
Using Maali to Efficiently Recompile Software Post-CLE Updates on a CRAY XC
System

R. Christopher Bording, Christopher Harris and David Schibeci
Pawsey Supercomputing Centre

26 Dick Perry Avenue
Kensington, WA , Australia

Email: chris.bording\chris.harris\david.schibeci@pawsey.org.au

Abstract—One of the main operational challenges of HPC
centres is maintaining numerous scientific applications in order
to support a large and diverse user community. At the Pawsey
Supercomputing Centre we have developed Maali, a lightweight
automated system for managing a diverse set of optimised
scientific libraries and applications on our HPC resources.
Maali is a set of BASH scripts that reads a template file that
contains the all the information to necessary to download a
specific version of an application or library, configure and
compile it. This paper will present how we recently used Maali
after the latest CLE update and the hardware changes of
Magnus, a Cray XC40, to recompile a large portion of our
scientific software stack. This includes the changes to Maali
that were needed for both the CLE and hardware updates
to differentiate between Magnus and Galaxy, our Cray XC30
system.

Keywords-software stack management; automated build sys-
tems

I. INTRODUCTION

One of the main operational challenges of High Perfor-
mance Computing centres is maintaining numerous scientific
applications to support a large and diverse user community.
At the Pawsey Supercomputing Centre (previously known as
iVEC) we recognised the need to have a systematic approach
to maintaining the application software stack. This has led
to the development of Maali1, is a light-weight automated
system for managing a diverse set of reproducible, optimised
scientific libraries and applications on our HPC resources.

Initially, Maali was known as the iVEC Build System and
was developed in 2012 to support our commodity cluster
systems Epic and Fornax. From an operational point of
view these systems were nearly identical, both systems had
similar hardware (Qlogic Infiniband and Intel Xeon CPUs)
although Fornax also has NVIDIA GPUs. Prior to Fornax
being put into production the decision was made to ensure
that the Operating Systems, Compilers and MPI libraries
would stay in lock step with Epic. To achieve this it would
also require updating the hand-built software stack on Epic
that had been in production for over a year. We saw this as

1Maali is the Noongar word for the Black Swans that can be regularly
seen on the Swan River here in Perth. The Noongar are the indigenous
Australian people who have lived in South-West Australia for 45,000 years.

a unique opportunity for a project to allow us to use Fornax
as a test bed to try and develope a more automated software
provisioning system. The initial work on Fornax allowed us
to understand and refine the software installation process.
Then using the iVEC Build System we were able to rebuild
the entire software stack on both Epic and Fornax.

With the iVEC Build System we have been able to
expand the extensive library of software packages that we
can support. With further refinements we have been able to
continuously improve on what has now become known as
Maali. The development of Maali has also been done with
an eye towards the procurement of our Peta-scale system:
we understood that, regardless of what system was selected,
it would be subject to vendor-specific system updates for
example, updates to the Cray Linux Environment (CLE), in
the case of a Cray system. These updates can involve major
changes, such as changing the default compiler versions or
changes to the MPI libraries, for which we need to have a
systematic approach to quickly and reliably reproduce our
scientific application software stack.

Maali at its core is a set of BASH scripts that are designed
to allow for the automation of the Autoconf process of
configure, make and make-install commonly used by many
HPC applications. Maali works from a set of system-level
configuration files that defines a set of default environment
variables. This allows us to control various aspects of the
installation; such as the default build directory location, the
installation directory, the location for the original package
source code to be download to and stored, the location for
the log files, and the compilers used to configure and compile
an application.

There is a separate Maali build file for each application
that, amongst other things, defines which Cray programming
environment(s) are to be used. In our case, this is usually a
selection from PrgEnv-cray, PrgEnv-intel, and PrgEnv-gnu.
A key function of Maali is to capture what dependent envi-
ronment modules are used, as well as the configuration flags
and the compiler optimisations that are selected and used to
build the application. Maali additionally determines what is
required in the application or library environment module
file and automatically generates a new environment module

file. Maali also captures log files from the configuration and
compilation outputs useful as reference and for debugging.
More recently, Maali has been modified to handle CMake
and Python builds.

