
Memory Scalability and Efficiency Analysis of
Parallel Codes

Tomislav Janjusic and Christos Kartsaklis

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831-6173
Email: {janjusict,kartsaklisc}@ornl.gov

Abstract—Memory scalability is an enduring problem and
bottleneck that plagues many parallel codes. Parallel codes
designed for High Performance Systems are typically designed
over the span of several, and in some instances 10+, years.
As a result, optimization practices which were appropriate for
earlier systems may no longer be valid and thus require careful
optimization consideration. Specifically, parallel codes whose
memory footprint is a function of their scalability must be
carefully considered for future exa-scale systems.

In this paper we present a methodology and tool to study
the memory scalability of parallel codes. Using our methodology
we evaluate an application’s memory footprint as a function of
scalability, which we coined memory efficiency, and describe
our results. In particular, using our in-house tools we can
pinpoint the specific application components which contribute
to the application’s overall memory foot-print (application data-
structures, libraries, etc.).

I. INTRODUCTION

Memory scalability is an enduring problem and bottleneck
that plagues many parallel codes. Parallel codes designed for
High Performance Systems are typically designed over the
span of several, and in some instances over 10, years. As
a result, optimization practices which were appropriate for
earlier systems may no longer be valid and thus require careful
optimization consideration. Specifically, parallel codes whose
memory footprint is a function of their scalability must be
carefully considered for future exa-scale systems.

The memory footprint is defined as the amount of memory
that an application uses during its runtime. This includes the
total amount of various application segments (code, data),
as well as the allocation of dynamic and stack memories.
We define memory efficiency as the metric describing the
application’s memory usage with respect to scalability. For
example, an application whose memory footprint grows non-
linearly may be described as having low memory efficiency.

This manuscript has been authored by UT-Battelle, LLC under Contract No.
DE-AC05-00OR22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doepublicaccessplan).

Ideally, an application’s memory footprint will remain constant
with respect to scalability. Memory efficiency is not to be
confused with memory usage. An application’s memory usage
is a metric that describes how well an application is using the
allocated memory. In this paper we do not focus on memory
usage but rather memory allocation patterns as a function of
scale.

In order to study the memory behavior of parallel codes
we rely on several in-house tools. We developed and tweaked
our tools specifically for this study and hope that their use
will continue to be useful for other researchers too. Our
tools rely on an instrumentation framework and a plug-in
tool described here [1]. Using our tool we can pinpoint
the specific application components which contribute to the
application’s overall memory footprint (eg. application data-
structures, libraries, etc.) and trace their liveliness. For termi-
nology accuracy we will define an object to be any allocated
chunk of memory. An object group is a logical representation
of two or more allocated objects that stem from the same
module, sub-directory, or function. We stated earlier that our
tools are based on binary instrumentation frameworks capable
of tracing into applications’ sub-structures and track their
memory usage. This information is surprisingly underutilized
as it does give great insight into the memory behavior of
specific application phases and allows us to track the usage
and footprint patterns. As a direct benefit we can observe if
particular data-structures are being over-/ or under-utilized and
if they are prone to increase in size at scale.

In this paper we present a methodology of a memory scala-
bility study of parallel codes particularly focusing on dynamic
memory behavior patterns, as well as memory overheads with
respect to scalability. In order to make our case we have chosen
an application that is known to have scalable performance, we
proceed by evaluating its memory footprint as a function of
scalability and by offering an attempt to quantify this behavior.
We also elaborate on our methodology and our experimental
setup.

Our study aims to expose the behavior of applications’
memory allocation patterns as the applications scale. If appro-
priate, we can pinpoint specific application components which
contribute to the inefficient use of memory thereby degrading

the overall application performance. Our goal is to give a
detailed profile of the application’s components and by using
our methodology we can potentially help steer critical future
optimization. In this paper we do not make any claims about
memory performance bottleneck manifestations.

