
Implementing “Pliris-C/R” Resiliency Features Into the EIGER Application

Mike Davis William Tucker

Customer Service Los Alamos, NM

Cray, Inc. wwtucker@gmail.com

Albuquerque, NM

u3186@cray.com

Joseph D. Kotulski

Electromagnetic Theory

Sandia National Laboratories

Albuquerque, NM

jdkotul@sandia.gov

Abstract— EIGER is a frequency-domain electromagnetics

simulation code based on the boundary element method. This

results in a linear equation whose matrix is complex valued

and dense. To solve this equation the Pliris direct solver

package from the Trilinos library is used to factor and solve

this matrix. This code has been used on the Cielo XE6 platform

to solve matrix equations of order 2 million requiring 5000

nodes for 24 hours.

This paper describes recent work to implement “Pliris-C/R”, a

set of checkpoint/restart and other resilience features for Pliris.

These include: targeting multiple file systems in parallel;

striping controls; checkpoint period controls; turnstiling;

open-file-descriptor sharing across processes; checkpointing on

imminent job termination; application relaunch within the job;

and scripts to monitor application progress. Timing data for

runs using Pliris-C/R will also be presented.

Keywords-linear algebra, dense matrix, checkpoint, I/O

I. INTRODUCTION

The U.S. National Nuclear Security Administration

(NNSA) has tasked its Advanced Simulation and

Computing (ASC) program with providing high-

performance simulation capabilities “to analyze and predict

the performance, safety, and reliability of the nation’s

nuclear weapons” [1]. To fulfill this mission more

effectively, two of NNSA’s laboratories, Los Alamos and

Sandia, formed the New Mexico Alliance for Computing at

Extreme Scale (ACES) to design, procure, and deploy the

Cielo supercomputer [2]. Cielo is a Cray XE6 system with

9216 nodes, rated at 1.38 Petaflops of peak performance [3].

Cielo is designated as an advanced-technology system [4],

and as such it is tasked with handling workloads in which

the typical compute job consumes a large fraction of the

system’s available resources [5] and runs for multiple days.

Since 2012, one of the applications making up this workload

has been the EIGER code.

EIGER is a frequency-domain electromagnetics

simulation code based on the boundary element method

[6]. This results in a linear equation whose matrix is

complex-valued and dense. To solve this equation, the

Pliris direct solver package [7, 8] from the Trilinos library

[9] is used to factor and solve the matrix. EIGER is used on

Cielo to solve matrix equations of order 2 million, requiring

5000 nodes for 24 hours or more per run. EIGER uses an

MPI-everywhere method of parallelism; thus, the 5000

nodes host 80000 MPI processes.

This paper describes work undertaken in late 2013 to

implement “Pliris-C/R”, a set of checkpoint/restart and other

resilience features in the Pliris solver package and the

EIGER job stream for use on Cielo. Section 2 provides a

high-level view of the Pliris design. Section 3 describes the

high-level design of Pliris-C/R, and describes the approach

taken to insert the C/R logic into the code, with a focus on

how it exploits the I/O and file-system architectures of Cielo

to achieve balance, regularity, and minimal contention.

Section 4 details the user controls available to tune the

behavior of Pliris-C/R, and discusses the considerations that

go into choosing settings for some of the tuning parameters.

Section 5 describes some of the lower-level design features

of Pliris-C/R. Section 6 outlines the other resilience

features implemented in the EIGER job stream. Section 7

shows some timing results from recent runs of EIGER on

Cielo since the implementation of Pliris-C/R. Section 8

discusses potential areas of future work.

II. PLIRIS DESIGN

A brief description of Pliris is given in [7]. Pliris is
capable of solving systems in either of two modes,
depending on whether the right-hand-side vectors are
available before or after factorization; for the EIGER
calculations described here, only the “before” mode is used.
The library distributes the augmented matrix in 2D blocks
across the processes so that the blocks are as close to the
same size as possible. To achieve good load balance, the
factorization procedure operates on the matrix elements in
block-cyclic fashion as if they were distributed in a torus-
wrap mapping, as described in [10]; as a result, the factored
matrix takes on a block-cyclic triangular form, such that each
block’s elements are updated and eliminated in a fashion
much like that seen on a serial factorization of a monolithic
matrix. Then, after the solve operation is completed, a
permutation (shuffle) operation is performed on the result
vector(s) to undo the torus-wrap mapping.

III. PLIRIS-C/R DESIGN

The four principal design factors of C/R are: where,

when and how to checkpoint; where and how to restart;

what partial results to transfer; and what kind of I/O to

mailto:wwtucker@gmail.com
mailto:u3186@cray.com
mailto:jdkotul@sandia.gov

perform. This section discusses all of these factors except

when to checkpoint, which will be covered in Section 4.

A. Where to Checkpoint

The typical Pliris matrix solve operation spends the vast

majority (over 90%) of its time in the factor () function.

This function executes a loop that steps through the columns

of the global operand matrix (augmented with one or more

operand right-hand-side vectors) to perform the pivoting,

scaling, interchange and row elimination operations. All of

the code to implement the C/R capability is contained

within this function; thus, no other parts of matrix

processing (such as matrix fill, back substitution or

permutation) are covered.

The checkpoint operation occurs at the bottom of the

loop over the columns of the matrix, prior to the loop exit

test, when an appropriate checkpoint period has elapsed. On

alternating checkpoint events, the write operation is directed

to one of a pair of alternate checkpoint sets (called “pink”

and “blue”). At the end of every successful checkpoint

operation, a control file named intact is written. This file

contains four data items. The first two are integers that

represent the size of the run. The third is an integer that

represents the current value of the column loop index. The

fourth is a character string that refers to the checkpoint set

just written (pink or blue).

The restart operation occurs prior to entry into the

column loop. Here, the C/R code checks for the presence of

the intact file; its presence indicates that the run is a restart

run, whereas its absence indicates an ab initio run. If the

file is present, its contents are read. The size-of-run values

are used to verify that the parameters for the current run

match those from the prior run that generated the

checkpoint. The checkpoint sets are then read, and the

calculation proceeds at the appropriate column index (as

specified by the third item in the file).

