Monitoring and Analyzing Job Performance Using Resource Utilization Reporting
(RUR) on A Cray XE6/XK6 System

Shi-Quan Su, Troy Baer, Gary Rogers, Stephen McNally, Robert Whitten, Lonnie Crosby
National Institute for Computational Sciences
Oak Ridge, TN 37831 Email: shiquansu@ hotmail.com

Abstract—Resource utilization in high performance comput-
ing centers is fundamental information to gather on an ongoing
basis. This information helps support staff to understand,
and to predict more acurately, the usage patterns of users.
This information is invaluable when deciding on day to day
configurations of the system, and possibly long term upgrades
to the hardware, or installations of future systems. Cray’s
Resource Utilization Reporing (RUR) software gathers node
level statistics before and after users jobs are run. The base
package includes data plugins to gather statistics, such as
accounting data, and output plugins to save information in
an orderly manner.

This paper describes work completed at the National Insti-
tute for Computational Sciences (NICS) measuring the impact
and scalability of enabling RUR on an XE6/XK6 system. To
determine if enabling RUR would have any negative impact on
system performance, metrics were analyzed from benchmarks
generated using the NICS Test Harness, a framework which
simulates the typical workload and is used during acceptance
testing, when RUR was both enabled and disabled on the
system. Also presented in this paper are the tools and methods
used to extend the output from the basic data plugins to
include other local system level data to generate a more detailed
resource utilization snapshot. The integration between NICS
and the XSEDE Metrics on Demand (XDMoD) project is
discussed along with the utilization of XDMoD in the broader
scientific community.

Keywords-RUR; resource utilization; job performance mon-
itoring; Cray XE6/XK6; XDMoD; Test Harness;

I. INTRODUCTION

Most high performance computing (HPC) centers run their
systems as either time-shared or space-shared resources.
There are growing needs that the service providers, usually
the supercomputing center staff, want to keep track of the
user activities on the machines. As these systems have
become larger and more power-hungry, it has become more
common for centers to collect more and more metrics on
user activities on their systems[1]. These metrics can provide
insight into system tuning and identify poor application
performance. Such information provides the clues of how to
tune the system for better throughput, and may also release
a signal warning the potential system failures. The general
users may also benefit from identifying the application per-
formance weak spot from analyzing the resources utilization.

Cray system software has long provided solutions for
measuring performance, and this software has evolved over

time. The latest iteration of Cray’s performance monitoring
software is Resource Utilization Reporting (RUR), which
was first released in 2013. RUR offers a standard framework
for implementing job monitoring and reporting for various
Cray systems.

This paper will describe a study to investigate using RUR
to collect job performance metrics and integrate the output to
various external software systems, including the TORQUE
batch environment and the XSEDE Metrics on Demand
(XDMoD) reporting system. This study was conducted on
Mars, a Cray XE6/XK6 system at the National Institute for
Computational Sciences (NICS) of the University of Ten-
nessee, which is located at Oak Ridge National Laboratory.
Mars is a single cabinet hybrid system with 20 XE6 and 16
XK6 compute nodes.

II. QUANTIFYING RUR OVERHEAD

The RUR module is designed to be low-noise and scalable
on large scale systems [5]. The RUR module collects data
from compute nodes on an individual aprun level. Each RUR
output record is labeled by the combination of jobid and
apid. Understanding the overhead and performance impact
of enabling RUR on the job level is critical for support staff
to deciding whether the service can be used in production
operation. It is also imperative to quantitatively state the
overhead under a realistic user environment. In a real life
computational environment, multiple users perform disparate
activities on the machine at the same time. These activities
include compiling and linking applications, running jobs via
a batch system, and transferring and archiving data.

It was prudent to simulate a realistic user workload on a
smaller XE6/XK6 test system, Mars, instead of the larger
XC30 production system, Darter, at NICS. This testing
approach allows more tests to be completed in a shorter
timeframe without having any direct impact on users’ daily
work.

