Toward Understanding Life-Long Performance of a Soexion File System

Mark Swan and Doug Petesch
Performance Team
Cray Inc.
St. Paul, MN, USA
dpetesch@cray.com

Abstract— Many of Cray’s customers will be using their
systems for several years to come. The one resoarhat

is most affected by long-term use is storage. Figboth

big and small, both striped and unstriped, are
continually created and deleted, leaving behind fre
space of different sizes and in difference placeshahe

spinning media. This paper will explore the effe of

continual reuse of a Sonexion file system and a nietd

of tuning the allocation parameters of the OSTs to
minimize these effects.

Keywords-Sonexion; 1/0 Performance

I. INTRODUCTION

When files are written to a Lustre Object Storagegét
(OST), itis the Idiskfs layer that allocates spatregeneral,
there are two things the allocator must know; whisrthe
next free space and how much space should be tthca
To get a peek into the data structures used bwltbeator,
and actually affect some of its operations, we loak at
/proc/fs/Idiskfs/<device>. In this directory, onSmnexion,
are three files; mb_groups, mb_last group,
prealloc_table.

The mb_groups file is a representation of the feace
on the OST.
allocation groups”. By looking at the “tune2fs dutput for
an OST, one can see that there are 32,768 blockgr@ap
and each block is 4,096 bytes. Therefore, eachgnop is
128 MiB of file system space. The mb_groups fie de
displayed with “cat”, but it is a big file.

one can reposition where the allocator will begéarshing
for free space.

The prealloc_table file represents information abmw
much space will be allocated for each incomingastreof
data to be written to the OST. This is commonfemed to
as “OST pre-allocation”. This file can be displdywith
“cat” and can also be changed by using “echo” and
redirection. The default values in this table #oSonexion
1600 represents 1 MiB.

1. HYPOTHESIS

It is our belief that different values of OST pre-
allocation have different effects on write and reatks as
the OST becomes fragmented. We believe that ardarg
OST pre-allocation size will leave behind largeddsoas
files are deleted and, therefore, reduce the &ffeuft
fragmentation on bandwidth throughout the life loé file
system.

We will be observing and manipulating the mb_groups
mb_last_group, and prealloc_table files in ordepécform
our experiments.

IIl. TESTINGENVIRONMENT

and e will be using a Cray XE6 mainframe connected to

4 SSU Sonexion 1600 with 3 TB drives. Each OST has
about 23 TB (20.8 TiB) of available space. Thistemn

Each OST is divided into “multi-block ;ses 4 3:2 Fine Grained Routing (FGR) ratio. Théans

there are three LNET router connections serviciaghe
LNET group and there are two OSSs in each LNET grou
for a total of four LNET groups.

The Lustre client is version 2.5.1 and tuned sudt t
osc.*.max_rpcs_in_flight=64 and osc.*.max_dirty_r@b§.

The mb_last_group file indicates where the allocatoThe gonexion is running NEO 1.2.1 and Lustre server

will begin looking for free space. The value ofsthiariable
begins at zero when the Object Storage Server (OSS)
started. As data is written to the OST, this vatoatinues
incrementing until it reaches the end of the OSAL that
point, the value wraps around to zero. While thecator
continues moving this pointer and allocating sp#uoexe are
files being deleted whose data had been allocatesthier
parts of the OST. This constant allocation ancbtiteh of
data is what causes fragmentation. This file can
displayed with “cat” and can also be changed byaisi
“echo” and redirection. By changing the value lukffile,

version 2.1.

IV. TESTINGMETHODOLOGY

The general method of our experiments is:
1) Decide how much space on each OST to use.
2) Choose a section of each OST within an SSU that is
empty and near the fast zones.

b 3) Set 4 different SSUsto 4 different OST pre-allocation

sizes (1, 2, 4, and 8 MiB).

4) Run optimal write and optimal read IOR jobs in each
SSU to determine best rates. These will become our base
rates for when OSTs are 100% free.

5) Smultaneoudly create 20 files on each OST so that Map of snx11014n004/mdo

data fromall 20 f||es|s|ntermng|aj current pointer=90000, free—average=28716,80(87,64%.
6) Repeat until 100% free again: 100 . I—
a) Delete 1 file from each OST which releases 5% of i +++++++ o * .
the used space in our target areas. 80 - 1H$+ £, T ;
b) Run optimal write and optimal read |OR jobs. ; 2 ’
7) Record write and read rates, plot results, and t .
compare to 100% free rates. g
15
V. HOW MUCH SPACE TO USE &
We will be creating 20 files on each OST. Givee th
nominal estimate of 5 GB/s/SSU, that is 625 MB/sQE&T.
We want to be able to write or read for 5 minutesnewhen —— g
our target area s highly full and fragmented. fg 20 MutLL_BTack A1 location Grous Nasber (thousands)
files for 5 minutes at 625 MB/s means we will beating Figure 2, OST0000 after preserving space.
187,500 MB of data or 1,464 multi-block allocatigroups
(128 MiB each). Considering that when we are 9@ f VIl ANALYZING SPACEALLOCATION
we need that much space to still be free, we shonglate 10 Using the filefrag utility, we can examine the picps

times that much data. Let’s say 15,000 groups@20,000 characteristics of each of the 20 files that weitze on our

MiB or 1,875 GiB. Since we are creating 20 fileach file 0STs. The following plots show the distribution of

must be at least 93.75 GiB. contiguous space for all of the OSTs that have %, 2nd 8

Vl. CHOOSING A SECTION OF EACKDST MiB_ OST pre-allocation sizes._ As we can see, the

contiguous space for each setting is dominated lsyza

We will be testing the performance of entire SSUsa0 equal to the setting. This shows that; a) thefdisllocator

file system that has been in production use forestme. ysed the pre-allocation size we specified and &)2 files

