
 Performance	
 Storage	

System	
 (HPSS)	
 at	
 Oak	
 Ridge	
 Na:onal	
 Laboratory	
 (ORNL)	

campus,	

5,	
 the	
 Test	
 Harness	
 automa:cally	
 restarts	
 the	
 process	

un:l	
 a	
 predetermined	
 :me	
 passes,	
 or	
 a	
 predetermined	

number	
 of	
 runs	
 have	
 completed.	
 	

Running	
 Test	
 Harness	

xc30/NAMD/Source/”Source	
 code”	

-­‐	
 /input_files/apoa1	

-­‐/dhfr	

-­‐/stmv	

-­‐/build_app.sh	

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/[TestCase]:apoa1_32/Correct_Results/	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #same	
 for	
 each	
 [TestCase]	

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/[TestCase]:apoa1_32/Scripts/archive.template.x	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #same	
 for	
 each	
 [TestCase]	

-­‐/build_executable.x	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #same	
 for	
 each	
 [TestCase]	

-­‐/check_executable.x	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #same	
 for	
 each	
 [TestCase]	

-­‐/pbs.template.x	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #same	
 for	
 each	
 [TestCase]	

-­‐/submit_executable.x	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #**	
 use	
 job_tag	
 to	
 dis:ngush	
 TestCase	

-­‐/size.txt	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #**	
 may	
 set	
 different	
 #	
 of	
 processor	

-­‐/RunArchive/[unique_id]/”results	
 directory”	
 	

-­‐/Status/rgt_status.txt	

-­‐/[unique_id]/job_id.txt	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #**	
 different	
 for	
 each	
 [unique_id]	

-­‐/job_status.txt	
 	
 	
 	
 	
 	
 	
 #	
 either	
 0	
 (success)	
 1(fail)	
 2(not	
 clear)	

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/[TestCase]:dhfr_64/Correct_Results/	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #same	
 for	
 each	
 [TestCase]	

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐/[TestCase]:dhfr_64/Scripts/archive.template.x	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #same	
 for	
 each	
 [TestCase]	

-­‐/build_executable.x	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #same	
 for	
 each	
 [TestCase]	

-­‐/check_executable.x	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #same	
 for	
 each	
 [TestCase]	

-­‐/pbs.template.x	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #same	
 for	
 each	
 [TestCase]	

-­‐/submit_executable.x	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #**	
 use	
 job_tag	
 to	
 dis:ngush	
 TestCase	

-­‐/size.txt	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #**	
 may	
 set	
 different	
 #	
 of	
 processor	

-­‐/RunArchive/[unique_id]/”results	
 directory”	
 	

-­‐/Status/rgt_status.txt	

-­‐/[unique_id]/job_id.txt	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #**	
 different	
 for	
 each	
 [unique_id]	

-­‐/job_status.txt	
 	
 	
 	
 	
 	
 	
 #	
 either	
 0	
 (success)	
 1(fail)	
 2(not	
 clear)	

	

	

	

	

	

Structure	
 of	
 Test	
 Harness	

Test	
 Harness	
 Applica:ons	
 and	
 Benchmarks	

NAMD:	
 	
 a	
 parallel	
 molecular	
 dynamics	
 code	
 designed	
 for	

high-­‐performance	
 simula:on	
 of	
 large	
 bio-­‐molecular	

systems.	
 	

benchmark:	
 apoa1,	
 stmv	
 	

	

NWCHEM:	
 a	
 scalable	
 computa:onal	
 chemistry	
 package,	

ackling	
 molecular	
 systems	
 including	
 biomolecules,	

nanostructures,	
 ac:nide	
 complexes,	
 and	
 materials.	
 	

benchmark:	
 aump2,	
 c60_pbe0	
 	

	

GROMACS:	
 a	
 versa:le	
 package	
 to	
 perform	
 molecular	

dynamics,	
 i.e.	
 simulate	
 the	
 Newtonian	
 equa:ons	
 of	

mo:on	
 for	
 systems	
 with	
 hundreds	
 to	
 millions	
 of	
 par:cles.	
 	

benchmark:	
 d.dppc,	
 d.villin	
 	

	

of benchmarks from various applications. The Test Harness
initially compiles and links the applications, then submits
the benchmark runs to the batch system, collects the job
outputs, and compares the results against the built in test.
The Test Harness records the results locally and archives
the job data into the High Performance Storage System
(HPSS) at Oak Ridge National Laboratory (ORNL) campus.
The Test Harness automatically restarts the process until a
predetermined time passes, or a predetermined number of
runs have completed. During the simulation, the adminis-
trators can query the current status of the test runs and the
success rate of the test runs. NICS developed and maintains
a customized version of Test Harness for its computational
resources.

Three applications from the NICS Test Harness: NAMD,
NWCHEM, and GROMACS were selected. All three ap-
plications have large user communities and are actively
run on NICS resources. NAMD, is a parallel molecular
dynamics code designed for high-performance simulation of
large biomolecular systems. NWCHEM is a scalable com-
putational chemistry package, ackling molecular systems
including biomolecules, nanostructures, actinide complexes,
and materials. GROMACS is a versatile package to perform
molecular dynamics, i.e. simulate the Newtonian equations
of motion for systems with hundreds to millions of particles.

Two benchmarks were chosen for each applications. The
NAMD benchmarks were apoa1 and stmv. The NWCHEM
benchmarks were aump2 and c60 pbe0. The GROMACS
benchmarks were d.dppc and d.villin. All benchmark exam-
ples are available online. For each benchmark, two job sizes
were chosen. Combined with the enabling/disabling of RUR,
there are a total of 3⇥ 2⇥ 2⇥ 2 = 24 distinct sets of data.

The runs were completed in the following manner. RUR
was enabled on the system. Twelve jobs were submitted to
the batch system, distinguished by application, benchmark,
and job size. Each benchmark job that was submitted to the
batch system, in turn, created an auxilary job to run imme-
diately after the completion of the benchmark job. The RUR
output was recorded immediately before the benchmark job
was placed on the compute nodes, and again immediately
after the benchmark job completed. The auxiliary job would
then record the outcome of the benchmark job (pass, failed,
or inconclusive) in tabular form, archive the job results, and
restart the rebuilding of the application for a new run. The
auxiliary job only executes on the service nodes, thus there
is no RUR output generated. At any given time, there are
twelve sets of jobs running, eligible, or held on the system.
Each set of jobs is either the benchmark job or the auxiliary
job. This simulates a realistic workload on the system where
multiple users are performing various activities all at the
same time on the system.

Each set of tests were run continuosly for a 36 hour
test period. Each benchmark was compiled and executed
hundreds of times. After the completion of the initial 36

Benchmark Cores RUR Jobs Ave.
Run
Time

Std.
Dev.

stmv 128 on 388 129.71 0.37
128 off 398 129.68 0.45

stmv 256 on 227 89.73 1.47
256 off 240 88.49 1.29

apoa1 32 on 1102 81.67 0.42
32 off 1261 81.86 0.48

apoa1 64 on 1385 46.21 0.36
64 off 1519 46.25 0.78

c60 pbe0 32 on 60 322.81 2.69
32 off 52 322.60 2.88

c60 pbe0 64 on 98 167.45 1.21
64 off 80 167.64 1.38

aump2 32 on 56 349.77 2.71
32 off 60 349.67 2.05

aump2 64 on 89 184.92 1.41
64 off 75 185.50 2.05

d.dppc 64 on 71 114.02 0.16
64 off 55 114.05 0.16

d.dppc 128 on 96 64.68 0.16
128 off 77 64.77 0.18

d.villin 32 on 109 74.22 0.15
32 off 86 74.26 0.13

d.villin 64 on 134 44.85 0.37
64 off 104 44.92 0.35

Table I
A TABLE OF TEST HARNESS BENCHMARKS PERFORMANCE

hour test, RUR was disabled and the same set of runs were
started for the comparative 36 hour test.