A NICS customized version of Test Harness platform
was selected for the user’s workload simulation. The Test
Harness platform is originally developed at ORNL [9], and
has been used in the acceptance test on several Cray systems
such as Jaguar[11], Kraken, Darter, and Titan. The Test
Harness includes two major components: the Test Harness
Python library, which manages the test runs, and the set



of benchmarks from various applications. The Test Harness
initially compiles and links the applications, then submits
the benchmark runs to the batch system, collects the job
outputs, and compares the results against the built in test.
The Test Harness records the results locally and archives
the job data into the High Performance Storage System
(HPSS) at Oak Ridge National Laboratory (ORNL) campus.
The Test Harness automatically restarts the process until a
predetermined time passes, or a predetermined number of
runs have completed. During the simulation, the adminis-
trators can query the current status of the test runs and the
success rate of the test runs. NICS developed and maintains
a customized version of Test Harness for its computational
resources.

Three applications from the NICS Test Harness: NAMD,
NWCHEM, and GROMACS were selected. All three ap-
plications have large user communities and are actively
run on NICS resources. NAMD, is a parallel molecular
dynamics code designed for high-performance simulation of
large biomolecular systems. NWCHEM is a scalable com-
putational chemistry package, ackling molecular systems
including biomolecules, nanostructures, actinide complexes,
and materials. GROMACS is a versatile package to perform
molecular dynamics, i.e. simulate the Newtonian equations
of motion for systems with hundreds to millions of particles.

Two benchmarks were chosen for each applications. The
NAMD benchmarks were apoal and stmv. The NWCHEM
benchmarks were aump2 and c60_pbe0. The GROMACS
benchmarks were d.dppc and d.villin. All benchmark exam-
ples are available online. For each benchmark, two job sizes
were chosen. Combined with the enabling/disabling of RUR,
there are a total of 3 X 2 x 2 x 2 = 24 distinct sets of data.

The runs were completed in the following manner. RUR
was enabled on the system. Twelve jobs were submitted to
the batch system, distinguished by application, benchmark,
and job size. Each benchmark job that was submitted to the
batch system, in turn, created an auxilary job to run imme-
diately after the completion of the benchmark job. The RUR
output was recorded immediately before the benchmark job
was placed on the compute nodes, and again immediately
after the benchmark job completed. The auxiliary job would
then record the outcome of the benchmark job (pass, failed,
or inconclusive) in tabular form, archive the job results, and
restart the rebuilding of the application for a new run. The
auxiliary job only executes on the service nodes, thus there
is no RUR output generated. At any given time, there are
twelve sets of jobs running, eligible, or held on the system.
Each set of jobs is either the benchmark job or the auxiliary
job. This simulates a realistic workload on the system where
multiple users are performing various activities all at the
same time on the system.

Each set of tests were run continuosly for a 36 hour
test period. Each benchmark was compiled and executed
hundreds of times. After the completion of the initial 36

Benchmark Cores RUR Jobs Ave. Std.
Run Dev.

Time
oy 128 on 388 129.71 0.37
128 off 398 129.68 | 0.45
iy 256 on 227 89.73 .47
256 off 240 88.49 1.29
apoal 32 on 1102 81.67 0.42
32 off 1261 81.86 0.48
apoal 64 on 1385 76.21 0.36
64 off 1519 46.25 0.78
32 on 60 32281 2.69
€60_pbe0 3 off 52 32260 | 2.88
64 on 98 16745 1.21
€60_pbe0 64 off 80 167.64 | 138
aump2 32 on 56 34977 | 2.1
32 off 60 349.67 | 2.05
5 64 on ) 184.92 141
aump 64 off 75 185.50 2.05
ddppe 64 on 71 11402 | 0.16
. 64 off 55 11405 | 0.16
ddppe 128 on 96 64.68 0.16
: 128 off 77 64.77 0.18
Lvillin 32 on 109 7422 0.15
: 32 off 86 74.26 0.13
dillin 64 on 134 4485 0.37
: 64 off 104 44.92 035

Table T

A TABLE OF TEST HARNESS BENCHMARKS PERFORMANCE

hour test, RUR was disabled and the same set of runs were
started for the comparative 36 hour test.