B. What to Checkpoint

The partial results to be transferred by each MPI process

in a C/R operation (collectively referred to as a checkpoint

image) include the local operand matrix, some local work

vectors, some pointers, and some loop-carried scalars. Only

those items that have a read-then-write reference pattern

within the scope of the loop are included. The operand

matrix is by far the largest piece of the checkpoint image;

however, the fraction of the matrix that must be saved

decreases as the factorization proceeds. Pliris-C/R is

designed to perform “decrementing checkpoints,” saving

only the relevant fraction of the matrix at checkpoint events.

Details of this design are discussed later in this section.

C. How to Checkpoint

The Pliris-C/R operations perform parallel unbuffered

POSIX I/O. The I/O calls used (preadv and pwritev) allow

for the specification of an offset/position at which to write

and a vector of I/O requests to perform. For Pliris-C/R, the

scalar and pointer members of the checkpoint set are packed

into a single I/O vector element to minimize the I/O vector

length.

On Cielo, the POSIX I/O used by Pliris-C/R is handled

by Lustre 1.8 file system software [11]. Cielo has three

Lustre parallel file systems, represented in the diagram of

Fig. 1. Their mount points are named /lscratch2, /lscratch3,

and /lscratch4. The /lscratch2 and /lscratch4 file systems

are each comprised of 24 object storage servers (OSSs) and

1 active metadata server (MDS). The /lscratch3 file system

is comprised of 48 OSSs and 1 active MDS. Each OSS is

comprised of 6 object storage targets (OSTs), which are

directly addressable by user software. Each of these file

systems is made up of identical hardware components with

identical theoretical performance characteristics at the OST

level. The default stripe size setting is also consistent across

the three file systems.

324-port
Director-class

QDR IB SW

324-port
Director-class

QDR IB SW

102 XE6 LNET Routers 1 LMN

316 IB cables

204 IB cables

260 ports 260 ports

4 esLogin 40 FTA 11 Purge

MDT

MDSMDS

24OSSs

OSSOSS OSSOSS

127900 7900MDT

MDSMDS

48 OSSs

OSSOSS OSSOSS

247900 7900MDT

MDSMDS

24 OSSs

OSSOSS OSSOSS

127900 7900

Figure 1: Cielo Lustre Architecture

Results from benchmarks of Lustre performance on Cielo

[12] show bandwidths achieved from performing I/O on

/lscratch3 (288 OSTs) from the I/O benchmark “fs_test”.

Fig. 3 of [12] shows N-N effective write bandwidth, and

Fig. 4 shows N-N raw write bandwidth on a scaled set of

MPI rank counts. These bandwidths are reproduced in

Table 1 below. (The referenced source expresses the

bandwidths as MB/s, as it is reported by fs_test, but the

actual units are MiB/s.) Note how the performance

decreases as N grows past 2048 MPI ranks; this tends to

argue for an optimal load of 2048/288 = ~7 concurrent

writers per OST. Note that in the raw case, the ratio of

bandwidth at 2048 ranks to bandwidth at 65536 ranks is

1.29. This 29% overhead penalty is presumably due to

overheads on the OST associated with having to service I/O

requests on 65536/288 = ~227 files concurrently. In the

effective case, the ratio is 1.78. The difference in these

ratios is presumably attributable to the cost of metadata

operations, which imposes a significant limit on I/O

efficiency at scale for the N-N regime.

Table 1 shows effective bandwidth of 57600 MiB/s with

32768 MPI ranks and 43600 MiB/s with 65536 MPI ranks.

If we were interested in how this benchmark might perform

on 40000 MPI ranks, we could interpolate linearly between

these two points, and produce an estimate of 54500 MiB/s.

Then, if we were interested in how it might perform on

80000 MPI ranks writing across all three file systems

concurrently (using 500 OSTs), we could scale this figure

by 500/288 to arrive at 94600 MiB/s. Granted, this estimate

is favorably biased, since the ratio of writers to OSTs

increases (80000/500 = 160 versus 40000/288 = ~138); but

it is also unfavorably biased, since the number of metadata

servers increases by a factor of three rather than two. We

will assume that these biases cancel each other out, and will

use this performance figure later, to compare with Pliris-C/R

I/O bandwidth achieved in EIGER runs.

Table 1: Cielo Lustre /lscratch3 I/O Bandwidths (MiB/sec)

Processes Eff. BW Raw BW

1024 73900 74400

2048 77400 78500

4096 76200 75500

8192 72000 75900

16384 64000 72000

32768 57600 69400

65536 43600 60900

To mitigate the performance problems associated with

large N-N I/O, Pliris-C/R uses a subsetting strategy called

turnstiling [13], also called baton-passing. The idea behind

turnstiling is that the benefits of presenting a more

contiguous I/O load to the OST will overcome the cost of

imposing some serialization on the I/O requests. Turnstiling

also offers the benefit of potentially appending multiple

checkpoint images to a single file, thus reducing the overall

file count in a checkpoint set. This technique is used in

other codes that run on Cielo [14]. Fig. 2 below illustrates a

simple turnstiling arrangement consisting of two Lustre

OSTs, each hosting three files. The processes colored red

are proceeding through their respective turnstiles and doing

I/O concurrently, while those in blue are waiting in line for

their turn. The figure suggests that the complete I/O

operation will consist of four turns.

In Pliris-C/R, each MPI process is assigned a specific

file within the checkpoint set on which it will perform its

I/O, a specific offset within the file, and a “turn” during

which it will be allowed to proceed with its I/O. In general,

many processes will be assigned the same file. There is one

turnstile for every file in the checkpoint set. Each file

resides wholly within a single Lustre OST. Processes

assigned the same turn are not synchronized, but each is

allowed to proceed independently, acting on its assigned file

as its turn comes up and its turnstile becomes available.

Processes assigned the same file proceed in turn, and in

order according to their offset. Note that processes do not

necessarily arrive in the turnstile queue in order according to

their offset; thus, processes may be forced to wait even

though the turnstile is available.