This paper will highlight the main benefits and challenges
we observed when using Maali to rebuild our application-
software stack following an upgrade of our Magnus system
hardware from XC30 (Intel SandyBridge) to XC40 (Intel
Haswell) and the associated major update to the CLE
environment (for Haswell support). Maali allowed us to
recompile a large portion of our scientific software stack as
we transitioned Magnus from early-adopters into production.
A detailed overview will be presented of the enhancements
that have been made to Maali as a result of our experience
from completing the Magnus upgrade, plus the need to
differentiate between Magnus and a separate Cray XC30
system named Galaxy.

II. DEVELOPMENT BACKGROUND

The Pawsey Supercomputing Centre has grown in terms
of compute capacity, from approximately 6 TFLOPS in 2010
to having approximately 1.5 PetaFLOPS capacity as of the
beginning of 2015, nearly a 250X increase in compute.

Year Name System TFLOPs
2010 Cognac SGI Altix 3700 4
2010 XE Cray XT3 2
2011 Epic HP 115
2012 Fornax SGI 100
2013 Zythos SGI UV2000 20
2013 Zeus SGI cluster 30
2014 Galaxy Cray XC30 200
2014 Magnus Cray XC40 1100

Figure 1. History of Pawsey compute resources. The first block of systems
have since been decommissioned, while the latter block of systems are still
in operation.

In addition to this growth in computational processing ca-
pability, there has been an increase in the number of research
projects and researchers. In turn, this has created a need
to support more software applications and libraries for the
researchers. Fortunately, we have also been able to increase
the staffing levels on the Operations and Supercomputing
teams to help meet the researcher needs and the Centre
obligations.

The increase in staffing allowed for the work of supporting
software applications and libraries to be shared across the
Operations and Supercomputing teams, however it requires
greater organisation and the establishing conventions and
policies that support those conventions. Unfortunately these
policies and conventions where not in place from prior
to Epic going into production. The initial software stack
that was originally installed on Epic, although meeting the
researchers requirements, had several major shortcomings:

1) Compiled by hand for each compiler and MPI library
combination.

2) Lack of documentation on how software was com-
piled.

3) Environment modules in a flat directory.
4) None of the work was backed up.
It was clear a set of policies and conventions were needed

to make the staff more efficient and organised in order
to deal with multiple systems. In August 2012 with the
Fornax cluster being prepared for production to the research
community, and we realised that we had an opportunity to
run a test project on Fornax, as the entire software stack
was to be rebuilt in order to update and synchronise the
operating systems, Lustre, compilers and MPI of the Epic2

and Fornax3 clusters to improve the ease of operation and
maintenance of the two systems from different vendors.

Epic Fornax
HP POD cluster SGI Linux cluster

800 nodes 100 nodes
Intel Xeon X5660 (x2) Intel Xeon X5660 (x2)

24 Gbyte memory 72 Gbyte memory
QDR Infiniband dual-rail QDR Infiniband

CentOS6.3 CentOS6.3
lustre 1.8.8 lustre 1.8.8

7 TB local disk
NVIDIA Tesla C2075 GPU

Figure 2. Epic and Fornax System Configuration.

As a team we realised that we needed a better way of
supporting maintaining an increasing number of software
packages with ever increase dependencies. The test project
was implemented that used templates to help standardise
compiling and installing software. This allowed us to create
a initial repository of applications build scripts, source files
and a set of build logs. However, this approach had two
severe short-comings. Firstly, we still needed to create the
environment module file for each application and we had
to manually run the build scripts for each compiler and
MPI library combination that we supported on Fornax. The
results of this initial test project on Fornax led directly
to the development of the iVEC Build System (iBS) by
David Schibeci. Subsequently, iBS has undergone numerous
improvements and added functionality through its use at
iVEC and the Pawsey Supercomputing Centre, to reach its
present form as Maali.

III. AUTOMATION AND MODULES

Maali is a lightweight tool consisting of a set of BASH
scripts. For the purpose of this paper we will define the
individual who uses or writes the build scripts as the

2Epic was decommissioned December 2014
3Fornax is scheduled to be decommissioned in July 2015.