After obtaining the full 24 sets of data, basic job statistics
were computed for both cases. These statistics included the
average runtime and standard deviation for each job. Table
I illustrates the average run time with RUR on and off.
These runtimes have no statistically significant difference.
The runtime difference between RUR on and RUR off is
well within the standard deviation of the average runtime.
Thus we conclude that RUR does not have any negative
impact on runtimes.

ITI. RUR CONFIGURATION EXPERIENCES AND
LIMITATIONS

RUR includes a two different types of plugins by default:
data plugins and output plugins. Data plugins record infor-
mation on the node immediately before a job is placed on the
compute node and immediately after the job is completed.
Output plugins are used to record this data. NICS enabled
all of the standard plugins described in the Cray system
software management guide [S5]. This included the taskstats,
timestamp, memory, and energy plugins. The file output
plugin was enabled, and all results were stored on the
attached Lustre file system.

The standard RUR data plugins, and the file output plugin
are enabled by editing the basic alps.conf and rur.conf files
as shown in Apendix section. In order to enable RUR,
beyond setting the correct configuration option, ALPS needs
to be restarted on the login nodes. The file output plugin was



chosen, as opposed to the lightweight log manager, in order
to have the RUR output sent to a centralized location that
is shared between service and compute nodes. The Lustre
filesystem was an ideal location not only because it was
mounted on Mars on all the appropriate nodes, but it was
also mounted on other systems, so post-processing of the
RUR data could be done on other nodes if necessary.

IV. GENERATING SINGLE JOB RECORD

The information recorded using the timestamp, taskstats,
and memory data plugins were used in generating a single
job record. The timestamp plugin and the taskstats plugin
output one record for each aprun command in a job. The
record can be identified by the combination of jobid and
apid. The memory plugin outputs one record for each node
in each aprun command in a job. The record can be identified
by the combination of jobid, apid and nid. Consider a job
including M aprun commands, each aprun command runs n;
processes on N; nodes, ¢ from 1 to M. The RUR module will
generate M timestamp plugin records, M taskstats plugin
records, and Zf\il N; memory plugin records for a single
job labeled by the ungiue jobid.

There is one major alternative setting that can be con-
figured in the taskstats plugin where the arg is set to
”xpacct, per—?rocess”. Under this setting, the taskstats will
generate vazl n; records for a single job. The volume of
data generated and stored on disk soon becomes an issue
under this alternative, and as such is beyond the scope of
this paper.

Practically, both the users and the support staff want to
know the information on a single job level. This naturally
leads to a question of how to generate a single job record.
The answer of the above question pertains to the balance
between how much information the user needs and how
much information the system can offer without significantly
affecting the job performance on the user’s code. The
satisfied solution is that the user has a single job record
with all the information needed and no significant overhead
added to the job execution.

There is another important issue of generating single job
records. RUR is designed to collect information on the
compute node level. For the majority of batch jobs running
on the supercomputers, the execution of aprun commands
is the major part of the job. Hence it is a good approxi-
mation to treat the information from RUR as the whole job
information. But for some jobs, which spend a significant
part of runtime on service node, such as performing 1/O,
executing system commands, the single job record need to
include the information from job level (both service node(s)
and compute node(s) ) to loyally represent the job.

There is no doubt that there are a lot of approaches and
implementations at different institutions to solve the above
issue. At NICS, the recommended approach is to combine all
the RUR records from the unique jobid first, then query the

local pbsacct database with the jobid to suplement the single
job record. Combining the job accounting information and
the RUR records, it is possible to obtain single job records
including most of the desirable information.

The administrators at NICS maintain a set of scripts to
query the local pbsacct database. The pbsacct utility provides
the following information: system name, job id, user name,
group name, charge account, job name, number of processers
requested, queue name, submit time, start time, end time,
wall time requested, allocated host list, exit status, node
where the job was submitted, and the user’s batch job script.