After obtaining the full 24 sets of data, basic job statistics
were computed for both cases. These statistics included the
average runtime and standard deviation for each job. Table
I illustrates the average run time with RUR on and off.
These runtimes have no statistically significant difference.
The runtime difference between RUR on and RUR off is
well within the standard deviation of the average runtime.
Thus we conclude that RUR does not have any negative
impact on runtimes.

III. RUR CONFIGURATION EXPERIENCES AND
LIMITATIONS

RUR includes a two different types of plugins by default:
data plugins and output plugins. Data plugins record infor-
mation on the node immediately before a job is placed on the
compute node and immediately after the job is completed.
Output plugins are used to record this data. NICS enabled
all of the standard plugins described in the Cray system
software management guide [5]. This included the taskstats,
timestamp, memory, and energy plugins. The file output
plugin was enabled, and all results were stored on the
attached Lustre file system.

The standard RUR data plugins, and the file output plugin
are enabled by editing the basic alps.conf and rur.conf files
as shown in Apendix section. In order to enable RUR,
beyond setting the correct configuration option, ALPS needs
to be restarted on the login nodes. The file output plugin was

TABLE	
 OF	
 TEST	
 HARNESS	
 BENCHMARKS	
 PERFORMANCE	

Integra:on	
 with	
 Torque	

	

•  TORQUE	
 version	
 5.0	
 added	
 a	
 field	
 in	
 its	
 accoun:ng	
 logs	
 for	

recoding	
 the	
 energy	
 used	
 by	
 a	
 job,	
 called	
 resources	

used.energy	
 used.	
 The	
 ini:al	
 implementa:on	
 of	
 this	
 can	
 be	

found	
 in	
 src/resmom/cray	
 energy.c	
 in	
 the	
 source	
 code.	
 This	

implementa:on	
 targets	
 RUR,	
 specifically	
 the	
 energy	
 plugin,	

as	
 its	
 underlying	
 data	
 gathering	
 infrastructure.	

•  The	
 RUR	
 energy	
 plugin	
 does	
 not	
 support	
 energy	

measurement	
 on	
 the	
 XE6/XK6	
 hardware	
 plaaorm,	
 but	
 that	

fact	
 was	
 not	
 documented	
 in	
 the	
 Cray	
 system	
 sonware	

manual	
 describing	
 RUR.	

•  NICS	
 has	
 requested	
 that	
 Cray	
 update	
 the	
 documenta:on.	

Genera:ng	
 Single	
 Job	
 Record:	

system	
 name,	
 job	
 id,	
 	

user	
 name,	
 group	
 name,	
 	

charge	
 account,	
 job	
 name,	
 	

number	
 of	
 processers	
 requested,	
 	

queue	
 name,	
 	

submit	
 :me,	
 start	
 :me,	
 	

end	
 :me,	
 wall	
 :me	
 requested,	
 	

allocated	
 host	
 list,	
 exit	
 status,	
 	

node	
 where	
 the	
 job	
 was	
 submiNed,	

user’s	
 batch	
 job	
 script.	

pbsacct	
 u:lity	

	

rchar,	
 wchar,	
 	

s:me,	
 u:me,	
 	

exitcode,	
 max_rss,	
 	

%_of_boot_mem,	
 	

Ac:ve(anon),	
 Ac:ve(file),	
 	

gid,	
 jid,	
 nid,	
 uid,	
 apid,	

APP_START,	
 APP_STOP	

RUR	
 data	

	

Aner	
 parsing	
 the	
 RUR	
 output	
 and	
 querying	
 the	
 pbsacct	
 database,	
 a	
 single	
 job	
 record	

can	
 be	
 generated	
 in	
 a	
 json	
 dic:onary	
 style.	
 Each	
 job	
 record	
 is	
 stored	
 in	
 a	
 file.	
 These	

records	
 can	
 be	
 injected	
 into	
 external	
 analysis	
 systems	
 for	
 further	
 processing,	
 such	
 as	

XDMoD.	

Integra:on	
 with	
 XDMoD	

•  The	
 XSEDE	
 Technology	
 Audit	
 Service	
 (TAS)	
 is	
 an	
 NSF	

funded	
 project	
 at	
 the	
 Center	
 for	
 Computa:onal	

Research	
 (CCR)	
 of	
 the	
 State	
 University	
 of	
 New	
 York	

(SUNY)	
 at	
 Buffalo	
 to	
 audit	
 the	
 XSEDE	
 project’s	
 ac:vi:es.	
 	

•  One	
 of	
 this	
 project’s	
 main	
 products	
 is	
 XSEDE	
 Metrics	
 on	

Demand	
 (XDMoD),	
 a	
 sonware	
 system	
 which	
 provides	

web-­‐based	
 access	
 to	
 metrics	
 and	
 analy:cs	
 for	
 the	

computa:onal	
 resources	
 of	
 the	
 XSEDE	
 service	
 providers	

(SPs).	
 	

•  The	
 XDMoD	
 (hNps:	
 //xdmod.ccr.buffalo.edu)	
 is	

designed	
 to	
 audit	
 and	
 facilitate	
 the	
 opera:on	
 and	

u:liza:on	
 of	
 XSEDE,	
 one	
 of	
 the	
 most	
 advanced	
 and	

robust	
 collec:on	
 of	
 integrated	
 advanced	
 digital	

resources	
 and	
 services	
 in	
 the	
 world.	
 	

	

W
al
l$T
im

e$

Allocated$Compute$Nodes$(hostlist)$

nid_1$$ nid_2$$ nid_3$$ nid_4$$

aprun$command$
line$execu>on$on$
compute$nodes$

RecordinRUR$Memory$Plugin$Output$$

start$>me$

end$>me$

APP_START$

APP_STOP$

u>me$
s>me$

Figure 1. A schematic show of a simple job structure

VI. INTEGRATION WITH XDMOD

The XSEDE Technology Audit Service (TAS) is an NSF
funded project at the Center for Computational Research
(CCR) of the State University of New York (SUNY) at
Buffalo to audit the XSEDE project’s activities. One of this
project’s main products is XSEDE Metrics on Demand (XD-
MoD), a software system which provides web-based access
to metrics and analytics for the computational resources of
the XSEDE service providers (SPs). The XDMoD (https:
//xdmod.ccr.buffalo.edu) is designed to audit and facilitate
the operation and utilization of XSEDE, the most advanced
and robust collection of integrated advanced digital resources
and services in the world. Similarly, Open XDMoD, the open
source version of XDMoD, is designed to provide similar
capabilities to academic and industrial HPC centers. The
XDMoD tool includes both a web-based interface and a back
end to collect and store job performance data. The level of
detail available in this data varies by system. For example,
the Stampede system at TACC uses the TACC Stats system
to provide very detailed information including hardware per-
formance counters, interconnect statistics, and Lustre statis-
tics. There is currently no real equivalent to TACC Stats
on Cray systems; however, the hope is that RUR might be
able to provide similar functionality. In this section, we will
discuss that possibility in detail, including an enumeration
of the development work needed to make it a reality.

The XDMoD is a package under active development.
The developers have identified a set of metrics for each
single job run on the supercomputer. These metrics aim to
represent the typical usage on the supercomputers. Analysis
of these metrics offers various information which helps staff
members and users to utilize the resources more efficiently.

