
Molecular Modelling and the
Cray XC30 Performance Counters

Michael Bareford, ARCHER CSE Team
michael.bareford@epcc.ed.ac.uk

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

www.archer.ac.uk	

Introducing ARCHER
Advanced Research Computing High End Resource

Introducing ARCHER
Cray XC30 MPP, 4920 Compute Nodes

 Dual Intel Xeon processors (Ivy Bridge), 24 cores, 64 GB

Dragonfly topology

 rank 1: intra-chassis, sixteen 4-node blades (Aries interconnect)
 rank 2: intra-group (two cabinets per group)
 rank 3: optical, inter-group (13 groups make up ARCHER)

Tests conducted on 2-cabinet Test Development Server

 Private to EPCC, minimises resource contention.

ARCHER supports three programming environments

 Cray (v8.3.7), Intel (v14.0.4) and gnu (v4.9.2) running on CLE v5.1 OS

Cray XC30 Power Management Counters
Supported counters obtained by running papi_native_avail
on compute node.

PACKAGE = processor (two sets of RAPL counters per node)
RAPL instantaneous, PM energy cumulative

Running Average Power
Limit Counters

Power Management Counters

PACKAGE_ENERGY (nJ) PM_POWER:NODE (W)
DRAM_ENERGY (nJ) PM_ENERGY:NODE (J)
PP0_ENERGY (nJ) PM_FRESHNESS

PM Library
(https://cug.org/proceedings/cug2014_proceedings/includes/files/pap136.pdf)

Hart et al. [3] have provided a library that allows one to monitor
the PM counters directly
(/sys/cray/pm_counters)

Counter files updated every 100 ms.

Measurements cover CPU, memory and any other hardware
contained on the processor daughter card.

Consumption due to the Aries network controllers and beyond is
excluded however.

Only one MPI process per node must read the PM counter file
on that node.

Only one MPI process (e.g., rank 0) should collate the data,
writing it to a single file.

 CALL pm_mpi_open(out_fn)
DO i=1,nstep
 …
 CALL pm_mpi_monitor(i,1)
 …
 CALL pm_mpi_monitor(i,2)
 …
ENDDO
CALL pm_mpi_close()

PM MPI Library
(https://github.com/cresta-eu/pm_mpi_lib)

Minimal but flexible
instrumentation.

pm_mpi_open(char* out_fn)
Call MPI get processor name to determine unique number of
the node on which calling process is running.

Do MPI comm split on the node number, then MPI all reduce to
determine process that has lowest rank on each node – this is
the monitoring process.

The monitoring processes open their respective PM counter files.

All monitoring processes create another sub-communicator, one
that unites them all, thus rank 0 can determine the number
nodes in use.

pm_mpi_monitor(int nstep, int sstep)
Monitoring processes only read the counter files.

Subsequent MPI all reduce sums energy and power
counters over all nodes.

Rank 0 writes counter data to output file.

Non-monitoring processes wait at MPI barrier.

pm_mpi_close()
Monitoring processes close PM counter files.

Rank 0 also closes performance output file.

Molecular Modelling Code I

DL_POLY v4.05 (MPI)
https://www.stfc.ac.uk/SCD/44516.aspx

Test case 40 (ionic liquid dimethylimidazolium chloride)
over four nodes (96 cores).

CONTROL steps = 20 000
Instrument main loop, ./VV/w_md_v.f90

Perform six runs for each compiler environment.

Energy use per model time step (cray)

Every thousand iterations, DL_POLY restart files are
written to disk – energy use increases by 16 times.

Compute
Iterations

Snapshot
Iterations

Energy use per model time step (gnu)

Increase now ≈ 95 times!

Compute
Iterations

Snapshot
Iterations

Energy use per model time step (intel)

Overall results

Cray: 1.92 ± 0.02 MJ over 1748 ± 2.6s
Intel: 1.97 ± 0.01MJ over 1770 ± 2.7s
gnu: 2 ± 0.02 MJ over 1823 ± 2 s

Six runs performed for each compiler environment.

Time use per model time step (compute iterations)

Majority of steps run faster for Intel
Compared to Cray (and gnu).

Compute
Iterations

Snapshot iterations take significantly longer.

If the Intel snapshot iterations had runtimes comparable to the Cray and gnu results,
the Intel compiled-code could be the most energy efficient.

Snapshot
Iterations

Time use per model time step (snapshot iterations)

Point-in-time Power Distributions

Distributions from all 18 simulations.

Intel runs draw slightly (~2%) more power.