After parsing the RUR output and querying the pbsacct
database, a single job record can be generated in a json
dictionary style. Each job record is stored in a file. These
records can be injected into external analysis systems for
further processing, such as XDMoD.

V. INTEGRATION WITH TORQUE

The TORQUE batch environment [7] is an open source
fork of the Portable Batch System [12], maintained by
Adaptive Computing and including patches from a wide
variety of sources including academia, national laboratories,
and industry. TORQUE is widely used in HPC on everything
from small commodity clusters to leadership-class Cray
systems such as Blue Waters [3] and Titan [6]. While
TORQUE does not include system analysis or workload
analysis tools, a number of third-party tools exist that can
ingest the TORQUE accounting logs, including Gold [13],
pbsacct [1], and XDMoDt [2].

TORQUE version 5.0 added a field in its account-
ing logs for recoding the energy used by a job, called
resources_used.energy_used. The initial implementation
of this can be found in src/resmom/cray_energy.c in the
source code [4]. This implementation targets RUR, specif-
ically the energy plugin, as its underlying data gathering
infrastructure. The TORQUE developers have acknowledged
that this implementation is a prototype and will be refactored
for greater generality in the long term [§].

To test the integration between TORQUE and RUR,
NICS upgraded the TORQUE instance on Mars to version
5.0.1 and then enabled RUR with the energy plugin on
the system. Additionally, the NICS pbsacct software was
updated to handle the new field. However, RUR reported
each job’s energy consumption as zero, which was then
propagated to the TORQUE accounting logs and on to the
NICS pbsacct instance. Eventually it was discovered that the
RUR energy plugin does not support energy measurement
on the XE6/XK6 hardware platform, but that fact was not
documented in the Cray system software manual describing
RUR [5]. At that point, implementing the RUR power plugin
on Mars was abandoned. NICS has requested that Cray
update the documentation to reflect the fact that RUR does
not support energy measurement on XE6 and XK6 systems.



Allocated Compute Nodes (hostlist) start time

APP_START

aprun command
line execution on
compute nodes

> utime
stime

%
APP_STOP

end time

Wall Time

p—

nid_1 nid_2 nid_3 nid_4,
Y
Record in RUR Memory Plugin Output

Figure 1. A schematic show of a simple job structure

VI. INTEGRATION WITH XDMoD

The XSEDE Technology Audit Service (TAS) is an NSF
funded project at the Center for Computational Research
(CCR) of the State University of New York (SUNY) at
Buffalo to audit the XSEDE project’s activities. One of this
project’s main products is XSEDE Metrics on Demand (XD-
MoD), a software system which provides web-based access
to metrics and analytics for the computational resources of
the XSEDE service providers (SPs). The XDMoD (https:
//xdmod.ccr.buffalo.edu) is designed to audit and facilitate
the operation and utilization of XSEDE, the most advanced
and robust collection of integrated advanced digital resources
and services in the world. Similarly, Open XDMoD, the open
source version of XDMoD, is designed to provide similar
capabilities to academic and industrial HPC centers. The
XDMoD tool includes both a web-based interface and a back
end to collect and store job performance data. The level of
detail available in this data varies by system. For example,
the Stampede system at TACC uses the TACC_Stats system
to provide very detailed information including hardware per-
formance counters, interconnect statistics, and Lustre statis-
tics. There is currently no real equivalent to TACC_Stats
on Cray systems; however, the hope is that RUR might be
able to provide similar functionality. In this section, we will
discuss that possibility in detail, including an enumeration
of the development work needed to make it a reality.

The XDMoD is a package under active development.
The developers have identified a set of metrics for each
single job run on the supercomputer. These metrics aim to
represent the typical usage on the supercomputers. Analysis
of these metrics offers various information which helps staff
members and users to utilize the resources more efficiently.