Maali builder. The Maali tool attempts to automate the
following steps:

1) Download the software
2) Unpack the software
3) Compile the software (configure, make and make

install)
4) Create a environment module file.
5) Document the procedure

A. System Level Configuration Requirements

With the arrival of the Cray XC30s to the Pawsey Su-
percomputing Centre we realised that the iBS would need
modifying as we would need to be able define additional
requirements but at a high level so we could maintain the
generic build scripts. To provide the flexibility required to
handle multiple systems Maali uses a system configuration
script that defines the key-pair values shown in Figure 3.

Of the fifteen different keypair values, thirteen are used
with the Cray systems as MAALI DEFAULT MPI and
MAALI DEFAULT INTEL MKL are not required. The
MAALI ROOT keypair variable is set to where you want
to install based on what the local policy and naming con-
ventions are. As you see in magnus.config4 file or as the
MAALI CONFIG file that we use at the Pawsey Supercom-
puting Center the follow key-pair values 4 with the legacy
name ivec name as the root directory. Where the build, src
and modulefiles subdirectories.

B. Maali build script

The Maali build script provide the definitions for the four
of the five basic tasks we are attempting to automate. We
will briefly describe what Maali does for each of these
basic tasks. Beginning with downloading the software and
unpacking the software. Followed by the configure, make
and make install of the software package. Lastly we will go
over creating the environment modules files .

1) Download and unpacking the software: Maali uses
GNU Wget [1] as it provides a non-interactive method for
downloading packages from FTP and HTTP servers. The
build script sets the MAALI URL key-pair variable to the
correct URL for the application to be installed. To download
zlib the full URL would be:

MAALI URL=“http://sourceforge.net/projects/libpng/files/
$MAALI TOOL NAME/$MAALI TOOL VERSION/

$MAALI TOOL NAME-$MAALI TOOL VERSION.tar.gz/download”.

This brings up an import point when defining the
MAALI URL is the dot extensions (i.e. .tar.gz) and that is
that the package maintainers often change their compression
tools version to version. The Maali command script is able
reconcile a majority of the compression formats (e.g. .bz2,
.tgz, .xz), but the extension are ”hard-coded’ in the build
scripts. The packages are downloaded to the MAALI DST
(destination) path for which the root directory is
$MAALI SRC as defined in the system $MAALI CONFIG

MAALI OS
Operating system version.

MAALI SYSTEM
Name of system on which the software is being
installed.

MAALI ROOT
Directory under which everything else sits “/‘path
to Maali ’/$MAALI OS/$MAALI SYSTEM”

MAALI BUILD DIR
The is the build directory, a subdirectory of the
MAALI ROOT.

MAALI MODULE DIR
Location where the environment modules are in-
stalled, a subdirectory of the MAALI ROOT.

MAALI SRC
Where the software source packages is cached, a
subdirectory of the MAALI ROOT.

MAALI SYSTEM BUILD
A yes indicates that this file is for systems builds
and will generate a wiki page.

MAALI DEFAULT COMPILERS
System compilers that should be used by de-
fault when compiling software. ie.PrgEnv −
cray, PrgEnv − intel, PrgEnv − gcc

MAALI DEFAULT GCC COMPILERS
PrgEnv-gnu

MAALI DEFAULT INTEL COMPILERS
PrgEnv-intel

MAALI DEFAULT CRAY COMPILERS
PrgEnv-cray

MAALI DEFAULT MPI
Not used with cray

MAALI DEFAULT PYTHON
Default Python to use

MAALI DEFAULT INTEL MKL
Not used with cray

MAALI EXTRA CRAY
craype-haswell, craype-sandybridge, craype-
ivybridge

Figure 3. Maali system level configuration keypair variables.