The current set of metrics includes three subsets. The first
subset includes: organization name, machine name, local
job id, job name, project account, user name, job directory,

executable, exit status, number of granted processing ele-
ments (PEs), queue name, number of requested nodes, array
of allocated host names, actually used node count, shared
mode, actually used core count, available core count, submit
time, eligible time, start time, end time, wall time, requested
wall time, wait time, cput time, node time, error message.

The second subset includes: cpu idle percentage, cpu
system percentage, cpu user percentage, flops average per
core, clock ticks per instruction on average per core, L1D
cache load drop off percentage, clock ticks per l1d load on
average per core, total data transferred over the memory bus,
standard deviation of cpu user for all used cores, (max - min)
/ max cpu user over all used cores, memory usage including
system service per node, memory used by the OS including
the page and buffer caches per node.

The third subset includes a number of interconnection and
accelerator hardware counters, which relies on additional
plugins. It is beyond the scope of focus here.

The first subset can be extracted from the job accounting
data base. The second subset needs to combine both the job
accounting data and the RUR output.

Consider a simple job as shown in Figure 1. Each mint
green color box represnts one compute node. The job
requests 4 nodes, and there is only one aprun command
inside the job script, which uses all 4 nodes. The time spent
on the service node is ignorable.

In this case, the hostlist information from the accounting
data base is identical to enumerating the nid key in the RUR
memory plugin output. The walltime calculated from the
difference between start time and end time is about the same
as the difference between the APP START and APP STOP
from the RUR timestamp plugin. The sum of utime and
stime in RUR taskstats plugin output, the area of the red
dashline rectangle, can be approximated by the area of the
blue solid line rectangle, which is the Wall Time ⇥ Allocated
Compute Nodes.

Next, we study a complex job as in Figure 2. Still the job
requests 4 compute nodes, but only 3 of them are actually
used. There are 4 aprun commands in the job, labeled by
apidi, i from 1 to 4. apid1 command runs on 2 nodes. After
apid1 finishes, apid2 and apid3 commands start at the same
time, apid2 runs on 1 node, using only a portion of cores
on the node (such as having a -N option after aprun), apid3
runs on 2 nodes and finishes earlier than apid2. The apid4
command runs after both apid2 and apid3 finishes, and runs
on 3 nodes. After all the aprun commands finishes, there is
a significant span of the job executing system commands on
the service node.

We generate the metrics from the single job record of
above complex job. The metrics set is stored in a JSON-dict
format as the single job record. We customize the original
definitions of the metric to handle the job with multiple
aprun commands. We demonstrate how to obtain several
metrics below.

A	
 schema:c	
 show	
 of	
 a	
 simple	
 job	
 structure	

W
al
l$T
im

e$
Allocated$Compute$Nodes$

nid_1$$ nid_2$$ nid_3$$ nid_4$$

RecordinRUR$Memory$Plugin$Output$$

apid_2,$code$
runningon
compute$
node$

apid_1,$code$runningon
compute$nodes$

apid_3,$code$runningon
compute$nodes$

apid_4,$code$runningoncompute$nodes$

Wall$Time$SpentonWaiCngfor
Commands$Running$on$Service$Node(s)$

Figure 2. A schematic show of a complex job structure

We first generate two extra key-value-pair items. The first
item has the key ”used nodes list”, and has the value as
a list of nids. The nid(s) in the list appear(s) at least once
as the value of the RUR memory plugin output ”nid” key.
In Figure 2 example, it is (”used nodes list”: [nid1, nid2,
nid3]). The second item has the key ”aprun nodes dict”, and
has the value as a dict with apid key and nodes list value.
The nodes list is the list of nid appear in each aprun memory
plugin output. In Figure2 example, it is (”aprun nodes dict”:
{apid1: [nid1, nid2], apid2: [nid1], apid3: [nid2, nid3],
apid4: [nid1, nid2, nid3]}). Then we also need a mapping
function ppnnid between nid and the number of cores on
the node. Since it is common that the Cray system has
heterogeneous structure, which includes more than one type
of node. For example, the Mars has both 32-core XE6 nodes
and 16-core XK6 nodes. If the user does not specify the
feature in the PBS option, it is highly possible that the
scheduler schedules a mixed node pool to the job.

The first metric we show is ”cpu idle percentage” (⇢), the
original definition is:

⇢ =

Pn
i=1 xi

n
(1)

where n is number of cores the job ran on. xi is cpu idle
percentage of each core. We calculate ⇢ as:

⇢ = 1�
Pk

i=1(utimei + stimei)

T ⇥N
(2)

where k is the number of aprun, utimei and stimei are
from the RUR taskstats plugin record with apidi, T is the
wall time elapsed for the whole job, N is the number of
cores actually assigned to the job, sum up the values of
ppnnid with the nid in array of allocated host names from
job accounting information. The idea is that the result needs
to include data from multiple aprun executions.

The second metric is ”memory usage including system
service per node” (µ), the original definition is:

µ =

PH
i=1

xi
Ci

H
(3)

where xi is the mean memory used on node i, Ci is the
number of cores on node i and H is the number of nodes
on which the job ran. We calculate µ as:

µ =
kX

j=1

wj ⇥
Pnj

i=1 mi

nj
(4)

where k is the number of aprun, nj is the number of nodes
in the jth aprun, mi is the ”Active(anon)” value in the RUR
memory plugin output with apidj , and nidi. The wi is the
weight calculated as below:

wj =
(APP STOPj �APP STARTj) ⇤Nj)

T ⇥N
(5)

where APP STOPj and APP STARTj are values from
RUR timestamp plugin with apidj . T and N are defined
the same as above. The idea is that we weight the average
memory usage per node among different aprun commands
by node hour weight.

Finally we describe the designed workflow for injecting
RUR output to XDMoD. On Mars, RUR is configured to
write job performance data to a file on a Lustre scratch
file system. The data in that file would be validated and
filtered to remove potentially sensitive information. Then
the python script described in the section ”GENERATING
SINGLE JOB RECORD” will be run. The script combines
the RUR record labeled by (jobid, apid) to a single job record
(jobid), then executes system command ”jobinfo” to query
the pbs accounting data base with the jobid, and fills the
relevant result into the correct fields of the single job record.
Then the single job record will be passed into a Javascript
run by application ”node” to generate the desired metrics.
The metrics will be stored in the JSON-dict format file for
each jobid. The final ”single job record and metrics” files
would then be transferred to an instance of the XDMoD
system at CCR, where an automated pipeline would ingest
the data. CCR developers would then re-validate the data
before storing it in the central data warehouse. The front-
end XDMoD GUI would then pull data from the central data
warehouse per users online requests.

VII. CONCLUSIONS

The RUR provides a low noise, scalable approach to
collect performance data from the compute nodes. The RUR
framework allows users develop customized plugins for
various purposes. It appears that RUR is a stable utility going
forward serving the Cray community. There are substantial
development works from multiple aspects related to RUR.