The rest of the article is organized as follows: in Section II
we will discuss related work and elaborate why scalability
is a very important topic and we will present studies that
complement this work. In Section III we will explain how our
tools work and provide examples of collected data, and how
to interpret the graphical representation of data. In Section
IV we present a step by step analysis methodology for the
application as well its accompanying message passing library.
We conclude with tables showing regression models for the
application and library as well as their sub-modules. In Section
V we will summarize our findings and conclude the paper
by offering future research directions as well as advise of
potential memory bottlenecks likely to manifest as a result
of scaling.

II. RELATED WORK

Studying application performance encompasses a broad and
extensively studied research area. It is well understood that ap-
plication performance is the product of software and hardware
that contribute to the application’s overall performance. An
application’s execution time depends on the application’s main
code including any additional run-time system and library
components or modules.

The research area of software performance is vast and
ranges from addressing code-path optimizations, algorithm
optimizations, to fine-grain memory layout optimizations. Per-
formance and optimization research of HPC systems and
HPC applications are undoubtedly addressing the memory
aspects. This can range from memory usage, memory locality
analysis, to memory footprints. Specifically, research in the
area of memory scalability typically focuses on observing
an application’s overall memory consumption with respect to
the growing number of processing elements. This research
is generally facilitated using various tools such as Pin[2],
Valgrind[3], Vampir Trace[4], PAPI hardware counters [5], or
others. The majority of these tools as well the majority of
related studies focus, however, on observing and explaining
the overall memory consumption as a function of increased
number of processing cores and seldom touch on identifying
the root causes of a growing memory footprint. The detailed
understanding of a software’s memory footprint is thus left
to the developers who are deeply engaged in the development
cycle. The studies range from studying relatively small shared-
memory SPEC OpenMP benchmarks [6], [7] to detailed stud-
ies of message passing interfaces such as MPICH2 [8], [9].
It is important to note that scalability analysis and memory
consumption of widely used libraries such as OpenMPI has
been extensively studied. The conclusions of such studies if
convincing enough often nudge developers into redesigning
their applications to facilitate the ever-increasing core count
[10], [11].

Modern large-scale HPC system already consist of several
hundred thousand cores, and it can be argued that as we
approach the Exa-scale era the core count will likely be in the
billions. Thus it is of vital importance to continue to study the
effects of application’s memory-scalability and develop models
for future systems. Moreover, the current set of performance
monitoring tools suffer from similar memory usage scalability
problems, thus it is also increasingly important to address
and engage with tool-developers to develop tools for Exa-
scale system analysis. There are several efforts addressing the
scalability of application performance monitoring tools such
as WMTools [12], or by using built-in modules to help analyze
codes such as MPI T interface [13].

III. ANALYSIS FRAMEWORK

A. Memory Allocation Tracing

To complete this study we modified our in-house tools
to generate the needed data, and developed a set of in-
house post-processing tools for analysis purposes. Our main
data collection tool is based on the Valgrind instrumentation
framework [3] and a modified version of our memory-tracing
tool, Gleipnir [14]. Gleipnir’s unique ability to trace and map
allocations to objects makes Gleipnir an ideal candidate tool.
However, since we are not interested in generating the entire
memory-transaction stream we modifed Gleipnir to make it
faster and easier to use. We have previously studied the
scalability of our tracing-tool in [1] and concluded that for the
purposes of this study it meets our needs. The modified output
of the tool is a trace of memory allocation and deallocation
function calls mapped to an application’s internal objects.
We can choose to logically group our objects or create tree-
like directory structures in order to identify root allocation
modules.

X,1,MALLOC,018dcee70,196608,/lustre/atlas1/stf010/
proj-shared/janjust/OLCF/coral-benchmarks/LSMS_3_
rev237/include,Matrix_hpp_97,0

X,1,FREE,018dcee70,196608,Matrix_hpp_97,0

Fig. 1: An example malloc()/free() trace line.