The initialization code for C/R calculates the amount of

storage to be allotted to a process’s checkpoint image in its

assigned C/R file, and rounds this value up to the next

multiple of the default Lustre stripe size; this image size is

identical across processes and is used for all C/R I/O

operations during the course of the run. The invariance of

this value allows for regularities in file size and growth, as

well as file offset assignment across processes.
The choice of turnstiling as an I/O strategy provides

opportunities for other optimizations as well. Pliris-C/R
assigns files and turns to the MPI processes by rank in
round-robin fashion, with turns varying faster. It does this
for two reasons: first, it helps keep I/O traffic on the compute
node from hitting the node’s network injection bandwidth
limit (since ranks within a node are sequential by default);
and second, it allows processes within a node to share open
file descriptors across turns, which reduces Lustre metadata
load and some of the overhead associated with serializing
I/O requests. (This second optimization will be discussed in
more detail in Section 5.)

P

F

OST

Figure 2: Turnstiling I/O

IV. PLIRIS-C/R USER CONTROLS

Pliris-C/R provides several user controls to tune the I/O
behavior to serve the size of the application and the
architecture of the Cray XE file system(s). These controls
are available as environment variables with the prefix
PLIRIS_CR. Table 2 summarizes the variables and their
meanings.

Table 2: Pliris-C/R User Controls

Variable Description

PLIRIS_CR_NFS Number of file systems across

which to spread the checkpoint set

PLIRIS_CR_DIR List of directories (one per file

system) to contain checkpoint sets

PLIRIS_CR_NS List of OST counts (one per file

system) across which to spread

the checkpoint set

PLIRIS_CR_NF Number of files that comprise the

checkpoint set

PLIRIS_CR_COUNT Number of checkpoint operations

to perform during factor loop

PLIRIS_CR_SIGNUM Signal indicating imminent job

termination (default 23)

The PLIRIS_CR_NFS variable is used to specify the

number of file systems across which the checkpoint set is

(to be) spread. As discussed in Section 3, the Cielo system

has three Lustre parallel file systems. By setting

PLIRIS_CR_NFS=3, the user can specify that checkpoint

I/O be performed across all three file systems in parallel.

The PLIRIS_CR_DIR variable is used to specify the list

of directories, one per file system and space-delimited, in

which checkpoint files (will) reside. (The intact file,

described in Section 3, also resides in the first component of

PLIRIS_CR_DIR.) Taking the Cielo system as an example,

one might set PLIRIS_CR_DIR=“/lscratch2/${USER}

/lscratch3/${USER} /lscratch4/${USER}” to specify three

user directories, one within each of the three file system

mount points.

The PLIRIS_CR_NS variable is used to specify the list

of OST counts, one per file system and space-delimited,

across which the checkpoint set is (to be) spread. The C/R

code uses these values to set the stripe origin characteristic

for each of the files in the checkpoint set. Again taking the

Cielo system as an example, one could set

PLIRIS_CR_NS=“144 288 144” to specify spreading across

all of the available stripes of each of the three file systems.
The PLIRIS_CR_NF variable is used to specify the

number of files that (will) make up a checkpoint set. The
stripe count for each file is fixed at 1. The stripe size for
each file is set to the default stripe size for the file system.
Considerations for choosing a good value for this variable
can be expressed as a set of tuning targets. To express these
targets, first we define some terms in Table 3. Note that for
the Cielo system, PPN=16, and for the EIGER runs
described earlier, P=80000 and N=5000.

Given the definitions specified in Table 3, the tuning

targets can be set out as shown in Table 4. The EIGER runs

on Cielo are configured with S=500 and F=2500, which

yields T=32, O=5, ION=1, and D=16.

Table 3: Pliris-C/R Tuning Parameters

Term Derivation Meaning

P The number of MPI processes in the

application

PPN The number of MPI processes on a

compute node

N P/PPN The number of compute nodes in

the application

S The sum of the components of

PLIRIS_CR_NS

F The value of PLIRIS_CR_NF, also

the number of turnstiles

T P/F the number of turns, also the

maximum number of processes

operating on the same file,

also the maximum number of

checkpoint images in a file

O F/S the maximum number of concurrent

I/O operations active per OST,

also the maximum number of files

hosted by each OST

ION MAX(F/N,1) The maximum number of

concurrent I/O operations active on

a Cielo compute node

D GCF(PPN,T) A measure of the efficiency of

sharing open file descriptors

Table 4: Pliris-C/R Tuning Targets

Target Explanation

4 <= O <= 8 This has been established experimentally as

a good I/O load for an OST on Cielo.

S | F This spreads the file load (and turnstiles)

evenly across the OSTs.

If this target cannot be met, then it is best if

mod (F, S) is as close to S as possible.

F | P This assures that all turns use the full

bandwidth of all OSTs, and helps minimize

the number of turns.

If this target cannot be met, then it is best if

mod (P, F) is as close to F as possible.

ION < 4 This assures that the I/O load on a compute

node does not oversubscribe the node’s

network injection bandwidth.

D >> 1 Since file descriptor sharing is limited to the

processes within a single OS image

(compute node), it is optimal if

PLIRIS_CR_NF is chosen so that PPN and

T have a greatest common factor as large as

possible.

A. When to Checkpoint: Coordination of Checkpoints

As discussed in Section 3, one of the principal design

factors of a C/R scheme is when to checkpoint. The

PLIRIS_CR_COUNT variable is used to specify the number

of checkpoint operations to perform during execution of the

loop over global matrix columns in the factor () function.

The loop over columns, however, does not contain equal

amounts of work across iterations. In addition, there is no

explicit global synchronization event within the loop over

columns that can be used to coordinate the checkpoint

operation. Fortunately, there is no requirement that the

processes coordinate their checkpointing on the basis of

simulation time or wall-clock time. The only requirement is

that the processes coordinate their checkpointing on the

basis of agreed-upon progress points in the factorization,

and column index is the most reasonable measure of these

progress points.