The data generated by the default plugins show that RUR,
in its current state, is at best a supplement for the accounting

A	
 schema:c	
 show	
 of	
 a	
 complex	
 job	
 structure	

“cpu	
 idle	
 percentage”	
 (ρ)	
 	

	

W
al
l$T
im

e$

Allocated$Compute$Nodes$

nid_1$$ nid_2$$ nid_3$$ nid_4$$

RecordinRUR$Memory$Plugin$Output$$

apid_2,$code$
runningon
compute$
node$

apid_1,$code$runningon
compute$nodes$

apid_3,$code$runningon
compute$nodes$

apid_4,$code$runningoncompute$nodes$

Wall$Time$SpentonWaiCngfor
Commands$Running$on$Service$Node(s)$

Figure 2. A schematic show of a complex job structure

We first generate two extra key-value-pair items. The first
item has the key ”used nodes list”, and has the value as
a list of nids. The nid(s) in the list appear(s) at least once
as the value of the RUR memory plugin output ”nid” key.
In Figure 2 example, it is (”used nodes list”: [nid1, nid2,
nid3]). The second item has the key ”aprun nodes dict”, and
has the value as a dict with apid key and nodes list value.
The nodes list is the list of nid appear in each aprun memory
plugin output. In Figure2 example, it is (”aprun nodes dict”:
{apid1: [nid1, nid2], apid2: [nid1], apid3: [nid2, nid3],
apid4: [nid1, nid2, nid3]}). Then we also need a mapping
function ppnnid between nid and the number of cores on
the node. Since it is common that the Cray system has
heterogeneous structure, which includes more than one type
of node. For example, the Mars has both 32-core XE6 nodes
and 16-core XK6 nodes. If the user does not specify the
feature in the PBS option, it is highly possible that the
scheduler schedules a mixed node pool to the job.

The first metric we show is ”cpu idle percentage” (⇢), the
original definition is:

⇢ =

Pn
i=1 xi

n
(1)

where n is number of cores the job ran on. xi is cpu idle
percentage of each core. We calculate ⇢ as:

⇢ = 1�
Pk

i=1(utimei + stimei)

T ⇥N
(2)

where k is the number of aprun, utimei and stimei are
from the RUR taskstats plugin record with apidi, T is the
wall time elapsed for the whole job, N is the number of
cores actually assigned to the job, sum up the values of
ppnnid with the nid in array of allocated host names from
job accounting information. The idea is that the result needs
to include data from multiple aprun executions.

The second metric is ”memory usage including system
service per node” (µ), the original definition is:

µ =

PH
i=1

xi
Ci

H
(3)

where xi is the mean memory used on node i, Ci is the
number of cores on node i and H is the number of nodes
on which the job ran. We calculate µ as:

µ =
kX

j=1

wj ⇥
Pnj

i=1 mi

nj
(4)

where k is the number of aprun, nj is the number of nodes
in the jth aprun, mi is the ”Active(anon)” value in the RUR
memory plugin output with apidj , and nidi. The wi is the
weight calculated as below:

wj =
(APP STOPj �APP STARTj) ⇤Nj)

T ⇥N
(5)

where APP STOPj and APP STARTj are values from
RUR timestamp plugin with apidj . T and N are defined
the same as above. The idea is that we weight the average
memory usage per node among different aprun commands
by node hour weight.

Finally we describe the designed workflow for injecting
RUR output to XDMoD. On Mars, RUR is configured to
write job performance data to a file on a Lustre scratch
file system. The data in that file would be validated and
filtered to remove potentially sensitive information. Then
the python script described in the section ”GENERATING
SINGLE JOB RECORD” will be run. The script combines
the RUR record labeled by (jobid, apid) to a single job record
(jobid), then executes system command ”jobinfo” to query
the pbs accounting data base with the jobid, and fills the
relevant result into the correct fields of the single job record.
Then the single job record will be passed into a Javascript
run by application ”node” to generate the desired metrics.
The metrics will be stored in the JSON-dict format file for
each jobid. The final ”single job record and metrics” files
would then be transferred to an instance of the XDMoD
system at CCR, where an automated pipeline would ingest
the data. CCR developers would then re-validate the data
before storing it in the central data warehouse. The front-
end XDMoD GUI would then pull data from the central data
warehouse per users online requests.

VII. CONCLUSIONS

The RUR provides a low noise, scalable approach to
collect performance data from the compute nodes. The RUR
framework allows users develop customized plugins for
various purposes. It appears that RUR is a stable utility going
forward serving the Cray community. There are substantial
development works from multiple aspects related to RUR.

The data generated by the default plugins show that RUR,
in its current state, is at best a supplement for the accounting

W
al
l$T
im

e$

Allocated$Compute$Nodes$

nid_1$$ nid_2$$ nid_3$$ nid_4$$

RecordinRUR$Memory$Plugin$Output$$

apid_2,$code$
runningon
compute$
node$

apid_1,$code$runningon
compute$nodes$

apid_3,$code$runningon
compute$nodes$

apid_4,$code$runningoncompute$nodes$

Wall$Time$SpentonWaiCngfor
Commands$Running$on$Service$Node(s)$

Figure 2. A schematic show of a complex job structure

We first generate two extra key-value-pair items. The first
item has the key ”used nodes list”, and has the value as
a list of nids. The nid(s) in the list appear(s) at least once
as the value of the RUR memory plugin output ”nid” key.
In Figure 2 example, it is (”used nodes list”: [nid1, nid2,
nid3]). The second item has the key ”aprun nodes dict”, and
has the value as a dict with apid key and nodes list value.
The nodes list is the list of nid appear in each aprun memory
plugin output. In Figure2 example, it is (”aprun nodes dict”:
{apid1: [nid1, nid2], apid2: [nid1], apid3: [nid2, nid3],
apid4: [nid1, nid2, nid3]}). Then we also need a mapping
function ppnnid between nid and the number of cores on
the node. Since it is common that the Cray system has
heterogeneous structure, which includes more than one type
of node. For example, the Mars has both 32-core XE6 nodes
and 16-core XK6 nodes. If the user does not specify the
feature in the PBS option, it is highly possible that the
scheduler schedules a mixed node pool to the job.

The first metric we show is ”cpu idle percentage” (⇢), the
original definition is:

⇢ =

Pn
i=1 xi

n
(1)

where n is number of cores the job ran on. xi is cpu idle
percentage of each core. We calculate ⇢ as:

⇢ = 1�
Pk

i=1(utimei + stimei)

T ⇥N
(2)

where k is the number of aprun, utimei and stimei are
from the RUR taskstats plugin record with apidi, T is the
wall time elapsed for the whole job, N is the number of
cores actually assigned to the job, sum up the values of
ppnnid with the nid in array of allocated host names from
job accounting information. The idea is that the result needs
to include data from multiple aprun executions.

The second metric is ”memory usage including system
service per node” (µ), the original definition is:

µ =

PH
i=1

xi
Ci

H
(3)

where xi is the mean memory used on node i, Ci is the
number of cores on node i and H is the number of nodes
on which the job ran. We calculate µ as:

µ =
kX

j=1

wj ⇥
Pnj

i=1 mi

nj
(4)

where k is the number of aprun, nj is the number of nodes
in the jth aprun, mi is the ”Active(anon)” value in the RUR
memory plugin output with apidj , and nidi. The wi is the
weight calculated as below:

wj =
(APP STOPj �APP STARTj) ⇤Nj)

T ⇥N
(5)

where APP STOPj and APP STARTj are values from
RUR timestamp plugin with apidj . T and N are defined
the same as above. The idea is that we weight the average
memory usage per node among different aprun commands
by node hour weight.

Finally we describe the designed workflow for injecting
RUR output to XDMoD. On Mars, RUR is configured to
write job performance data to a file on a Lustre scratch
file system. The data in that file would be validated and
filtered to remove potentially sensitive information. Then
the python script described in the section ”GENERATING
SINGLE JOB RECORD” will be run. The script combines
the RUR record labeled by (jobid, apid) to a single job record
(jobid), then executes system command ”jobinfo” to query
the pbs accounting data base with the jobid, and fills the
relevant result into the correct fields of the single job record.
Then the single job record will be passed into a Javascript
run by application ”node” to generate the desired metrics.
The metrics will be stored in the JSON-dict format file for
each jobid. The final ”single job record and metrics” files
would then be transferred to an instance of the XDMoD
system at CCR, where an automated pipeline would ingest
the data. CCR developers would then re-validate the data
before storing it in the central data warehouse. The front-
end XDMoD GUI would then pull data from the central data
warehouse per users online requests.