Figure 1 shows a sample trace-line produced by our tool.
The trace consists of intercepted allocation/deallocation func-
tion calls annotated with CSV meta-data. For example, in
Figure 1 we can observe an intercepted malloc() call. The trace
shows the malloc()’s returned pointer address 0x018dcee70,
the calls originating directory ../LSMS 3 rev237/include, the
originating file and line number Matrix hpp 97, and finally the
instance of the allocated object 0. An object instance denotes
the number of allocated objects, in this case this is the first
instance of this object. Similarly, in the trace we will find
deallocation functions, e.g. free(). The deallocation trace-line’s
meta-data consist of the pointer address of the to-be-freed ob-
ject, the object name Matrix hpp 97, and the objects instance.
Note that tracking oject allocation/deallocation instances may

be benefecial if we want to study potential fragmentation
issues.

The tool generates a separate trace-file for every processing
element (PE) or simply process. Thus we must post-process
all trace-files in order to account for all memory related
allocation/deallocation activities during an application’s run-
time. Because Valgrind is a binary instrumentation tool, simi-
lar to a virtual-machine, it does not provide run-time cycle
accurate information. In order to get any time references
we must use the number of instructions. Valgrind operates
on a set of instructions known as super-blocks SBs. An SB
consists of no more than 50 instructions. Thus, we can get
an idea of timing by measuring the number of continuous
superblocks. This, often overlooked information, is important
because in order to understand an application’s memory usage,
and allocation/deallocation patterns we must get a sense of
when they occur with respect to the total running time. Figure
2 shows a sample trace snippet of two malloc calls interleaved
by approximately 120-200 instructions (4 SBs). Finally, the
tool concludes every trace-file with a summary of invoked
malloc family function calls, shown in Figure 3.

X,1,MALLOC,00d46ab80,24,/autofs/na4_sw/rhea/ \
openmpi/1.6.5/rhel6.4_gnu4.7.1/source/opal/ \
class,opal_object_c_122,0
X,1,SB_ENTRY
X,1,SB_ENTRY
X,1,SB_ENTRY
X,1,SB_ENTRY
X,1,MALLOC,00d46abc0,80,/autofs/na4_sw/rhea/ \
openmpi/1.6.5/rhel6.4_gnu4.7.1/source/opal/ \
class,opal_object_c_202,0

Fig. 2: An example malloc() with superblocks trace line.

B. Post-processing and Analysis

The set of post-processing tools consists of various scripts
to analyze and aggregate the collected data into meaningful
metrics. For example we can find the average number of
allocation and deallocation calls for every object size, or
the average life-time for every object size. We can choose
to logically group or categorize individual objects based on
our findings. We can also produce a high-level view of the
application’s memory usage data as we scale. This includes
analyzing memory allocation patterns, peak memory usage,
and object life-time analysis per process. We can then further
categorize the memory usage based on application components
e.g. the originating libraries.

The generated data and metrics allows us to reason about
potential memory usage problems and provide a high-level
view of the major memory usage contributors. However, using
our trace meta-data we can drill into the root causes of memory
usage and allocation patterns. Finally, the fine-grain break-
down of memory usage statistics comprises dissemination
on a per object basis. The final step in our post-processing
mechanism is to run a function-fit script to generate a model
of object growth. The generated data is necessary in order to

establish regression models on individual objects. We argue
that this information gives application developers insights into
the potential hazards that may arise as their software scales.

X,STATS
total_lines: 157337

flush_at: 18446744073709551615
total_flushes: 1

malloc calls: 57881
calloc calls: 2558
realloc calls: 672

free calls: 50943

Instructions: 0
Loads: 0
Stores: 0

Modifies: 0
--

Fig. 3: A malloc et al. summary for every trace-file.

C. Memory Allocation and Usage Patterns

Dynamic memory allocation and memory management is a
ubiquitous process in virtually all computing systems. Due to
the strain on the memory system high-performance applica-
tions are especially sensitive to memory mismanagement and
over-allocation of memory objects. A good memory allocation
scheme, and by implication good memory allocation man-
agement, must carefully consider the properties of standard
memory allocators as well as the impact of memory allocation
on the overall system performance. The nature of dynamic
memory requests make allocation algorithms complex and it
has been shown that for any allocation algorithm there exists
a worst-case allocation pattern [15].