The Pliris-C/R initialization code computes the set of

column indexes at which to perform checkpoint operations

so that the amount of factorization work performed between

checkpoints is constant. A mathematical derivation of this

algorithm starts with the observation that the amount of

work WJ needed to perform the factorization on an

individual column J (dominated by the outer product update

step) is of the order (N-J)
2
, where N is the size of the matrix.

Let VJ = J
2
 and note that VJ is a reflection of WJ across the

midpoint JM = N/2 of the domain [0: N].
Let a0, a1, a2, …, ak+1 ԑ {0, 1, …, N} be the bounds of k+1

equal subareas under the curve of VJ with a0 = 0 and ak+1 = N
such that

 ∫ 𝐽2 𝑑𝐽 = (
1

𝑘+1
) (

𝑁3

3
)

𝑎𝑖+1

𝑎𝑖
 

Evaluating for the case of i = 0, and solving for a1:

 𝑎1 = √1
3

 [
𝑁

√𝑘+1
3] 

For the general case of i:

 𝑎𝑖 = √𝑖
3

 [
𝑁

√𝑘+1
3] 

Let b0, b1, b2, …, bk+1 ԑ {0, 1, …, N} be the bounds of
k+1 equal subareas under the curve of WJ with b0 = 0 and
bk+1 = N. Since WJ is just a reflection of VJ across the
midpoint JM = N/2 of the domain [0: N], the values bi must
be reflections of ai across the domain:

 𝑏𝑖 = 𝑁 − √𝑘 + 1 − 𝑖
3

 [
𝑁

√𝑘+1
3] 

Thus b1, b2, …, bk are the column index values at which k

equally-timed checkpoint sets should be written.

B. Decrementing Checkpoint of Matrix

As mentioned earlier in this section, Pliris-C/R is

designed to save only the active portions of the operand

matrix on checkpoint events. As factorization proceeds, the

position within a process’s block of the matrix that marks

the active portion advances as shown in equation (5), where

p
2
 is the number of MPI processes used in the factorization.

 𝐸𝑖 =
𝑁𝑏𝑖−1

𝑝2
 

Fig. 3 shows a graphical representation of a process’s

block of the matrix after factorization, as seen by factor (), a

C function. The colored pieces indicate portions of each

matrix block that are written as the matrix is factored.

When the index of the loop over columns (j) equals the

value at which the first checkpoint is written (b1), Pliris-C/R

directs each process to write out its entire block of the

matrix (starting at E1) to the pink checkpoint set. When j

equals b2, processes write only the portion of the matrix

starting at E2 to the blue checkpoint set, since the elements

above were either updated (above the diagonal) or

eliminated (below the diagonal) before the pink checkpoint

set was written and have not changed. Similarly, when j

equals b3, processes write the portion starting at E3 to the

pink checkpoint set. Thus, the pink and blue sets will

contain alternating portions of the factored matrix. On the

occasion of a restart, then, generally both sets must be read

to reconstruct the operand matrix out of its constituent saved

portions. Note that with this scheme, there are still static

portions of the matrix (eliminated elements under the

diagonal) being saved, but the cost to omit them would be

prohibitive due to the excessive fragmentation of the I/O

requests. (The values of E are shown here on row

boundaries of the matrix, purely for convenience of

illustration.)

E2

E3

E4

N2/p2

E1

Figure 3: Decrementing Checkpoint of Process Block of Matrix

C. Choosing the Optimal Checkpoint Count

In discussing the considerations for choosing a good
value for the PLIRIS_CR_COUNT variable, we start with
the work of Daly [15]. Following the notation of this work,
we define M to be the mean time between unscheduled

interrupts that cause the application to terminate,  to be the
time to dump (write) a checkpoint set, N to be the number of
dump-delimited compute segments making up the

factorization,  to be the time to execute a compute segment,
R to be the restart time, and TS to be the time required to
compute the factorization. We use equation (20) from [15]
to derive total work time:

 𝑇𝑊(𝜏) = 𝑀 ∗ 𝑒𝑅 𝑀⁄ ∗ (𝑒(𝜏+𝛿) 𝑀⁄ − 1) ∗ 𝑇𝑆/𝜏

In the Pliris-C/R implementation,  is not an independent

variable; rather, it is determined by  = TS / N, where N is
determined by PLIRIS_CR_COUNT. The restart time R is
comprised principally of matrix fill time F and checkpoint

read time . Thus we refine the work time equation:

 𝑇𝑊(𝑁) = 𝑀 ∗ 𝑒(𝐹+𝜌) 𝑀⁄ ∗ (𝑒(𝑇𝑆 𝑁⁄ +𝛿) 𝑀⁄ − 1) ∗ 𝑁

The next refinement will account for the fact that checkpoint

write time  is not constant, but rather decreases as the run

progresses, due to the decrementing checkpoint of the

matrix. We define the function (i) to be the time to write

the checkpoint set associated with column index bi and note

that  is the time to read (potentially) both checkpoint sets

and assemble the operand matrix. We set (N) to 0 since no

checkpoint is written for the last segment. The work time

equation then becomes:

 

𝑇𝑊(𝑁) = 𝑀 ∗ 𝑒(𝐹+𝜌) 𝑀⁄ ∗ ∑ (𝑒(𝑇𝑆 𝑁⁄ +𝛿(𝑖)) 𝑀⁄ − 1)𝑁
𝑖=1 

We derive M as follows. From [16] we use the

component MTBF of 25 hours and system MTTI of 200

hours to obtain 1 = (25*3600)
-1

 = 90000
-1

 and 2 =

(200*3600)
-1

 = 720000
-1

. Since we are interested in running

on only 5000 of the 8944 nodes [3], the risk of experiencing

a component failure is lower than if we ran on the full

system, so we will adjust 1 accordingly, to 1 =

(90000*8944/5000)
-1

 = 160992
-1

. This yields M = (1+2)
-1

= 131572. Note that scheduled interrupts are not included

in this derivation, since the recovery cost is mitigated by the

fact that Pliris-C/R is coded to checkpoint on these events.