Molecular Modelling Code II
CP2K v2.6.14482 (MPI/OpenMP)
http://www.cp2k.org

GNU programming environment only
./tests/QS/benchmark/H2O-1024.inp over eight nodes (192 cores)

MOTION.MD.STEPS = 100

./src/motion/md_run.F, qs_mol_dyn_low()
Real MD Loop

Cumulative energies and run times for different
OpenMP threading options

aprun options Energy (MJ) Run Time (hr)

-n 192 -N 24 -S 12 -d 1 52.263 5.4

-n 96 -N 12 -S 6 -d 2 49.727 5.94

-n 64 -N 8 -S 4 -d 3 45.052 5.27

-n 48 -N 6 -S 3 -d 4 48.819 6.26

-n 32 -N 4 -S 2 -d 6 54.284 7.47

-n 24 -N 3 -d 8 71.54 11.57

-n16 -N 2 -S 1 -d 12 91.342 16.72

Energy usage against run time for different
OpenMP threading options

d=3 is the sweet spot

Normal distributions and CDFs inferred
from point-in-time power histograms

In general, power deviation increases with thread count.

CrayPat Alternative (perftools module)

Must load perftools module before compilation, then instrument exe with
pat_build -w command.

Need to set PAT_RT_PERFCTR environment variable in job submission script.
Also tied to a particular counter category.

Instead accessing PM counter
files directly it is possible to
use CrayPat API calls.

 CALL PAT_region_begin(id, label, istat)
IF (monitoring process) THEN
 CALL PAT_record(PAT_STATE_ON)
ELSE
 CALL PAT_record(PAT_STATE_OFF)
ENDIF
DO i=1,nstep
 …
 IF (monitoring process) THEN
 CALL PAT_counters(PAT_CTRS_PM, names, values)
 ENDIF
 …
ENDDO
CALL PAT_region_end(id)

pat_mpi_open(char* out_fn)
Monitoring processes turn PAT recording on.
And call PAT_counters(cat[i],0,0,&nc) for each counter
category specified by MY_RT_CTRCAT environment variable.
Allocate memory required to hold counters.

pat_mpi_monitor(int nstep, int sstep)
Call PAT_counters(cat[i],&name[j],&val[j],&nc)
for each counter category specified by MY_RT_CTRCAT, where
the actual counter names are given by PAT_RT_PERFCTR.

PAT MPI Library
(https://github.com/cresta-eu/pat_mpi_lib, coming soon)

Example Job Script
...
module load perftools
...
export PAT_RT_SUMMARY = 1
export MY_RT_CTRCAT = PAT_CTRS_RAPL, PAT_CTRS_PM
export PAT_RT_PERFCTR = PACKAGE_ENERGY, PP0_ENERGY, DRAM_ENERGY,
PM_POWER:NODE, PM_ENERGY:NODE
...
aprun –n 96 ./DL_POLY.z+pat >& stdouterr

PM files vs PAT API

1.92 MJ (1748 s)
1.97 MJ (1770 s)

2 MJ (1823 s)

Average DL_POLY power consumption and runtimes
for six runs per compiler environment.

1.96 MJ (1747 s)
1.99 MJ (1762 s)

2 MJ (1819 s)

Higher Cray energy due to different node assignment.

PM Files PAT API

gnu

Intel
Cray

PAT API Comparison

PAT API PM files

PAT API DRAM Energy (Cray 1/6)

Compute
Iterations

Snapshot
Iterations

PAT API DRAM Energy (Intel 4/6)

Conclusions I
DL POLY results show the expected correlation between
energy use and runtime.

Cray-compiled code uses the least energy, followed by Intel
then gnu. Although differences are slight.

Closer examination of the data, reveals that the Intel runs
might use the least energy, if the compiler options could be
set such that the Intel snapshot iterations had runtimes
comparable with the Cray and gnu results.

Conclusions II
Energy use will depend on the number of threads per MPI
process: using multiple threads can reduce runtimes and
energy usage but not beyond a certain thread count.

Three threads is the optimum thread count for CP2K
running over eight nodes with the H2O-1024.inp data set.

Further work could investigate the importance of node
assignment within the ARCHER dragonfly topology as
regards energy consumption.

Further work (CP2K)
Running with three threads per MPI process, one could
compare energy usages for the following scenarios.

1) All eight nodes from the same chassis.
2) Four nodes from one chassis and four nodes from a different chassis.
3) Same as scenario two but involving a chassis from a different group.

The usefulness of this work would be in understanding the
energy cost of communicating via the rank 2 and/or rank 3
networks.