Long running application such as HPC applications are
likely to be severely affected by allocation patterns. The study
in [15] offers a review and critique of well known allocation
algorithms. It also shows some well known allocation patterns.
As a general rule most application will experience three
distinct allocation patterns:

1) Peak memory allocation is observed when memory is
continuously allocated and freed in short bursts. If the
application shuffles objects of varying sizes this behavior
can lead to high external fragmentation.

2) Plateau memory allocation is observed when applica-
tions allocate constant blocks of memory and frees
the memory at the end. We expect that most high-
performance applications will observe this type of al-
location pattern.

3) Ramp memory allocation pattern is observed in appli-
cations that continuously allocate memory resulting in
a steady increase in memory usage. If the memory re-
quests exceed available system resources the application
will either run out of space or cause heavy memory
swaps.

Figure 4 illustrates what a potential application’s allocation
pattern may look like. Note that the figure only shows a high-

level view of a single process split into memory usage cat-
egories of: Application, Communication library (OpenMPI),
and Other−reserved for allocated but unknown fragments of
memory. The x-axis shows the number of allocations, and
the y-axis shows the number of currently allocated bytes.
In this example we can observe that during the majority
of allocation/deallocation events the application maintained
a constant memory consumption1. In the final stages of the
allocation pattern we notice a burst of memory usage in both
the application and the MPI library. The burst in memory usage
could be an indicator of a distinct phase in the application’s
execution.

 0

 1x10
7

 2x10
7

 3x10
7

 4x10
7

 5x10
7

 6x10
7

 7x10
7

 8x10
7

 9x10
7

 0 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 80000

 85000

 90000

 95000

 100000

 105000

 110000

 115000

 120000

 125000

 130000

 135000

 140000

 145000

 150000

 155000

 160000

 165000

 170000

 175000

 180000

 185000

 190000

 195000

 200000

 205000

 210000

M
e
m

o
ry

 (
b
y
te

s
)

Execution (No. of Allocations)

Total Other Application OpenMPI

Fig. 4: Memory allocation pattern example.

In order to understand the memory usage, scalability, and
efficiency in terms of scalability we ask the following ques-
tions:

1) Which objects are the primary drivers of memory usage?
2) Do all processes exhibit similar allocation patterns?
3) Does peak or average memory usage change with respect

to scalability?
4) If 3) is true, can we reason about which objects are

the primary drivers of the overall memory usage as a
function of scalability and how fast do they grow?

As a final note, we stress that memory allocation effects are
intensified in parallel applications because of the added com-
plexity. Therefore any application whose memory behavior is
a function of scale most carefully analyze its memory usage
in order to avoid potential bottlenecks..

IV. SCALABILITY ANALYSIS

A. Experimental setup

We conducted our memory scalability analysis using
ORNL’s Rhea system. Rhea is a (512)-node commodity-type
Linux cluster. Each of Rhea’s nodes contain two 8-core 2.0
GHz Intel Xeon processors with Hyper-Threading and 64GB
of main memory. Rhea is connected to the OLCF’s 32PB
high performance Lustre filesystem ”Atlas”. For purposes of

1A more careful analysis of Figure 4 shows that during the execution several
smaller blocks are allocated and deallocated in short bursts; however, due to
the high-level view this behavior is hidden to the naked eye.

this study we chose the LSMS [16] benchmark from the set
of CORAL-benchmarks. Because of the benchmarks ease of
deployment and scalability LSMS is a code that characterize
both single node performance and full system scalability.

B. Total Peak Memory Usage

We start by observing the application peak memory perfor-
mance as we scale the application from 1 to 128 nodes. Figure
5 shows the application’s total memory usage as well as the
major memory contributors. We categorized the main memory
usage components based on their origin. In this case we have
only two: the application and the OpenMPI library. We can
observe from Figure 5 that the overall memory consumption
is decreasing. This is to be expected since we are employing
strong scaling. That is, we do not increase the problem size
with the number of nodes. Notice that while overall memory
consumption is decreasing, the communication library’s mem-
ory footprint is increasing. This too is expected because of
the added complexity when communicating with an increased
number of processing elements. Our question is thus: are all
application’s objects decreasing as a function of scale, and
which objects of the OpenMPI library are increasing and how
quickly?