The current set of metrics includes three subsets. The first
subset includes: organization name, machine name, local
job id, job name, project account, user name, job directory,

executable, exit status, number of granted processing ele-
ments (PEs), queue name, number of requested nodes, array
of allocated host names, actually used node count, shared
mode, actually used core count, available core count, submit
time, eligible time, start time, end time, wall time, requested
wall time, wait time, cput time, node time, error message.

The second subset includes: cpu idle percentage, cpu
system percentage, cpu user percentage, flops average per
core, clock ticks per instruction on average per core, L1D
cache load drop off percentage, clock ticks per 11d load on
average per core, total data transferred over the memory bus,
standard deviation of cpu user for all used cores, (max - min)
/ max cpu user over all used cores, memory usage including
system service per node, memory used by the OS including
the page and buffer caches per node.

The third subset includes a number of interconnection and
accelerator hardware counters, which relies on additional
plugins. It is beyond the scope of focus here.

The first subset can be extracted from the job accounting
data base. The second subset needs to combine both the job
accounting data and the RUR output.

Consider a simple job as shown in Figure 1. Each mint
green color box represnts one compute node. The job
requests 4 nodes, and there is only one aprun command
inside the job script, which uses all 4 nodes. The time spent
on the service node is ignorable.

In this case, the hostlist information from the accounting
data base is identical to enumerating the nid key in the RUR
memory plugin output. The walltime calculated from the
difference between start time and end time is about the same
as the difference between the APP_START and APP_STOP
from the RUR timestamp plugin. The sum of utime and
stime in RUR taskstats plugin output, the area of the red
dashline rectangle, can be approximated by the area of the
blue solid line rectangle, which is the Wall Time x Allocated
Compute Nodes.

Next, we study a complex job as in Figure 2. Still the job
requests 4 compute nodes, but only 3 of them are actually
used. There are 4 aprun commands in the job, labeled by
apid;, ¢ from 1 to 4. apid; command runs on 2 nodes. After
apid, finishes, apids and apids commands start at the same
time, apid, runs on 1 node, using only a portion of cores
on the node (such as having a -N option after aprun), apids
runs on 2 nodes and finishes earlier than apids. The apidy
command runs after both apids and apids finishes, and runs
on 3 nodes. After all the aprun commands finishes, there is
a significant span of the job executing system commands on
the service node.

We generate the metrics from the single job record of
above complex job. The metrics set is stored in a JSON-dict
format as the single job record. We customize the original
definitions of the metric to handle the job with multiple
aprun commands. We demonstrate how to obtain several
metrics below.



Allocated Compute Nodes

apid_1, code running on
compute nodes

apid_3, code running on

apid_2, code compute nodes

running on
compute
node

Wall Time

apid_4, code running on compute nodes

Wall Time Spent on Waiting for
Commands Running on Service Node(s)

nid_1 nid_2 nid_3 nid_4

'
Record in RUR Memory Plugin Output

Figure 2. A schematic show of a complex job structure

We first generate two extra key-value-pair items. The first
item has the key “used nodes list”, and has the value as
a list of nids. The nid(s) in the list appear(s) at least once
as the value of the RUR memory plugin output “nid” key.
In Figure 2 example, it is (used nodes list”: [nid;, nids,
nids]). The second item has the key ”aprun nodes dict”, and
has the value as a dict with apid key and nodes list value.
The nodes list is the list of nid appear in each aprun memory
plugin output. In Figure2 example, it is ("aprun nodes dict”:
{apidy: [nidy, nids], apida: [nidi], apids: [nids, nids],
apidy: [nidy, nids, nids]}). Then we also need a mapping
function ppn,;q between nid and the number of cores on
the node. Since it is common that the Cray system has
heterogeneous structure, which includes more than one type
of node. For example, the Mars has both 32-core XE6 nodes
and 16-core XK6 nodes. If the user does not specify the
feature in the PBS option, it is highly possible that the
scheduler schedules a mixed node pool to the job.