VII. CONCLUSIONS

The RUR provides a low noise, scalable approach to
collect performance data from the compute nodes. The RUR
framework allows users develop customized plugins for
various purposes. It appears that RUR is a stable utility going
forward serving the Cray community. There are substantial
development works from multiple aspects related to RUR.

The data generated by the default plugins show that RUR,
in its current state, is at best a supplement for the accounting

where	
 n	
 is	
 number	
 of	
 cores	
 the	
 job	
 ran	
 on.	
 x
i	

is	
 cpu	
 idle	

percentage	
 of	
 each	
 core.	
 	

where	
 k	
 is	
 the	
 number	
 of	
 aprun,	
 u:me
i	

and	
 s:me

i	

are	
 from	
 the	
 RUR	

taskstats	
 plugin	
 record	
 with	
 apid
i
,	
 T	
 is	
 the	
 wall	
 :me	
 elapsed	
 for	
 the	

whole	
 job,	
 N	
 is	
 the	
 number	
 of	
 cores	
 actually	
 assigned	
 to	
 the	
 job,	
 sum	

up	
 the	
 values	
 of	
 ppn

nid	

with	
 the	
 nid	
 in	
 array	
 of	
 allocated	
 host	
 names	

from	
 job	
 accoun:ng	
 informa:on	

”memory	
 usage	
 including	
 system	
 service	
 per	
 node”	
 (μ)	

W
al
l$T
im

e$

Allocated$Compute$Nodes$

nid_1$$ nid_2$$ nid_3$$ nid_4$$

RecordinRUR$Memory$Plugin$Output$$

apid_2,$code$
runningon
compute$
node$

apid_1,$code$runningon
compute$nodes$

apid_3,$code$runningon
compute$nodes$

apid_4,$code$runningoncompute$nodes$

Wall$Time$SpentonWaiCngfor
Commands$Running$on$Service$Node(s)$

Figure 2. A schematic show of a complex job structure

We first generate two extra key-value-pair items. The first
item has the key ”used nodes list”, and has the value as
a list of nids. The nid(s) in the list appear(s) at least once
as the value of the RUR memory plugin output ”nid” key.
In Figure 2 example, it is (”used nodes list”: [nid1, nid2,
nid3]). The second item has the key ”aprun nodes dict”, and
has the value as a dict with apid key and nodes list value.
The nodes list is the list of nid appear in each aprun memory
plugin output. In Figure2 example, it is (”aprun nodes dict”:
{apid1: [nid1, nid2], apid2: [nid1], apid3: [nid2, nid3],
apid4: [nid1, nid2, nid3]}). Then we also need a mapping
function ppnnid between nid and the number of cores on
the node. Since it is common that the Cray system has
heterogeneous structure, which includes more than one type
of node. For example, the Mars has both 32-core XE6 nodes
and 16-core XK6 nodes. If the user does not specify the
feature in the PBS option, it is highly possible that the
scheduler schedules a mixed node pool to the job.

The first metric we show is ”cpu idle percentage” (⇢), the
original definition is:

⇢ =

Pn
i=1 xi

n
(1)

where n is number of cores the job ran on. xi is cpu idle
percentage of each core. We calculate ⇢ as:

⇢ = 1�
Pk

i=1(utimei + stimei)

T ⇥N
(2)

where k is the number of aprun, utimei and stimei are
from the RUR taskstats plugin record with apidi, T is the
wall time elapsed for the whole job, N is the number of
cores actually assigned to the job, sum up the values of
ppnnid with the nid in array of allocated host names from
job accounting information. The idea is that the result needs
to include data from multiple aprun executions.

The second metric is ”memory usage including system
service per node” (µ), the original definition is:

µ =

PH
i=1

xi
Ci

H
(3)

where xi is the mean memory used on node i, Ci is the
number of cores on node i and H is the number of nodes
on which the job ran. We calculate µ as:

µ =
kX

j=1

wj ⇥
Pnj

i=1 mi

nj
(4)

where k is the number of aprun, nj is the number of nodes
in the jth aprun, mi is the ”Active(anon)” value in the RUR
memory plugin output with apidj , and nidi. The wi is the
weight calculated as below:

wj =
(APP STOPj �APP STARTj) ⇤Nj)

T ⇥N
(5)

where APP STOPj and APP STARTj are values from
RUR timestamp plugin with apidj . T and N are defined
the same as above. The idea is that we weight the average
memory usage per node among different aprun commands
by node hour weight.

Finally we describe the designed workflow for injecting
RUR output to XDMoD. On Mars, RUR is configured to
write job performance data to a file on a Lustre scratch
file system. The data in that file would be validated and
filtered to remove potentially sensitive information. Then
the python script described in the section ”GENERATING
SINGLE JOB RECORD” will be run. The script combines
the RUR record labeled by (jobid, apid) to a single job record
(jobid), then executes system command ”jobinfo” to query
the pbs accounting data base with the jobid, and fills the
relevant result into the correct fields of the single job record.
Then the single job record will be passed into a Javascript
run by application ”node” to generate the desired metrics.
The metrics will be stored in the JSON-dict format file for
each jobid. The final ”single job record and metrics” files
would then be transferred to an instance of the XDMoD
system at CCR, where an automated pipeline would ingest
the data. CCR developers would then re-validate the data
before storing it in the central data warehouse. The front-
end XDMoD GUI would then pull data from the central data
warehouse per users online requests.

VII. CONCLUSIONS

The RUR provides a low noise, scalable approach to
collect performance data from the compute nodes. The RUR
framework allows users develop customized plugins for
various purposes. It appears that RUR is a stable utility going
forward serving the Cray community. There are substantial
development works from multiple aspects related to RUR.

The data generated by the default plugins show that RUR,
in its current state, is at best a supplement for the accounting

W
al
l$T
im

e$

Allocated$Compute$Nodes$

nid_1$$ nid_2$$ nid_3$$ nid_4$$

RecordinRUR$Memory$Plugin$Output$$

apid_2,$code$
runningon
compute$
node$

apid_1,$code$runningon
compute$nodes$

apid_3,$code$runningon
compute$nodes$

apid_4,$code$runningoncompute$nodes$

Wall$Time$SpentonWaiCngfor
Commands$Running$on$Service$Node(s)$

Figure 2. A schematic show of a complex job structure

We first generate two extra key-value-pair items. The first
item has the key ”used nodes list”, and has the value as
a list of nids. The nid(s) in the list appear(s) at least once
as the value of the RUR memory plugin output ”nid” key.
In Figure 2 example, it is (”used nodes list”: [nid1, nid2,
nid3]). The second item has the key ”aprun nodes dict”, and
has the value as a dict with apid key and nodes list value.
The nodes list is the list of nid appear in each aprun memory
plugin output. In Figure2 example, it is (”aprun nodes dict”:
{apid1: [nid1, nid2], apid2: [nid1], apid3: [nid2, nid3],
apid4: [nid1, nid2, nid3]}). Then we also need a mapping
function ppnnid between nid and the number of cores on
the node. Since it is common that the Cray system has
heterogeneous structure, which includes more than one type
of node. For example, the Mars has both 32-core XE6 nodes
and 16-core XK6 nodes. If the user does not specify the
feature in the PBS option, it is highly possible that the
scheduler schedules a mixed node pool to the job.