Experience in running Pliris-C/R on 5000-node EIGER

applications indicates that the matrix fill time F is 900

seconds, the checkpoint read time  is 1440 seconds, the

factorization time TS is 81573 seconds, and the time to write

checkpoint i , where i  {1, 2, …, N-1}, is as shown in

equation (9).

 𝛿(𝑖) = 960 ∗ √
𝑁+1−𝑖

𝑁

3
 

Table 5 shows the values of TW for the given values of the

work equation parameters and various values of N. The

optimal value for N is 6, thus the proper value for

PLIRIS_CR_COUNT is 5. Note that the true optimum lies

just off of N=6, but the current implementation does not

allow the user to achieve it. This is a potential area of future

work.

Table 5: Work times (sec) as a Function of Checkpoint Count

N TW

1 116858

2 99744

3 95334

4 93631

5 92946

6 92572

7 92832

The job’s wall clock time limit is not a factor in

determining the best value for PLIRIS_CR_COUNT. For

example, if the problem’s expected time spent doing

factorization were 45 hours, the job’s wall clock time limit

were 24 hours, and the optimal checkpoint count were set at

9, then the resulting checkpoint period would be 5 hours,

and at most 5 checkpoints before the ab initio job terminates

(including the one triggered by PLIRIS_CR_SIGNAL).

The “checkpoint period” is the period of time spent

calculating between the completion of the last checkpoint

and the start of the next checkpoint; that is, the time spent

writing the checkpoint set is not included in the checkpoint

period. Thus, to continue the example, if the time to write a

checkpoint set is 15 minutes, then the checkpoints will

occur 5 hours and 15 minutes apart.

For the hypothetical job described above, the checkpoint

set would allow the follow-on job to restart from a point 24

hours into the 45-hour calculation, thus the follow-on job

will complete the factorization in only 21 hours. However,

the checkpoint period for the follow-on job will remain the

same as that for the ab initio run, namely 5 hours. This is a

limitation of the algorithm used to calculate the checkpoint

events in the current implementation.

V. PLIRIS-C/R FEATURES

A. File Descriptor Sharing

As mentioned in Section 3, once the decision has been

made to adopt the turnstiling strategy, the opportunity for

other optimizations arises. One of the optimizations

implemented in Pliris-C/R is the use of sharing file

descriptors among processes that share the same OS image

(i.e., the same compute node) and share the same turnstile.

The technique of sharing open file descriptors among

processes is documented in [17]. Use of this technique

results in fewer file open and close operations, thus reducing

load on the file system’s metadata server(s). In addition,

since processes queueing at a turnstile must communicate

somehow in order to serialize their operations, the passing

of the open file descriptor serves this function as well.

The Pliris-C/R initialization code forms the processes

into MPI groups according to their turnstile index values,

then assigns each process a rank within the group using a

combination of the process’s host node ID and MPI rank

within the node. MPI rank within this group then becomes

the process’s assigned offset within the checkpoint file, and

also its turn index. Each process also determines if its rank

within the group is the lowest or highest on its node, as this

indicates that it has special duties. The lowest-ranked

process is an “opener”; that is, it will open the file itself,

rather than relying on the open file descriptor from another

process. The highest-ranked process is a “closer”; that is, it

will close the file and refrain from sharing the file descriptor

with any other process.

During a checkpoint operation, each process with group

rank 0 opens the file for its group and goes first through its

turnstile, while the other processes wait their turn. When a

process receives an MPI “go on turnstile” message from its

predecessor (by turn index), it either receives the file

descriptor from its predecessor, or opens the file if it is an

“opener”; then it proceeds through the turnstile. After a

process finishes its I/O, it either sends a copy of its open file

descriptor to its successor (by turn index), or closes the file

if it is a “closer”; then it sends an MPI “go on turnstile”

message to its successor.

Testing of the effectiveness of turnstiling and file-

descriptor sharing was performed [18] on Cielo. The tests

were run using 160 MPI processes, with 16 ranks on each of

10 compute nodes. The tests were sized to present the same

I/O load to one OST of Cielo as the EIGER application

presents to 500 OSTs spread across the three file systems.

Each test was run in five modes. In the first mode (NXN),

each process writes to its own file. In the second mode

(NX1), all processes write to a single shared file, and each

process is assigned a distinct offset within the file. In the

third mode (NX5), processes are split into five groups of 32

each, and each group writes to its own file, and each process

is assigned a distinct offset within its group’s file. The

fourth mode (TURN5) is just like the third, except that the

processes in each group write in turnstile fashion, each in

sequence according to its assigned offset. The fifth mode

(TURN5_SFD) is just like the fourth, except that the

processes within a group (or turnstile) share the file

descriptor associated with their assigned file. In all modes,

the I/O demand presumably exceeds the node’s injection

bandwidth limit. The test guides each process through a

write loop that iterates eight cycles, and each process writes

a checkpoint image of size 1.879e9 bytes every cycle; thus,

the total amount of data moved in each test is 2.405e12

bytes. The write operation is timed every cycle using

gettimeofday (), with the start time collected by the first

process to visit the write call, and the end time collected by

the last process to complete the write call. Write times are

accumulated and reported at the end of the test. Table 6

shows the timings for the five different modes; these

timings are averaged over eight separate runs of the test.

Table 6: Checkpoint Times (sec) on Single OST,
as a Function of I/O Strategy

Test Avg Std Dev

NXN 11640 367

NX1 7697 721

NX5 7747 697

TURN5 6918 800

TURN5_SFD 6718 665

Note that the TURN5 case shows a marked reduction in

time spent writing compared to NX5, confirming the

hypothesis that the benefit of presenting contiguous requests

to the OST overcomes the cost of serializing the writes.

There is also a small reduction in time spent writing for the

TURN5_SFD case compared to TURN5. In addition, the

variation in timings is smaller. The typical EIGER run

involves 80000 processes running across 5000 compute

nodes, writing to 2500 files spread across 500 OSTs, with

the two smaller file systems each hosting 625 files on 125

OSTs and one MDS, and the larger file system hosting 1250

files on 250 OSTs and one MDS. In a TURN5 mode, the

three metadata servers will service 20000, 20000, and 40000

opens per checkpoint operation, whereas in a TURN5_SFD

mode they will service 1250, 1250, and 2500 opens. This

results in a tradeoff of small but predictable cost in on-node

communication to share file descriptors versus moderate but

potentially variable cost in metadata operations associated

with file opens.