file. The full MAALI DST variable then becomes
$MAALI SRC/$MAALI TOOL NAME/$MAALI TOOL VERSION
continuing with the zlib example MAALI DST=
$MAALI SRC/$MAALI TOOL NAME-
$MAALI TOOL VERSION.tar.gz. Maali automatically
checks if the application is already in the MAALI DST
directory and will skip the download if it is. Storing the
source packages is a good practice for a couple of reasons,
Maali recompiles an application form source every time.
It forces a clean install by deleting any previous builds in
the MAALI BUILD DIR, then copies and uncompress the

MAALI_OS=cle52
MAALI_SYSTEM=magnus
MAALI_ROOT="/ivec/$MAALI_OS/$MAALI_SYSTEM"
MAALI_BUILD_DIR="$MAALI_ROOT/build"
MAALI_MODULE_DIR="$MAALI_ROOT/modulefiles"
MAALI_SRC="$MAALI_ROOT/src"
MAALI_SYSTEM_BUILD="YES"
MAALI_DEFAULT_COMPILERS="PrgEnv-gnu/5.2.25
PrgEnv-intel/5.2.25 PrgEnv-cray/5.2.25"

MAALI_DEFAULT_GCC_COMPILERS="PrgEnv-gnu/5.2.25"
MAALI_DEFAULT_INTEL_COMPILERS="PrgEnv-intel/5.2.25"
MAALI_DEFAULT_PYTHON="python/2.6.8"
MAALI_EXTRA_CRAY="craype-haswell"

Figure 4. Pawsey Supercomputing Centre system configuration directories.

/
ivec/

MAALI OS=cle52/
MAALI SYSTEM=magnus/

Figure 5. The basic MAALI ROOT file tree structure

package source in the MAALI BUILD DIR. Maintaining
a repository of the original source helps to maintain the
researchers workflow provenance; allows the Maali builder
to speed up the process of reinstalling a package as needed
when optimising the application.

2) Compilation and Installation process: The Maali
copies the ‘tar-ball’ file from the MAALI DST to the
MAALI BUILD DIR where it uncompressed and extracted.
The heart of the of Maali is that it automates the “configure,
make and ‘make install”’ process from the GNU Autotools
framework whose components are GNU Autoconf [3], GNU
Automake [4] and GNU Libtool [5]. The purpose of these
frame tools is to make it easy for users to compile the pack-
ages and make the software more portable. Using templates
Autoconf is able to generate the configure file and Automake
creates the Makefile.in template. In the simplest of terms
running the configure command uses the Makefile.in tem-
plate to create the Makefile and libtool to help make things
more portable. Again Maali attempts to provide a means
to automate the results of the Autotool process of running
configure, make and make install.

The configure command accepts a large number of com-
mon command arguments i.e.–prefix=‘path to install direc-
tory’, which allows for installation of the package out of
source, Maali tries to leverage that by abstracting those
common details away. The remaining configuration flags
are typically used to select different features, libraries-paths
and code optimisation that are system dependent. They are
defined in Maali using the MAALI TOOL CONFIGURE
key-pair value for the data format library here is the HDF5
configuration, e.g.

MAALI TOOL CONFIGURE=’–enable-silex –enable-fortran
–enable-shared –with-hdf5=$HDF5 DIR/include,$HDF5 DIR/lib’

The make and make install are remain relatively unmod-
ified it is possible however to add in the MAALI CONFIG
file MAALI CORES which can be used to compiles an ap-
plication in parallel using “make -j$MAKE CORES”. That
however is application and library dependent and may not be
suitable for using on the login nodes on systems. In keeping
with what was the original idea of Maali is to increase the
automation of installing software, in the MAALI CONFIG
file we define the MAALI DEFAULT COMPILERS, which
is a simple list. Maali will iterate over this list and build each
version without any other effort of the “Maali builder”. So
for the simple codes that use the GNU Autotools and do
not have any complex dependency the “Maali builder” can
compile on magnus three versions from a single command.
These are installed in the “apps” directory, a subdirec-
tory of the MAALI ROOT as shown in figure 6. We use
the compiler names defined in the MAALI CONFIG file
MAALI DEFAULT COMPILERS and the system environ-
ment variable CRAYOS VERSION is set in the PrgEnv-
* modules. To define a unique directory so all libraries
and applications compiled with the respective programming
environment are in that directory.