The first metric we show is ”cpu idle percentage” (⇢), the
original definition is:

⇢ =

Pn
i=1 xi

n
(1)

where n is number of cores the job ran on. xi is cpu idle
percentage of each core. We calculate ⇢ as:

⇢ = 1�
Pk

i=1(utimei + stimei)

T ⇥N
(2)

where k is the number of aprun, utimei and stimei are
from the RUR taskstats plugin record with apidi, T is the
wall time elapsed for the whole job, N is the number of
cores actually assigned to the job, sum up the values of
ppnnid with the nid in array of allocated host names from
job accounting information. The idea is that the result needs
to include data from multiple aprun executions.

The second metric is ”memory usage including system
service per node” (µ), the original definition is:

µ =

PH
i=1

xi
Ci

H
(3)

where xi is the mean memory used on node i, Ci is the
number of cores on node i and H is the number of nodes
on which the job ran. We calculate µ as:

µ =
kX

j=1

wj ⇥
Pnj

i=1 mi

nj
(4)

where k is the number of aprun, nj is the number of nodes
in the jth aprun, mi is the ”Active(anon)” value in the RUR
memory plugin output with apidj , and nidi. The wi is the
weight calculated as below:

wj =
(APP STOPj �APP STARTj) ⇤Nj)

T ⇥N
(5)

where APP STOPj and APP STARTj are values from
RUR timestamp plugin with apidj . T and N are defined
the same as above. The idea is that we weight the average
memory usage per node among different aprun commands
by node hour weight.

Finally we describe the designed workflow for injecting
RUR output to XDMoD. On Mars, RUR is configured to
write job performance data to a file on a Lustre scratch
file system. The data in that file would be validated and
filtered to remove potentially sensitive information. Then
the python script described in the section ”GENERATING
SINGLE JOB RECORD” will be run. The script combines
the RUR record labeled by (jobid, apid) to a single job record
(jobid), then executes system command ”jobinfo” to query
the pbs accounting data base with the jobid, and fills the
relevant result into the correct fields of the single job record.
Then the single job record will be passed into a Javascript
run by application ”node” to generate the desired metrics.
The metrics will be stored in the JSON-dict format file for
each jobid. The final ”single job record and metrics” files
would then be transferred to an instance of the XDMoD
system at CCR, where an automated pipeline would ingest
the data. CCR developers would then re-validate the data
before storing it in the central data warehouse. The front-
end XDMoD GUI would then pull data from the central data
warehouse per users online requests.

VII. CONCLUSIONS

The RUR provides a low noise, scalable approach to
collect performance data from the compute nodes. The RUR
framework allows users develop customized plugins for
various purposes. It appears that RUR is a stable utility going
forward serving the Cray community. There are substantial
development works from multiple aspects related to RUR.

The data generated by the default plugins show that RUR,
in its current state, is at best a supplement for the accounting

W
al
l$T
im

e$

Allocated$Compute$Nodes$

nid_1$$ nid_2$$ nid_3$$ nid_4$$

RecordinRUR$Memory$Plugin$Output$$

apid_2,$code$
runningon
compute$
node$

apid_1,$code$runningon
compute$nodes$

apid_3,$code$runningon
compute$nodes$

apid_4,$code$runningoncompute$nodes$

Wall$Time$SpentonWaiCngfor
Commands$Running$on$Service$Node(s)$

Figure 2. A schematic show of a complex job structure

We first generate two extra key-value-pair items. The first
item has the key ”used nodes list”, and has the value as
a list of nids. The nid(s) in the list appear(s) at least once
as the value of the RUR memory plugin output ”nid” key.
In Figure 2 example, it is (”used nodes list”: [nid1, nid2,
nid3]). The second item has the key ”aprun nodes dict”, and
has the value as a dict with apid key and nodes list value.
The nodes list is the list of nid appear in each aprun memory
plugin output. In Figure2 example, it is (”aprun nodes dict”:
{apid1: [nid1, nid2], apid2: [nid1], apid3: [nid2, nid3],
apid4: [nid1, nid2, nid3]}). Then we also need a mapping
function ppnnid between nid and the number of cores on
the node. Since it is common that the Cray system has
heterogeneous structure, which includes more than one type
of node. For example, the Mars has both 32-core XE6 nodes
and 16-core XK6 nodes. If the user does not specify the
feature in the PBS option, it is highly possible that the
scheduler schedules a mixed node pool to the job.

The first metric we show is ”cpu idle percentage” (⇢), the
original definition is:

⇢ =

Pn
i=1 xi

n
(1)

where n is number of cores the job ran on. xi is cpu idle
percentage of each core. We calculate ⇢ as:

⇢ = 1�
Pk

i=1(utimei + stimei)

T ⇥N
(2)

where k is the number of aprun, utimei and stimei are
from the RUR taskstats plugin record with apidi, T is the
wall time elapsed for the whole job, N is the number of
cores actually assigned to the job, sum up the values of
ppnnid with the nid in array of allocated host names from
job accounting information. The idea is that the result needs
to include data from multiple aprun executions.

The second metric is ”memory usage including system
service per node” (µ), the original definition is:

µ =

PH
i=1

xi
Ci

H
(3)

where xi is the mean memory used on node i, Ci is the
number of cores on node i and H is the number of nodes
on which the job ran. We calculate µ as:

µ =
kX

j=1

wj ⇥
Pnj

i=1 mi

nj
(4)

where k is the number of aprun, nj is the number of nodes
in the jth aprun, mi is the ”Active(anon)” value in the RUR
memory plugin output with apidj , and nidi. The wi is the
weight calculated as below:

wj =
(APP STOPj �APP STARTj) ⇤Nj)

T ⇥N
(5)

where APP STOPj and APP STARTj are values from
RUR timestamp plugin with apidj . T and N are defined
the same as above. The idea is that we weight the average
memory usage per node among different aprun commands
by node hour weight.

Finally we describe the designed workflow for injecting
RUR output to XDMoD. On Mars, RUR is configured to
write job performance data to a file on a Lustre scratch
file system. The data in that file would be validated and
filtered to remove potentially sensitive information. Then
the python script described in the section ”GENERATING
SINGLE JOB RECORD” will be run. The script combines
the RUR record labeled by (jobid, apid) to a single job record
(jobid), then executes system command ”jobinfo” to query
the pbs accounting data base with the jobid, and fills the
relevant result into the correct fields of the single job record.
Then the single job record will be passed into a Javascript
run by application ”node” to generate the desired metrics.
The metrics will be stored in the JSON-dict format file for
each jobid. The final ”single job record and metrics” files
would then be transferred to an instance of the XDMoD
system at CCR, where an automated pipeline would ingest
the data. CCR developers would then re-validate the data
before storing it in the central data warehouse. The front-
end XDMoD GUI would then pull data from the central data
warehouse per users online requests.

VII. CONCLUSIONS

The RUR provides a low noise, scalable approach to
collect performance data from the compute nodes. The RUR
framework allows users develop customized plugins for
various purposes. It appears that RUR is a stable utility going
forward serving the Cray community. There are substantial
development works from multiple aspects related to RUR.

The data generated by the default plugins show that RUR,
in its current state, is at best a supplement for the accounting

where	
 x
i	

is	
 the	
 mean	
 memory	
 used	
 on	
 node	
 i,	
 C

i	

is	
 the	

number	
 of	
 cores	
 on	
 node	
 i	
 and	
 H	
 is	
 the	
 number	
 of	
 nodes	
 on	
 which	
 the	

job	
 ran.	
 	

where	
 k	
 is	
 the	
 number	
 of	
 aprun,	
 n
j	

is	
 the	
 number	
 of	
 nodes	
 in	
 the	
 jth	

aprun,	
 m
i	

is	
 the	
 ”Ac:ve(anon)”	
 value	
 in	
 the	
 RUR	
 memory	
 plugin	

output	
 with	
 apid
j
,	
 and	
 nid

i
.	
 The	
 w

i	

is	
 the	
 weight	
 calculated	
 as	
 below:	

where	
 AP	
 P	
 	
 ST	
 OP
j	

and	
 AP	
 P	
 	
 ST	
 ART

j	

are	
 values	
 from	
 RUR	
 :mestamp	

plugin	
 with	
 apid
j
.	