The first metric we show is “cpu idle percentage” (p), the
original definition is:

p= ZumLlt (1)
n
where n is number of cores the job ran on. z; is cpu idle
percentage of each core. We calculate p as:

Z?Zl(utimei + stime;)
TxN

p=1- @
where k is the number of aprun, utime; and stime; are
from the RUR taskstats plugin record with apid;, T is the
wall time elapsed for the whole job, N is the number of
cores actually assigned to the job, sum up the values of
ppNpiq With the nid in array of allocated host names from
job accounting information. The idea is that the result needs
to include data from multiple aprun executions.

The second metric is “memory usage including system
service per node” (u), the original definition is:
S

i=1C;
=1 0 3

i 3)
where x; is the mean memory used on node i, C; is the

number of cores on node 7 and H is the number of nodes
on which the job ran. We calculate y as:

M:

k n;
Zz; m;

n= Z wj X 777; (4)
Jj=1

where k is the number of aprun, n; is the number of nodes
in the jth aprun, m; is the ”Active(anon)” value in the RUR
memory plugin output with apid;, and nid;. The w; is the
weight calculated as below:

(APP_STOP; — APP_START;) « N;)

Wi = Tx N ©®)

where APP_STOP; and APP_START) are values from
RUR timestamp plugin with apid;. T and N are defined
the same as above. The idea is that we weight the average
memory usage per node among different aprun commands
by node hour weight.

Finally we describe the designed workflow for injecting
RUR output to XDMoD. On Mars, RUR is configured to
write job performance data to a file on a Lustre scratch
file system. The data in that file would be validated and
filtered to remove potentially sensitive information. Then
the python script described in the section "GENERATING
SINGLE JOB RECORD” will be run. The script combines
the RUR record labeled by (jobid, apid) to a single job record
(jobid), then executes system command “jobinfo” to query
the pbs accounting data base with the jobid, and fills the
relevant result into the correct fields of the single job record.
Then the single job record will be passed into a Javascript
run by application "node” to generate the desired metrics.
The metrics will be stored in the JSON-dict format file for
each jobid. The final “single job record and metrics” files
would then be transferred to an instance of the XDMoD
system at CCR, where an automated pipeline would ingest
the data. CCR developers would then re-validate the data
before storing it in the central data warehouse. The front-
end XDMoD GUI would then pull data from the central data
warehouse per users online requests.

VII. CONCLUSIONS

The RUR provides a low noise, scalable approach to
collect performance data from the compute nodes. The RUR
framework allows users develop customized plugins for
various purposes. It appears that RUR is a stable utility going
forward serving the Cray community. There are substantial
development works from multiple aspects related to RUR.

The data generated by the default plugins show that RUR,
in its current state, is at best a supplement for the accounting



data recorded by whatever resource management system the
site implements. The existing plugins can give additional
data on CPU time, memory, energy, and GPU usage on the
compute nodes that is not typically available in the resource
manager accounting logs on Cray systems. However, most
of the deeper performance information desired by third-
party analytics systems such as XDMoD and provided by
other monitoring systems such as TACC Stats [10] are not
available through RUR. Specifically, plugins for processor
performance counters, interconnect performance counters,
and file system performance counters (such as for Lustre) are
not currently available for RUR on XE6/XK6 platforms. In
principle, Cray customer sites could implement plugins for
processor and Lustre file system performance counters, but it
would be difficult for anyone other than Cray to implement
a plugin for interconnect performance counters.

VIII. ACKNOWLEDGMENT

This material is based upon work performed using com-
putational resources supported by the University of Ten-
nessee and Oak Ridge National Laboratory’s Joint Institute
for Computational Sciences (http://www.jics.utk.edu). Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the University of
Tennessee, Oak Ridge National Laboratory, or the Joint
Institute for Computational Sciences.