MAALI ROOT

apps

PrgEnv-cray

CRAYOS VERSION

tool

version

versionPrgEnv-gnu

PrgEnv-intel

Figure 6. The applications tree structure

3) Environment modules: is used on the Cray XC systems
it enforces a convention on the users that they must select the
programming environment. Which mirrors the convention
we have enforced on our other HPC resources. This allows
for setting a up a simple tree structure for the installation
path of software on the Pawsey Supercomputing Centre HPC
resources as shown in Figure 6. We have only one module
file per application regardless of the number of different
compilers. Environment module files are templates used to
dynamically modify the environment adding or removing
packages from the PATH, LD LIBRARY PATH and other
system variables. There is a manageable number of Maali
key-pair values needed for most application or libraries to
set the applications environment correctly.

MAALI ROOT

modulefiles

apps

tool name

tool version

tool version

Figure 7. The modules tree structure

These are boolean options set to 1 to add to module
MAALI_MODULE_SET_PATH=1
#MAALI_MODULE_SET_PKG_CONFIG_PATH=
#MAALI_MODULE_SET_LD_LIBRARY_PATH=
#MAALI_MODULE_SET_MANPATH=
#MAALI_MODULE_SET_INCLUDE_PATH=

#MAALI_MODULE_SET_CPLUS_INCLUDE_PATH=
#MAALI_MODULE_SET_C_INCLUDE_PATH=
#MAALI_MODULE_SET_LD_PRELOAD=
#MAALI_MODULE_SET_CPATH=
#MAALI_MODULE_SET_FPATH=
#MAALI_MODULE_SET_FCPATH=

#MAALI_MODULE_SET_PERLLIB=
for Cray system modules
#MAALI_MODULE_SET_CRAY_LIB_LIBRARY_PATH=
#MAALI_MODULE_PE_PKGCONFIG_NAME=
#MAALI_MODULE_PE_PKGCONFIG_CFLAGS=
#MAALI_MODULE_PE_PKGCONFIG_LIBS=

To create exported variable in the module files
#
#MAALI_MODULE_SET_SETENV="path or license server= "

Descriptions of what the package/tool is.
#MAALI_MODULE_WHATIS=" "

Figure 8. Maali keypair values to create a modulefile.

C. The Maali Command Script

The Maali script is a lightweight set of bash script that
reads a Maali build script and attempts to manage the
build process. The Maali command expects a minimum of
three arguments the first one is the name of the package
you wish to install the second argument is the version
number of that application followed by the name of the
system configuration file.“ maali -t MAALI TOOL NAME
-v MAALI TOOL VERSION -c MAALI CONFIG” for
example, to install zlib-1.2.7 on the Pawsey Supercomputing
Centre’s Cray XC40 system Magnus the command would be:

maali -t zlib -v 1.2.7 -c magnus

Below is a complete listing of the Maali command op-
tions.

The list of Maali command options in figure9 shows that
what the “Maali builder” is able to do; re-run the Maali

-h show this message
-t tool name
-v tool version
-c maali configuration file
-d run in debug mode
-m just create the module file
-l use the options from the last run
-r build with the specified compiler (and no others)
-b build the tool, but don’t create a module file

Figure 9. Maali Command Options

command in a debug mode that produces verbose text to
standard out; re-run Maali but have it only update the module
file; and/or build with a specified compiler/programming
environment module.

IV. MAALI USE

The previous section provided some details of the in-
ternals of Maali to give insight on it’s workings. The
Operations Team and Supercomputing Team at the Pawsey
use Maali regularly to manage building software on the
different systems. We quickly realised having a large number
of people with root access was not practical so a new user
account was created stapops that had limited sudo access.

However this is intended for software applications that
used by multiple groups and the MAALI CONFIG file is
located in the stapops home directory. So that only build
scripts that have been tested are then installed as stapops
we can then add those new Maali build scripts to the Maali
git repository.