XDMoD	
 Website	
 Interface	

Example	
 of	
 analyzing	
 RUR	
 data	
 via	
 XDMoD	

data recorded by whatever resource management system the
site implements. The existing plugins can give additional
data on CPU time, memory, energy, and GPU usage on the
compute nodes that is not typically available in the resource
manager accounting logs on Cray systems. However, most
of the deeper performance information desired by third-
party analytics systems such as XDMoD and provided by
other monitoring systems such as TACC Stats [10] are not
available through RUR. Specifically, plugins for processor
performance counters, interconnect performance counters,
and file system performance counters (such as for Lustre) are
not currently available for RUR on XE6/XK6 platforms. In
principle, Cray customer sites could implement plugins for
processor and Lustre file system performance counters, but it
would be difficult for anyone other than Cray to implement
a plugin for interconnect performance counters.

VIII. ACKNOWLEDGMENT

This material is based upon work performed using com-
putational resources supported by the University of Ten-
nessee and Oak Ridge National Laboratory’s Joint Institute
for Computational Sciences (http://www.jics.utk.edu). Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the University of
Tennessee, Oak Ridge National Laboratory, or the Joint
Institute for Computational Sciences.

APPENDIX

alps.conf

apsys

prologPath /opt/cray/rur/default/bin/rur_prologue.py

epilogPath /opt/cray/rur/default/bin/rur_epilogue.py

prologTimeout 60

epilogTimeout 60

/apsys

rur.conf

[global]

rur: False

[rur_stage]

stage_timeout: 10

stage_dir: /tmp/rur/

[rur_gather]

gather_timeout: 10

gather_dir: /tmp/rur/

[rur_post]

post_timeout: 10

post_dir: /tmp/rur/

[plugins]

gpustat: false

taskstats: true

timestamp: true

energy: false

memory: true

[outputplugins]

llm: false

file: true

user: false

[gpustat]

stage: /opt/cray/rur/default/bin/gpustat_stage.py

post: /opt/cray/rur/default/bin/gpustat_post.py

[taskstats]

stage: /opt/cray/rur/default/bin/taskstats_stage.py

post: /opt/cray/rur/default/bin/taskstats_post.py

[energy]

stage: /opt/cray/rur/default/bin/energy_stage.py

post: /opt/cray/rur/default/bin/energy_post.py

[timestamp]

stage: /opt/cray/rur/default/bin/timestamp_stage.py

post: /opt/cray/rur/default/bin/timestamp_post.py

[memory]

stage: /opt/cray/rur/default/bin/memory_stage.py

post: /opt/cray/rur/default/bin/memory_post.py

[llm]

output: /opt/cray/rur/default/bin/llm_output.py

[file]

output: /opt/cray/rur/default/bin/file_output.py

arg: /lustre/medusa/grogers/RUR/output/rur.output

[user]

output: /opt/cray/rur/default/bin/user_output.py

arg: single

REFERENCES

[1] Troy Baer and Doug Johnson. pbsacct: A workload analysis
system for pbs-based hpc systems. In Proceedings of the
2014 Annual Conference on Extreme Science and Engineering
Discovery Environment. ACM, 2014.

[2] Thomas R. Furlani, et al. Using XDMoD to facilitate
XSEDE operations, planning and analysis In Proceed-
ings of the 2013 Annual Conference on Extreme Science
and Engineering Discovery Environment. ACM, 2013. doi
10.1145/2484762.2484763

[3] Blue waters user portal: Getting started. https://bluewaters.
ncsa.illinois.edu/documentation.

[4] GitHub: adaptivecomputing/torque. https://github.com/
adaptivecomputing/torque.

[5] Managing system software for the Cray Linux Environment.
http://docs.cray.com/books/S-2393-51/.

[6] Titan user guide.
https://www.olcf.ornl.gov/support/system-user-guides/
titan-user-guide/.

[7] TORQUE resource manager. http://www.adaptivecomputing.
com/products/open-source/torque/.

[8] David Beer. Energy measurement code in TORQUE 5.0.
http://www.supercluster.org/pipermail/torquedev/
2015-January/004811.html.

[9] Arnold Tharrington. An Overview of NCCS XT3/4 Accep-
tance Testing.
https://cug.org/5-publications/proceedings attendee lists/
2007CD/S07 Proceedings/pages/Authors/Tharrington/
Tharrington paper.pdf.

RUR	
 Configura:on	
 Experiences	

data recorded by whatever resource management system the
site implements. The existing plugins can give additional
data on CPU time, memory, energy, and GPU usage on the
compute nodes that is not typically available in the resource
manager accounting logs on Cray systems. However, most
of the deeper performance information desired by third-
party analytics systems such as XDMoD and provided by
other monitoring systems such as TACC Stats [10] are not
available through RUR. Specifically, plugins for processor
performance counters, interconnect performance counters,
and file system performance counters (such as for Lustre) are
not currently available for RUR on XE6/XK6 platforms. In
principle, Cray customer sites could implement plugins for
processor and Lustre file system performance counters, but it
would be difficult for anyone other than Cray to implement
a plugin for interconnect performance counters.

VIII. ACKNOWLEDGMENT

This material is based upon work performed using com-
putational resources supported by the University of Ten-
nessee and Oak Ridge National Laboratory’s Joint Institute
for Computational Sciences (http://www.jics.utk.edu). Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the University of
Tennessee, Oak Ridge National Laboratory, or the Joint
Institute for Computational Sciences.

APPENDIX

alps.conf

apsys

prologPath /opt/cray/rur/default/bin/rur_prologue.py

epilogPath /opt/cray/rur/default/bin/rur_epilogue.py

prologTimeout 60

epilogTimeout 60

/apsys

rur.conf

[global]

rur: False

[rur_stage]

stage_timeout: 10

stage_dir: /tmp/rur/

[rur_gather]

gather_timeout: 10

gather_dir: /tmp/rur/

[rur_post]

post_timeout: 10

post_dir: /tmp/rur/

[plugins]

gpustat: false

taskstats: true

timestamp: true

energy: false

memory: true

[outputplugins]

llm: false

file: true

user: false

[gpustat]

stage: /opt/cray/rur/default/bin/gpustat_stage.py

post: /opt/cray/rur/default/bin/gpustat_post.py

[taskstats]

stage: /opt/cray/rur/default/bin/taskstats_stage.py

post: /opt/cray/rur/default/bin/taskstats_post.py

[energy]

stage: /opt/cray/rur/default/bin/energy_stage.py

post: /opt/cray/rur/default/bin/energy_post.py

[timestamp]

stage: /opt/cray/rur/default/bin/timestamp_stage.py

post: /opt/cray/rur/default/bin/timestamp_post.py

[memory]

stage: /opt/cray/rur/default/bin/memory_stage.py

post: /opt/cray/rur/default/bin/memory_post.py

[llm]

output: /opt/cray/rur/default/bin/llm_output.py

[file]

output: /opt/cray/rur/default/bin/file_output.py

arg: /lustre/medusa/grogers/RUR/output/rur.output

[user]

output: /opt/cray/rur/default/bin/user_output.py

arg: single

REFERENCES

[1] Troy Baer and Doug Johnson. pbsacct: A workload analysis
system for pbs-based hpc systems. In Proceedings of the
2014 Annual Conference on Extreme Science and Engineering
Discovery Environment. ACM, 2014.