APPENDIX

alps.conf

apsys
prologPath /opt/cray/rur/default/bin/rur_prologue.py
epilogPath /opt/cray/rur/default/bin/rur_epilogue.py
prologTimeout 60
epilogTimeout 60

/apsys

rur.conf

[globall
rur: False

[rur_stage]
stage_timeout: 10
stage_dir: /tmp/rur/

[rur_gather]
gather_timeout: 10
gather_dir: /tmp/rur/

[rur_post]
post_timeout: 10
post_dir: /tmp/rur/

[plugins]
gpustat: false
taskstats: true
timestamp: true
energy: false
memory: true

[outputplugins]
1lm: false
file: true
user: false

[gpustat]

stage: /opt/cray/rur/default/bin/gpustat_stage.py
post: /opt/cray/rur/default/bin/gpustat_post.py
[taskstats]

stage: /opt/cray/rur/default/bin/taskstats_stage.py
post: /opt/cray/rur/default/bin/taskstats_post.py
[energy]

stage: /opt/cray/rur/default/bin/energy_stage.py
post: /opt/cray/rur/default/bin/energy_post.py
[timestamp]

stage: /opt/cray/rur/default/bin/timestamp_stage.py
post: /opt/cray/rur/default/bin/timestamp_post.py
[memory]

stage: /opt/cray/rur/default/bin/memory_stage.py
post: /opt/cray/rur/default/bin/memory_post.py
[11m]

output: /opt/cray/rur/default/bin/llm_output.py

[file]

output: /opt/cray/rur/default/bin/file_output.py
arg: /lustre/medusa/grogers/RUR/output/rur.output
[user]

output: /opt/cray/rur/default/bin/user_output.py
arg: single

REFERENCES

[1] Troy Baer and Doug Johnson. pbsacct: A workload analysis
system for pbs-based hpc systems. In Proceedings of the
2014 Annual Conference on Extreme Science and Engineering
Discovery Environment. ACM, 2014.

[2] Thomas R. Furlani, et al. Using XDMoD to facilitate
XSEDE operations, planning and analysis In Proceed-
ings of the 2013 Annual Conference on Extreme Science
and Engineering Discovery Environment. ACM, 2013. doi
10.1145/2484762.2484763

[3] Blue waters user portal: Getting started. https://bluewaters.
ncsa.illinois.edu/documentation.

[4] GitHub: adaptivecomputing/torque.
adaptivecomputing/torque.

https://github.com/

[5] Managing system software for the Cray Linux Environment.
http://docs.cray.com/books/S-2393-51/.

[6] Titan user guide.
https://www.olcf.ornl.gov/support/system-user-guides/
titan-user-guide/.

[7] TORQUE resource manager. http://www.adaptivecomputing.
com/products/open-source/torque/.

[8] David Beer. Energy measurement code in TORQUE 5.0.
http://www.supercluster.org/pipermail/torquedev/
2015-January/004811.html.

[9] Arnold Tharrington. An Overview of NCCS XT3/4 Accep-
tance Testing.
https://cug.org/5-publications/proceedings_attendee_lists/
2007CD/S07_Proceedings/pages/Authors/Tharrington/
Tharrington_paper.pdf.



(10]

(11]

(12]

(13]

Todd Evans, William L Barth, James C Browne, Robert L
DeLeon, Thomas R Furlani, Steven M Gallo, Matthew D
Jones, and Abani K Patra. Comprehensive resource use mon-
itoring for hpc systems with tacc stats. In Proceedings of the
First International Workshop on HPC User Support Tools,
pages 13-21. IEEE Press, 2014.

Wayne Joubert, and Shi-Quan Su. An analysis of computa-
tional workloads for the ORNL Jaguar system. In Proceedings
of the 26th ACM international conference on Supercomputing,
pages 247256. ACM, 2012. doi 10.1145/2304576.2304611

Robert L Henderson. Job scheduling under the Portable Batch
System. In Job scheduling strategies for parallel processing,
pages 279-294. Springer, 1995.

Scott Jackson. The Gold accounting and allocation manager,
2004. http://www.emsl.pnl.gov/docs/mscf/gold.