While the operations and supercomputing teams have
grown in numbers we are still vastly outnumbered by the
research community. As such we have a number of packages
that are only used by a single researcher or group. It quickly
becomes very expensive in terms of staff time to support
them. So we are showing these groups how to maintain
their own software in their project “group” directories. This
limited effort has shown good results and is easier for the
Pawsey staff to manage.

In summary, where Maali really excels is at simplifying
the build process for many applications that use the GNU
Autotools build system. However many applications are still
difficult to build but Maali does help speed up the iterative
nature of the installation process. The number of packages
that build scripts have been created for is now over 380+.
The large number of applications is a good indicator of how
easy Maali is to use.

V. HASWELL MIGRATION - SPRINT

As part of the second phase upgrade to Magnus in 2014,
the CPU architecture was updated to Haswell. Prior to this
update, both Magnus and Galaxy had a ”Sandybridge’ CPU
architecture. Consequently, the Pawsey software stack was

shared between both machines to minimise installations.
However, with the architecture change to Magnus, it was
necessary to split the software stack. In order to take full
advantage of the new instructions offered by Haswell, the
entire software stack on Magnus would need to be rein-
stalled. As the Cray Linux Environment was also changing
on both Magnus and Galaxy to version 5.2, the Galaxy stack
was also reinstalled. For the purpose of upgrade a list of
”must install” software was constructed. That list consisted
of 30 packages plus iBS.

• python-2.6.8 • siesta3.2
• exabayes1.4.1 • gamess-20130501
• qbox-1.60.0 • ncview-2.1.2
• gts120708 • hypre-2.9.0b
• gromacs-5.0.2 • amber14
• mrbayes-3.2.2 • beagle-lib-2.1.2
• intel-mkl • cmake2.8.12.1
• gsl-1.15l • lapack3.4.2
• xerces-c3.1.1 • libffi-3.1
• glib-2.42.0 • udunits2.2.17
• zlib-1.2.7 • szip-2.1
• scons-2.2.0 • numpy-1.6.2
• scipy-0.11.0 • mecurial-3.1.1
• distribute-0.6.49 • astropy-0.4.1
• d2to1-0.2.11p • ephem-3.7.5.3

Figure 10. List of applications for the Magnus Haswell sprint.

Without an automated build system, each package would
have required manual configuration and compilation, includ-
ing customised compilation flags and patches that would
have been made with reference to previous installation notes.
However, by using Maali and the scripts from the previous
installations, the majority of packages simply required a one
line change updating the Cray architecture module depen-
dency to Haswell on Magnus and running a single Maali
installation command. It also was necessary to implement
temporary module paths for team members to allow for
dependencies without interfering with the old software stack
that were in use at the time.

An installation sprint was organised for Haswell and
attended by seven members of the Pawsey supercomputing
team. A wiki page was used to keep track of the packages to
be installed, which were marked first as in progress and then
complete by team members. For most of the packages, the
automated installation had a wall time from a few minutes
to one to two hours, depending on the complexity of the
package. Some team members used the time waiting on
installation to start on other packages, or to work on updating
the scripts that needed changes to work with Haswell.

The majority of the packages were installed on both
systems in a couple of hours, with one or two of the longer
installs lasting into the afternoon. The summary of the in-
stallation was uploaded to the Pawsey documentation portal
after each installation. Following the sprint, the module paths
were updated to point to the new software stacks at the
subsequent scheduled maintenance.

A. Haswell Sprint Outcome

The purpose of the Haswell sprint was to re-compile
these applications so that they could make use of the new
architecture on the Intel Haswell CPUs and resolve any de-
pendency issues from the CLE upgrade. Overall the Haswell
sprint on Magnus was very successful in that we were able
to install a large number of packages very quickly and to
insure Magnus was available to researchers very quickly.
There were several issues that were identified post-sprint
that should be investigated to try and help improve future
upgrades. The build script documentation should contain
more details with regard to the package dependencies. A
technical review would have also shown that the list of
packages in figure ?? could have been split up into four
distinct groups Python, Library independent applications,
application with simple dependencies and applications with
strong dependencies.