B. Determining First-In and Last-Out of Code Regions

Another feature in Pliris-C/R, more of an optimization

than a resiliency feature, involves the use of shmem calls to

determine the first rank into, and last rank out of, certain

regions of code. These calls are used in regions where time

stamps are collected at the start and end of checkpoint

operations, to support the reporting of timing information at

the end of factorization. They are also used in the region of

code that writes the intact file. The implementation relies

on the declaration of a shared-memory atomic counter

variable on MPI rank 0. On entering a first-in region, each

rank atomically queries and increments the variable

(shmem_int_finc ()), and the rank to see a zero value takes

on the duties of the first-in rank (e.g., collecting the “start”

timing data). On exiting a last-out region, each rank

atomically queries and decrements the variable, and the rank

to see a value of 1 takes on the duties of the last-out rank

(e.g., collecting the “end” timing data, creating the intact

file). Typically, only ranks at the front or the end of a

turnstile queue perform the shmem calls; thus, the overheads

of accessing the shared variable are much lower than if all

ranks were to participate. Since the factorization operation

contains no regular global synchronizations, the shmem

implementation is deemed low-impact compared with one

that would rely on MPI barriers.

Testing was performed on Cielo [19] to compare the

costs of reporting first-in and last-out events using shmem-

based versus barrier-based methods. In this test, a synthetic

application is executed on 80000 MPI processes running on

5000 nodes. The application is run in two modes. In the

first mode, a “storm” of simultaneous shmem_int_finc ()

calls is performed from 5000 processes on 5000 separate

nodes. Wall-clock times of microsecond resolution are

collected from each participating process using

gettimeofday (). The time to execute the “storm” is

computed as the difference of the minimum start time and

the maximum finish time. In the second mode, each of the

80000 processes is directed to execute a workload designed

to mimic that of the EIGER application (i.e., a set of local

matrix operations followed by a checkpoint operation). At

the end of the workload, 5000 processes on 5000 separate

nodes execute an MPI_Barrier () call. Each mode is

repeated six times. Wall-clock times are collected from

each of the 5000 processes using the same method as in the

shmem-based mode. The timings for the shmem-based test

were on the order of 2.10e-1 +/- 1.0e-3 seconds, whereas the

barrier-based timings were on the order of 8.8e1 +/- 2.5e1

seconds. The results indicate that, at large scale, a “storm”

of shmem updates on a single rank is more efficient than an

MPI barrier for determining first-rank-in and last-rank-out

of a code region.

VI. EIGER JOB STREAM RESILIENCY FEATURES

A. Recovery from Compute Node Failures

The MOAB job script in Fig. 4 illustrates how to set up

the EIGER batch job to detect and recover from a compute

node failure. This is the most common condition

encountered by a failing EIGER run. The script is annotated

with line numbers down the left column; these are not part

of the actual script file.

… # top of script

3 #MSUB -l nodes=2308:ppn=16

4 #MSUB -l walltime=24:00:00

5 #MSUB -l signal=23@10:00

… # middle of script

30 for try in `seq 1 4`

31 do

32 aprun -n 36864 -N 16 ./a.out 2>&1 | tee out.${try}

33 grep "ec_node_failed" out.${try} >/dev/null || break

34 done

… # end of script

Figure 4: Job Script Resilient to Node Failures

Lines 3-5 specify the MOAB parameters for job

allocation size, job time limit, job name, and job output

disposition. Also included in these parameters is a

specification of which signal the job expects to receive

when its wall clock time limit is near, and how long before

the time limit the signal should be sent. As described in

Section 3, the user control variable PLIRIS_CR_SIGNUM

specifies the signal number that will be sent to signal

imminent job termination or scheduled system shutdown.

Lines 30-31 and 33-34 provide the logic to perform multiple

successive application launches within the job, each

potentially restarting from a checkpoint set generated from

the prior launch, in the event that a prior launch was

terminated due to a node failure. Note that the job allocates

2308 nodes, but the application launches on only 2304

nodes (36864 / 16), leaving four spare nodes available in the

event of node failure. This resilience technique allows a job

to re-launch the application up to four times within the same

allocation. Each successive launch writes its standard

output to a separate file, to aid in determining the exit status

of the launch.

The Pliris-C/R code performs a check from MPI rank 0

after every iteration of the loop over matrix columns in

factor () to see if the signal has been received, and if it has,

the code performs a checkpoint write. In line 5 of the script,

the signal 23 is specified.

This resiliency feature has also been used in other job

scripts on Cielo [20].

B. Managing Checkpoint Storage Areas

Pliris-C/R is coded to check for the existence of the

checkpoint files, and if necessary, create the files and assign

their stripe characteristics so that subsequent reads and

writes will be performed in an optimal fashion. As

mentioned in Section 3, the creation process can be costly

when the system is busy; this is especially true of stripe

assignment. As a result, the solver process can be delayed

while this creation process takes place. To mitigate this

delay, a standalone serial program called pliris_cr is

available to allow the user to prepare the checkpoint

directories with restart files before the application executes

its checkpoint code (i.e., while the job is waiting in the

queue, or while the application is factoring the first batch of

columns).

The pliris_cr program takes three command-line

arguments: the matrix size (known within the Pliris code as

ncols_matrix), the number of processes across which the

matrix is partitioned (npes_per_col), and the operation to

perform (setup, verify, or cleanup). The program also reads

the environment variables PLIRIS_CR_NFS,

PLIRIS_CR_DIR, PLIRIS_CR_NS, PLIRIS_CR_NF, and

PLIRIS_CR_COUNT. From this information, the program

is able to form the names of the checkpoint files that the

solver application will write. The program then goes

through the list of files and, for the operation ‘setup’, creates

each one and sets its proper stripe characteristics. (The

‘cleanup’ operation removes the checkpoint files and

directories, and the ‘verify’ argument directs the program to

verify that all files are present on their assigned OSTs.)