Since each OST has a different amount of free spadén \were highly intermingled. If the files were notghly

different places on the media, we analyzed each’'©STintermingled, there would be many more areas of

allocation bitmap to find our target areas. Figuleis a contiguousness that are larger than the specifiegt p

depiction of the bitmap for OST 0000 before ourttitgs gllocation size.

began. The area beginning at group 60000 appesls t

relatively empty and close enough to the beginn(iagt Distribution of Contiguousness

edge) of the media that we will not be affectecsloyv-zone 1 MiB OST Pre-Allocation

performance. As noted previously, we will be ofiegaon 1.2e+07

a region that consumes 15,000 groups. Figure 2 is

Lo . jir} -
depiction of the bitmap of OST 0000 after we wrd@e94- = le+0s
GiB files at location 60000. é Bet+06 |

Map of snx11014n004/mdQ
current. pointer=11855, free—average=31558,16{96,31¥% r'c," Ge+06
100 .
7] 4a+06
+ + .E
80 * e 2e+06 |
+
6O - °
¥ 12345678 9101112

Size Of Contipuous Chunk (MiB)

40 - Figure 1, Distribution of Contiguousness for 1 MiBOST Pre-allocation

Percent Free

20 -

0

0 20 40 60 80 100 120 140 160 1380

Multi-Block Allocation Group Number {(thousands)
Figure 1, OST0000 before preserving space

Number 0OFf Chunks

Figure 2, Distribution of Contiguousness for 2 MiBOST Pre-allocation

Number OFf Chunks

Figure 3, Distribution of Contiguousness for 4 MiBOST Pre-allocation

Number OFf Chunks

Figure 4, Distribution of Contiguousness for 8 MiBOST Pre-allocation

Distribution of Contiguocushess
2 MiB 0ST Pre-fAllocation

Ge+0G

De+0B

de+06

3e+06

Ze+QB

le+0G

1 23 456 8101214161820
Size OFf Contiguous Chunk {(MiB)

Distribution of Contiguocusness
4 MiB 05T Pre-Allocation

3.5e+06 M T 1 1

3e+06
2.5e+06
2e+06
1.5e+06
1e+06
500000

0
123456 7 81216202428

Size Of Contiguous Chunk (MiB)

Distribution of Contiguocusness
8 MiB 05T Pre-Allocation

1.8e406 T 1 1 1 1T T 7T
1.6e406 [SRR RN R
1.4e+06
1.2e+06
1e+06
800000
600000
400000
200000
0

1 2 3456 7 8162432

Size Of Contiguous Chunk (MiB)

VIIl. RESULTS

Figures 7, 8, 9 and 10 show the per-SSU write aad r

rates for each of the OST pre-allocation sizes.

As expected, using OST pre-allocation sizes grehtar
1 MiB cause the write rates to decrease due toirsg¢k].
At 1 MiB, both write and read rates fall dramatigas soon
as there is as little as 5% fragmentation. La@&m pre-
allocation sizes result in larger contiguous hdéfsbehind
due to file removal and so future 1/O rates showy \itle
decrease from the base.

8000

SSU Rates, 1 MiB OST Pre-allocation|

7000

6000

o
o
=}
S

Rate (MB/s)
B
=}
1S}
153

w
=1
=]
=3

2000 -

1000 -

Percentage of Fullness with Random Fragmentation

Figure 7, Rates for 1 MiB OST Pre-allocation

8000 1

jSSU Rates, 2 MiB OST Pre-allocation’i

7000

6000

Rate (MB/s)
w L w1
S o o
S o S
S & oS

2000 +

1000 |

Percentage of Fullness with Random Fragmentation

Figure 8, Rates for 2 MiB OST Pre-allocation

8000

[SSU Rates, 4 MiB OST Pre-alllocation]|

7000

6000

Rate (MB/s)

w LS o

S =3 =)

S S S

S =1 S
\ \

y?oof’?\eqs\“ %’?\e‘b&\n,\(g\ul\ S§© ég\eb@\zﬁ\e‘o@\e bg\eus\a%@\m%@\o%@\omﬁ\e '\i’?\g ’\S\a P

Percentage of Fullness with Random Fragmentation

Figure9, Rates for 4 MiB OST Pre-allocation

8000

" |SSU Rates, 8 MiB OST Pre-allocation|

7000

6000

Rate (MB/s)
w - Ul
S o o
s & &
S o ©

2000 -

1000 -

Percentage of Fullness with Random Fragmentation

Figure 10, Rates for 8 MiB OST Pre-allocation

IX. SUMMARY

At different levels of fragmentation, the worst walof
OST pre-allocation is 1 MiB. This is the value sétthe
factory for Sonexion 1600. Cray has not been sstgue
changes to this value.

The best value of OST pre-allocation is 8 MiB. résB
MiB OST pre-allocation, no matter what level of
fragmentation, the following observations can belena

A. Optimal writerateis at least 89% of a clean file system.
B. Optimal read rateis at least 82% of a clean file system.
C. Optimal write rates are always above 4 GB/5/SSU.
D. Optimal read rates are always above 5 GB/s/SSU.

X. FUTURE AREAS OFRESEARCH

All the side effects of large OST pre-allocatiores are
not yet known. We would like to investigate hovase is
allocated for files that are striped across manyf©SWe
would like to understand how the Idiskfs allocafitls in
small holes when the pre-allocation size is largée would
like to understand if the use of 4M RPCs affecte th
outcome of this research.

This study should also be performed on the Sonexion
2000 product where the default pre-allocation isviiB.

REFERENCES

[1] M. Swan, “Tuning and Analyzing Sonexion Performan&UG
2014.