Installing applications on the Cray XC is not without
challenges. The login nodes on Magnus are not Haswell
so we must cross-compile applications on the login nodes
so that they will run optimally on the compute nodes and
that requires extra attention to do correctly. Having a large
number of people trying to compile codes on the login nodes
will cause the process to slow down as well. One way to get
around this difficulty is to compile on the compute nodes as
there many time more compute nodes than login nodes and it
allows you to avoid having to cross-compile the applications.
This is not always possible when the system is in production,
it is possible to create batch jobs that run in the debug
nodes. The real hurdle to compiling a new application on
the compute nodes in either the workq or the debugq is that
they are on an internal network and hard to access. This
prevents Maali from being able to download the required
source package as needed. To iterate the Haswell sprint was
to re-compile a set of applications previously installed which
meant we should have the source already downloaded we
just needed to point the MAALI SRC to the right directory
with the source packages. Then using the compute nodes
for re-building/re-compiling the code should be fairly easy.
It was apparent that there is an issue with Maali when trying
to download applications using GIT or SVN on the compute
nodes as well. The build script needs to modified to take
advantage of codes that have already been cloned using GIT
or SVN.

VI. MAALI’S FUTURE

Maali demonstrated great flexibility and ease of use during
the Haswell sprint. Some the issues identified during the
Haswell sprint will be addressed and as well as continued
effort to improve Maali. The next milestone in the develop-
ment of Maali is to make it open source project and build
a user community around it. This will require improved
user documentation and development of a rigorous testing
scheme. Other areas for future work are listed in figure 11.

• module files prereqs and conflicts need more attention.
• NeCTAR research cloud use.
• bioinformatics pipeline construction.
• regression testing of build scripts.
• wiki page creation.

Figure 11. Future Work

VII. CONCLUSION

As with any High Performance Computing system, mak-
ing changes to a production system involves a certain amount
of risk. However, such updates are necessary to maintain
the stability, security and performance of the system, and
so the risks cannot be avoided, only controlled. In the
Pawsey Supercomputing Centre, we are responsible for the
largest research supercomputer in the Southern Hemisphere
(Magnus) and the supercomputer that provides real-time
processing capabilities for both Australian SKA precursor
telescopes (Galaxy). Having either system unavailable for
an extensive period of times (to reinstall software) carries
negative financial, operational and research cost, and must
be avoided. Using Maali, we are now able to plan effectively
for a CLE upgrade in order to reduce the length of system
downtime across a diverse set of Cray XC systems, minimise
the staff effort required to reinstall the software and control
the impact on researchers and their projects.

ACKNOWLEDGMENT

The authors would like to thank Ashley Chew and Mark
O’Shea from the Operations team at the Pawsey Supercom-
puting Centre for their work during the initial development
of Maali, nee iBS. We also would like to the members of
the Supercomputing Team Rebecca Hartman-Baker, Daniel
Grimwood, Mohsin Shaikh, Brian Skjerven, Kevin Stratford
and Charlene Yang at the Pawsey Supercomputing Centre
also, Paul Ryan who is seconded from the Commonwealth
Scientific and Industrial Research Organisation(CSIRO) to
the Supercomputing team for all their efforts in the Haswell
sprint success and their effort in the continued development
of Maali. Lastly would like to thank George Beckett who is
the Head of the Supercomputing Team for his support for
the entire Maali project.

REFERENCES

[1] G. Scrivano. (2015, Jan.) Gnu wget 1.16.2. wget.pdf. [Online].
Available: http://www.gnu.org/software/wget/manual/

[2] P. W. O. John L. Furlani. (2011) Environment modules.
[Online]. Available: modules.sourceforge.net

[3] (2012, Apr.) Autoconf - creating automatic configuration
scripts for version 2.69. autoconf.pdf. [Online]. Available:
http://www.gnu.org/software/autoconf/manual/

[4] (2014, Dec.) Gnu automake - for version 1.15. automake.pdf.
[Online]. Available: http://www.gnu.org/software/automake/
manual/

[5] (2015, Jan.) Gnu libtool - for version 2.4.6. Libtool.pdf. [On-
line]. Available: http://www.gnu.org/software/libtool/manual/