Once the checkpoint files are all in place, Pliris-C/R in

the factor () function will sense their presence and choose

the more efficient code path for opening the files.

Fig. 5 shows the set of commands that could be executed

to prepare the checkpoint directories using pliris_cr.

1 #!/bin/bash

2 export PLIRIS_JOBNAME=cr_test

3 export PLIRIS_CR_NFS=3

4 export PLIRIS_CR_NFS=3

5 DIR=${PLIRIS_JOBNAME}

6 DIR2=/lscratch2/${USER}/${DIR}

7 DIR3=/lscratch3/${USER}/${DIR}

8 DIR4=/lscratch4/${USER}/${DIR}

9 PLIRIS_CR_DIR="${DIR2} ${DIR3} ${DIR4}"

10 export PLIRIS_CR_DIR

11 export PLIRIS_CR_NS="144 288 144"

12 export PLIRIS_CR_NF=4608

13 export PLIRIS_CR_COUNT=6

14 ./pliris_cr 1920000 192 setup

15 # All done

Figure 5: Sample pliris_cr Script

C. Detecting and Managing Job Hangs

Over the course of the past three years in which EIGER

has run on Cielo, there have been instances where the

application has experienced a hang condition, and consumed

several hours tying up nodes while making no progress. To

assist in monitoring the long-running EIGER applications

and detecting such conditions, the pliris_watch program

has been implemented. This program takes as input four

parameters: the batch job ID of the job running the

application; the expected time (in seconds) required to

perform the factorization; a grace period, in seconds; and an

action to perform (report-only or report-and-signal). The

program reads the environment table for the PLIRIS_CR

variables (which should match those used in the job) and

computes the expected times when checkpoint sets should

appear on the system. It then watches for the

appearance/update of the intact file associated with the

checkpoint sets. If the file fails to appear/update at the

expected times (plus the specified grace period), then the

program performs the specified action. This program can be

run within the batch job, in the background alongside the

EIGER application itself, or from an interactive login

session.

VII. RESULTS FROM RECENT EIGER RUNS

The typical production EIGER run factors a matrix of

2474989 double-precision complex elements. A matrix of

this size implies a checkpoint set of size approximately

9.801e13 bytes. The best checkpoint times observed so far

were in job 1474501, run on 4/14/2014, where the range

across six checkpoint operations was 871 to 956 seconds,

writing to 500 OSTs spread across the three Lustre file

systems. This yields an effective bandwidth of 1.050e11

bytes/second, which compares favorably to the projected

effective N-N bandwidth of 94600 MiB/s on the fs_test

benchmark from Section 2 (i.e., 1.050e11/500 = 2.1e8

versus 94600*1048576/576 = 1.722e8). The EIGER

bandwidth also compares favorably with the bandwidth

reported in [14], where 57 GB/s was observed when writing

to 288 OSTs of Cielo’s /lscratch3 file system from 65536

processes using turnstiling (i.e., 2.1e8 versus 5.7e10/288 =

1.979e8). The worst checkpoint times observed so far were

in job 1568851, run on 11/25/2014, where the range across

seven checkpoint operations was 2004 to 2826 seconds.

Investigations into the cause for the low performance in this

case are ongoing.

VIII. FUTURE WORK

With the upcoming installation and deployment of the

Trinity XC system, with its DataWarp and DNE

technologies, we will be interested to see how useful or

necessary the Pliris-C/R optimizations will be on that

system. In the interest of reducing restart time, we will be

looking at ways to reduce or eliminate the matrix fill step

for runs that read from a checkpoint set. There may be ways

to overlap I/O on static portions of the matrix with

factorization of the active portion, and we will investigate

this possibility. We would also like to explore the value of

adding a first-come first-served scheme to the queueing of

processes at a turnstile. Finally, we will investigate

improvements that would allow the user to specify a

checkpoint interval that comes closer to achieving optimal

work time; this may become important on future systems,

where the reliability parameters (M/) will likely become

even more of a factor in resiliency analysis.

ACKNOWLEDGMENT

The authors thank the following people for their

assistance in this work. Courtenay Vaughn (Sandia) and

Brett Kettering (LANL) reviewed an early draft of this

paper and provided valuable comments. Dan Poznanovic

(Cray) reviewed a final draft and pointed out where some

key points could be clarified. Any errors that remain are the

responsibility of the authors.

REFERENCES

[1] http://www.nnsa.energy.gov/aboutus/ourprograms/
defenseprograms/futurescienceandtechnologyprograms/asc

[2] http://nnsa.energy.gov/aboutus/ourprograms/
defenseprograms/futurescienceandtechnologyprograms/
asc/supercomputers#cielo

[3] http://www.lanl.gov/projects/cielo/index.php

[4] http://nnsa.energy.gov/aboutus/ourprograms/
defenseprograms/futurescienceandtechnologyprograms/
asc/ascnewsletters-0 , p. 4.

http://www.nnsa.energy.gov/aboutus/ourprograms/defenseprograms/futurescienceandtechnologyprograms/asc
http://www.nnsa.energy.gov/aboutus/ourprograms/defenseprograms/futurescienceandtechnologyprograms/asc
http://nnsa.energy.gov/aboutus/ourprograms/defenseprograms/futurescienceandtechnologyprograms/asc/supercomputers#cielo
http://nnsa.energy.gov/aboutus/ourprograms/defenseprograms/futurescienceandtechnologyprograms/asc/supercomputers#cielo
http://nnsa.energy.gov/aboutus/ourprograms/defenseprograms/futurescienceandtechnologyprograms/asc/supercomputers#cielo
http://www.lanl.gov/projects/cielo/index.php
http://nnsa.energy.gov/aboutus/ourprograms/defenseprograms/futurescienceandtechnologyprograms/asc/ascnewsletters-0
http://nnsa.energy.gov/aboutus/ourprograms/defenseprograms/futurescienceandtechnologyprograms/asc/ascnewsletters-0
http://nnsa.energy.gov/aboutus/ourprograms/defenseprograms/futurescienceandtechnologyprograms/asc/ascnewsletters-0

[5] http://www.nnsa.energy.gov/aboutus/ourprograms
/defenseprograms/futurescienceandtechnologyprograms/
asc/ascnewsletters/ascmar13

[6] W.A. Johnson et al., “EIGERTM: an open-source frequency-
domain electromagnetics code,” Antennas and Propagation
Society International Symposium, 2007 IEEE, pp. 3328-3331,
doi: 10.1109/APS.2007.4396249.

