Climate Science Performance, Data and Productivity on Titan

Ben Mayer¹

Pat Worley¹

Rafael Ferreira da Silva²

Abigail Gaddis¹

1 Oak Ridge National Laboratory

2 USC Information Sciences

ORNI Strataget 6, UT-Battelle for the US Department of Energy

ACKNOWLEDGEMENTS

- Department of Energy for providing support through the Panorama and ACME projects
- Ashley Barker, Marcia Branstetter, Christopher Fuson, Judy Hill, Gideon Juve, Eric Lingerfelt, Vickie Lynch, Ross Miller, Matt Norman, Suzanne Parete-Koon, Duane Rosenburg and Brian Smith

Introduction

- Run and Data Management of Climate simulations
- Experiential phase is 6-9 months for high resolution
- Long period of time, likely can optimize
 - Shortening cycle time can have large impact on cost and ability to advance model capability
- Need to make measurements to know where to optimize

Productivity

- Looking at Current and Better Practices
- How Model and Machine are changing
- What the impact on science looks like

Terms

- ACME is the DOE branch of the CESM climate model.
- ACME is made up of component models (Land, Sea Ice, Ocean, Atmosphere, etc)
- Case specific configuration of climate model (resolution, active models, parameters, etc)
- High Resolution ~0.25° The T341 and NE120 resolutions are examples
- Low Resolution − 1° The T85 and NE30 resolutions are examples

 CLIMATE CHANGE SCIENCE INSTITUTE

 OAK RIDGE NATIONAL LABORATORY

Impact on Science

- Faster turn around time on experiment execution
 - Allows faster model development
 - Reduces cost of experiment
- Automation further reduces burden on scientists
 - Allows for higher resolution (spatial/temporal)
 models to be processed with ease
 - Allows analysis of the details Hurricanes monthly vs daily to hourly output

Complete ACME Workflow

Progress Timing

Data Source

- Collecting many times of events and performance parameters automatically as the ACME model is run
- Data used from 2012 and 2014 to sample Jaguar and Titan
- Many different cases run, many of them for one to a few trips through the system
- Data presented here is from three cases that have many trips through the machine
 - Case will do similar amount of work each time (+/- I/O)
- Sample bias Only capturing data from successful runs

 **CLIMATE CHANGE SCIENCE INSTITUTE OAK RIDGE NATIONAL LABORATORY

Variability in Initialization time

Variability in Main Loop time

Request Size vs Time in Queue

Date Submitted vs Queue wait time

Utilization of Requested time

Ratio of Compute to Archive data

- Three projects with allocations: 33.5 Million hour (Mhr), 116Mhr and 50Mhr.
- Number of TB to Mhr of compute is: 4.8, 0.5, 5.0
- High ratios are from projects that were focused on production simulations

(Data) Rates of Post Processing Tasks

- Several post processing steps that are not in the time critical chain until end of simulation
- Processes are very human time intense
- Analysis Two types for atmosphere
 - AMWG 6.5 hours
 - CDAT based 58.7
- Data Transfer between sites Average 591Mbps with standard deviation of 621Mbps. N=38
- HPSS ingest (anecdote) about 200MB/s
- ESGF publication Little data movement other than directory structure shuffle, but can take order day
- Data time/space inversion not running CLIMATE CHANGE SCIENCE INSTITUTE

(Data) Rates of Post Processing Tasks

- Several post processing steps that are not in the time critical chain until end of simulation
- Processes are very human time intense
- Analysis Two types for atmosphere
 - AMWG 6.45 hours
 - CDAT based 58.74
- Data Transfer between sites Average 591Mbps with standard deviation of 621Mbps. N=38
 - Further testing shows high variability {2200, 220, 2150} Mbps
- HPSS ingest (anecdote) about 200MB/s
- ESGF publication Little data movement other than directory structure shuffle, but can take order detailed CLIMATE CHANGE SCIENCE INSTITUTE

Model Changes

- New dynamics CAM4 to CAM5
 - CAM5 is 2-4x more computationally expensive
- Move from moderate resolution to High resolution (T85 or NE30 to NE120)
 - Should be 4x more resolution in each of the horizontal direction (16x)
 - Seeing 27x change in performance
 - Vertical levels are held constant
 - Output data increases by 16x, but is adjustable

Machine Changes

- With each generation moving to be 5-10x more capable
- Summit has a significant increase in theoretical compute performance, but a static file system performance.
 - Changes in technology likely will change ratio of delivered performance to magic fairy flops

Automation

- Data management is using 3-6 FTE in the project
- That is 7-14% of budget
- Using Pegasus Workflow Manager
- Early stages

Future Work

- Continue automation
- Adding more post processing tasks
- Adding more timing easier with automation
- Build simple analytic model relating queue time to "rate of progress" and take measurements
- Capture failed instances