[2] Thomas R. Furlani, et al. Using XDMoD to facilitate
XSEDE operations, planning and analysis In Proceed-
ings of the 2013 Annual Conference on Extreme Science
and Engineering Discovery Environment. ACM, 2013. doi
10.1145/2484762.2484763

[3] Blue waters user portal: Getting started. https://bluewaters.
ncsa.illinois.edu/documentation.

[4] GitHub: adaptivecomputing/torque. https://github.com/
adaptivecomputing/torque.

[5] Managing system software for the Cray Linux Environment.
http://docs.cray.com/books/S-2393-51/.

[6] Titan user guide.
https://www.olcf.ornl.gov/support/system-user-guides/
titan-user-guide/.

[7] TORQUE resource manager. http://www.adaptivecomputing.
com/products/open-source/torque/.

[8] David Beer. Energy measurement code in TORQUE 5.0.
http://www.supercluster.org/pipermail/torquedev/
2015-January/004811.html.

[9] Arnold Tharrington. An Overview of NCCS XT3/4 Accep-
tance Testing.
https://cug.org/5-publications/proceedings attendee lists/
2007CD/S07 Proceedings/pages/Authors/Tharrington/
Tharrington paper.pdf.

data recorded by whatever resource management system the
site implements. The existing plugins can give additional
data on CPU time, memory, energy, and GPU usage on the
compute nodes that is not typically available in the resource
manager accounting logs on Cray systems. However, most
of the deeper performance information desired by third-
party analytics systems such as XDMoD and provided by
other monitoring systems such as TACC Stats [10] are not
available through RUR. Specifically, plugins for processor
performance counters, interconnect performance counters,
and file system performance counters (such as for Lustre) are
not currently available for RUR on XE6/XK6 platforms. In
principle, Cray customer sites could implement plugins for
processor and Lustre file system performance counters, but it
would be difficult for anyone other than Cray to implement
a plugin for interconnect performance counters.

VIII. ACKNOWLEDGMENT

This material is based upon work performed using com-
putational resources supported by the University of Ten-
nessee and Oak Ridge National Laboratory’s Joint Institute
for Computational Sciences (http://www.jics.utk.edu). Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the University of
Tennessee, Oak Ridge National Laboratory, or the Joint
Institute for Computational Sciences.

APPENDIX

alps.conf

apsys

prologPath /opt/cray/rur/default/bin/rur_prologue.py

epilogPath /opt/cray/rur/default/bin/rur_epilogue.py

prologTimeout 60

epilogTimeout 60

/apsys

rur.conf

[global]

rur: False

[rur_stage]

stage_timeout: 10

stage_dir: /tmp/rur/

[rur_gather]

gather_timeout: 10

gather_dir: /tmp/rur/

[rur_post]

post_timeout: 10

post_dir: /tmp/rur/

[plugins]

gpustat: false

taskstats: true

timestamp: true

energy: false

memory: true

[outputplugins]

llm: false

file: true

user: false

[gpustat]

stage: /opt/cray/rur/default/bin/gpustat_stage.py

post: /opt/cray/rur/default/bin/gpustat_post.py

[taskstats]

stage: /opt/cray/rur/default/bin/taskstats_stage.py

post: /opt/cray/rur/default/bin/taskstats_post.py

[energy]

stage: /opt/cray/rur/default/bin/energy_stage.py

post: /opt/cray/rur/default/bin/energy_post.py

[timestamp]

stage: /opt/cray/rur/default/bin/timestamp_stage.py

post: /opt/cray/rur/default/bin/timestamp_post.py

[memory]

stage: /opt/cray/rur/default/bin/memory_stage.py

post: /opt/cray/rur/default/bin/memory_post.py

[llm]

output: /opt/cray/rur/default/bin/llm_output.py

[file]

output: /opt/cray/rur/default/bin/file_output.py

arg: /lustre/medusa/grogers/RUR/output/rur.output

[user]

output: /opt/cray/rur/default/bin/user_output.py

arg: single

REFERENCES

[1] Troy Baer and Doug Johnson. pbsacct: A workload analysis
system for pbs-based hpc systems. In Proceedings of the
2014 Annual Conference on Extreme Science and Engineering
Discovery Environment. ACM, 2014.

[2] Thomas R. Furlani, et al. Using XDMoD to facilitate
XSEDE operations, planning and analysis In Proceed-
ings of the 2013 Annual Conference on Extreme Science
and Engineering Discovery Environment. ACM, 2013. doi
10.1145/2484762.2484763

[3] Blue waters user portal: Getting started. https://bluewaters.
ncsa.illinois.edu/documentation.

[4] GitHub: adaptivecomputing/torque. https://github.com/
adaptivecomputing/torque.

[5] Managing system software for the Cray Linux Environment.
http://docs.cray.com/books/S-2393-51/.

[6] Titan user guide.
https://www.olcf.ornl.gov/support/system-user-guides/
titan-user-guide/.

[7] TORQUE resource manager. http://www.adaptivecomputing.
com/products/open-source/torque/.

[8] David Beer. Energy measurement code in TORQUE 5.0.
http://www.supercluster.org/pipermail/torquedev/
2015-January/004811.html.

[9] Arnold Tharrington. An Overview of NCCS XT3/4 Accep-
tance Testing.
https://cug.org/5-publications/proceedings attendee lists/
2007CD/S07 Proceedings/pages/Authors/Tharrington/
Tharrington paper.pdf.

Discussions	
 and	
 Conclusions	

•  The	
 RUR	
 provides	
 a	
 low	
 noise,	
 scalable	

approach	
 to	
 collect	
 performance	
 data	
 from	

the	
 compute	
 nodes.	
 	

•  The	
 RUR	
 framework	
 allows	
 users	
 develop	

customized	
 plugins	
 for	
 various	
 purposes.	
 	

•  It	
 appears	
 that	
 RUR	
 is	
 a	
 stable	
 u:lity	
 going	

forward	
 serving	
 the	
 Cray	
 community.	
 There	

are	
 substan:al	
 development	
 works	
 from	

mul:ple	
 aspects	
 related	
 to	
 RUR.	
 	

•  The	
 data	
 generated	
 by	
 the	
 default	
 plugins	
 show	

that	
 RUR,	
 in	
 its	
 current	
 state,	
 is	
 at	
 best	
 a	

supplement	
 for	
 the	
 accoun:ng	
 data	
 recorded	
 by	

whatever	
 resource	
 management	
 system	
 the	

site	
 implements.	
 	

•  The	
 exis:ng	
 plugins	
 can	
 give	
 addi:onal	

data	
 on	
 CPU	
 :me,	
 memory,	
 energy,	
 and	
 GPU	

usage	
 on	
 	
 the	
 compute	
 nodes	
 that	
 is	
 not	
 typically	

available	
 in	
 the	
 resource	
 manager	
 accoun:ng	

logs	
 on	
 Cray	
 systems.	
 	

	

Discussions	
 and	
 Conclusions	

•  However,	
 most	
 of	
 the	
 deeper	
 performance	

informa:on	
 desired	
 by	
 third-­‐party	
 analy:cs	

systems	
 such	
 as	
 XDMoD	
 and	
 provided	
 by	

other	
 monitoring	
 systems	
 such	
 as	
 TACC	
 Stats	

are	
 not	
 available	
 through	
 RUR.	
 Specifically,	

plugins	
 for	
 processor	
 performance	
 counters,	

interconnect	
 performance	
 counters,	
 and	
 file	

system	
 performance	
 counters	
 (such	
 as	
 for	

Lustre)	
 are	
 not	
 currently	
 available	
 for	
 RUR	
 on	

XE6/XK6	
 plaaorms.	

Conclusions	
 and	
 Discussions	

THANK	
 YOU	