[7] http://trilinos.org/docs/dev/packages/pliris/doc/html/index.ht
ml

[8] J. D. Kotulski, “Pliris: review and new capabilities,” Trilinos
User Group Meeting, November 2005, Albuquerque, NM.
http://trilinos.sandia.gov/events/trilinos_user_group_2005/pre
sentations/kotulski.pdf

[9] http://trilinos.org

[10] B. A. Hendrickson and D.E. Womble, “The torus-wrap
mapping for dense matrix calculations on massively parallel
computers,” SIAM Journal of Scientific Computing, vol. 15,
no. 5, September 1994, pp. 1201-1226, doi:10.1137/0915074.

[11] Lustre 1.8 Operations Manual. Sun Microsystems, Inc., Santa
Clara, CA, 2010.
 https://docs.oracle.com/cd/E19495-01/821-0035-12/821-
0035-12.pdf.

[12] B. M. Kettering, D. Bonnie, A. Torrez, and D. Shrader,
“Lustre and PLFS parallel I/O performance on a Cray XE6,”
Cray User Group Conference, May 2014, Lugano,
Switzerland.
https://cug.org/proceedings/cug2014_proceedings/includes/fil
es/pap101.pdf

[13] L. Crosby, “Parallel I/O techniques and performance
optimization,” NICS Spring Training, National Institute for
Computational Sciences, March 2012.
http://www.nics.tennessee.edu/sites/www.nics.tennessee.edu/f
iles/pdf/Lonnie.pdf

[14] S. Langer, A. Bhatele, and C. H. Still, “pF3D simulations of
laser-plasma interactions in National Ignition Facility
experiments,” Computing in Science and Engineering, vol.
99, August 2014, IEEE Computer Society, doi:
10.1109/MCSE.2014.79.
http://charm.cs.illinois.edu/~bhatele/pubs/pdf/2014/cise2014.
pdf

[15] J.T. Daly, “A higher order estimate of the optimum
checkpoint interval for restart dumps,” Future Generation
Computer Systems, Vol. 22, Elsevier B.V., Amsterdam, 2006,
pp. 303–312.

[16] J.A. Ang et al., “Alliance for Computing at Extreme Scale,”
Cray User Group Conference, May 2010, Edinburgh,
Scotland. https://cug.org/5-
publications/proceedings_attendee_lists/CUG10CD/pages/1-
program/final_program/CUG10_Proceedings/pages/authors/1
6-18Thursday/17A-Dosanjh-slidesACES-CUG.pdf

[17] W.R. Stevens, Advanced Programming in the UNIX®
Environment. Addison-Wesley, Reading, MA, 1993, pp. 479-
489.

[18] Cray Bug 805877. https://crayport.cray.com.

[19] Cray Bug 824359. https://crayport.cray.com.

[20] J.O. Stevenson et al., “Reliable Computation Using
Unpredictable Components, JOWOG-34 Spring 2012
Conference, May 2012, Los Alamos, NM.

http://www.nnsa.energy.gov/aboutus/ourprograms/defenseprograms/futurescienceandtechnologyprograms/asc/ascnewsletters/ascmar13
http://www.nnsa.energy.gov/aboutus/ourprograms/defenseprograms/futurescienceandtechnologyprograms/asc/ascnewsletters/ascmar13
http://www.nnsa.energy.gov/aboutus/ourprograms/defenseprograms/futurescienceandtechnologyprograms/asc/ascnewsletters/ascmar13
http://trilinos.org/docs/dev/packages/pliris/doc/html/index.html
http://trilinos.org/docs/dev/packages/pliris/doc/html/index.html
http://trilinos.sandia.gov/events/trilinos_user_group_2005/presentations/kotulski.pdf
http://trilinos.sandia.gov/events/trilinos_user_group_2005/presentations/kotulski.pdf
http://trilinos.org/
https://docs.oracle.com/cd/E19495-01/821-0035-12/821-0035-12.pdf
https://docs.oracle.com/cd/E19495-01/821-0035-12/821-0035-12.pdf
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap101.pdf
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap101.pdf
http://www.nics.tennessee.edu/sites/www.nics.tennessee.edu/files/pdf/Lonnie.pdf
http://www.nics.tennessee.edu/sites/www.nics.tennessee.edu/files/pdf/Lonnie.pdf
http://charm.cs.illinois.edu/~bhatele/pubs/pdf/2014/cise2014.pdf
http://charm.cs.illinois.edu/~bhatele/pubs/pdf/2014/cise2014.pdf
https://cug.org/5-publications/proceedings_attendee_lists/CUG10CD/pages/1-program/final_program/CUG10_Proceedings/pages/authors/16-18Thursday/17A-Dosanjh-slidesACES-CUG.pdf
https://cug.org/5-publications/proceedings_attendee_lists/CUG10CD/pages/1-program/final_program/CUG10_Proceedings/pages/authors/16-18Thursday/17A-Dosanjh-slidesACES-CUG.pdf
https://cug.org/5-publications/proceedings_attendee_lists/CUG10CD/pages/1-program/final_program/CUG10_Proceedings/pages/authors/16-18Thursday/17A-Dosanjh-slidesACES-CUG.pdf
https://cug.org/5-publications/proceedings_attendee_lists/CUG10CD/pages/1-program/final_program/CUG10_Proceedings/pages/authors/16-18Thursday/17A-Dosanjh-slidesACES-CUG.pdf
https://crayport.cray.com/
https://crayport.cray.com/