 0

 5x10
8

 1x10
9

 1.5x10
9

 2x10
9

 2.5x10
9

 3x10
9

0 16 32 64 128
256

512
1024

2048

P
e
a
k
 M

e
m

o
ry

 (
b
y
te

s
)

Processing Elements (PEs)

other openmpi Total Application

Fig. 5: Total peak memory usage.

C. Application Peak Memory

We will start by analyzing the application’s major memory
footprint contributors. For this purpose we can categorize the
memory allocation origin and plot the results. The LSMS’
benchmark directory structure is shown in Table I. We will
use the directory structure as basis in order to determine the
main drivers of memory footprint as well observe any changes
in allocation frequency and size as a function of scale. We
found that the major memory contributors originates from the
/include directory.

Figure 6 show the peak memory usage of all objects
originating from the /include sub directory. We notice that
the memory footprint reduces significantly as we increase the
number of processing elements almost identical to what we
observe in Figure 5. However, even with memory decay over
the number of processing elements, can we determine if any

objects are in fact growing due to the added complexity of
more processing elements?

LSMS / src / Core
| Potential
| Communication
| TotalEnergy
| SingleSite
| Misc
| etc.
/ include
/ lua

TABLE I: LSMS directory structure

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

0 16 32 64 128
256

512
1024

2048

P
e
a
k
 M

e
m

o
ry

 (
b
y
te

s
)

Processing Elements (PEs)

LSMS_include

Fig. 6: Peak memory usage (LSMS/include).

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

16 32 64 128
256

504
1007

1952

P
e
a
k
 M

e
m

o
ry

 (
b
y
te

s
)

Processing Elements (PEs)

Matrix_hpp Array3d_hpp

Fig. 7: Peak memory usage (main objects).

Figure 7 shows objects from the /include directory further
categorized based on their file of origin. These objects are
named ”Matrix hpp”, and ”Array3d hpp”. Note that these
represent the files of the originating blocks, in theory we can
drill even further to determine exactly which objects they are
based on the originating function and source-code line number;
however, as we will show later, in this example this is not
necessary in order to understand the application’s memory
footprint.

For most practical purposes we can already observe the
application’s scalability memory footprint behavior. However

we must also consider smaller objects whose memory footprint
behavior may go unnoticed. In this example these objects
originate from various sources of the directory structure. We
have isolated these objects into: /lua, /src/{Core, Potential,
Communication, TotalEnergy, etc. } sub-directories. The peak
memory usage of these objects is shown in Figure 8. We
can observe a nearly constant memory consumption for all
remaining objects rendering this application highly scalable.
In fact, to our knowledge the only memory bottleneck that
may cause this application to under-perform is the amount of
available memory per node.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

0 16 32 64 128
256

512
1024

2048

P
e
a
k
 M

e
m

o
ry

 (
b
y
te

s
)

Processing Elements (PEs)

Other LSMS_src_Potential LSMS_src_Madelung LSMS_src_Core LSMS_lua

Fig. 8: Peak memory usage (smaller memory allocations).

Object Regression, f(x) = r2 r

src VORPOL 960298.79 + 3.71 × x 0.372 0.610
src Core 117964.54 + 1.71 × x 0.771 0.878

Other 184820.81 + 0.97 × x 0.259 0.509
src MultipleScattering 74812.35 + 0.18 × x 0.855 0.925

src Madelung 196656.03 + 0.17 × x 0.248 0.498
src TotalEnergy 67296.12 + 0.05 × x 0.470 0.685

src Communication 65532.75 + 0.01 × x 0.770 0.877
src Main 8214.09 + −0.00 × x 0.063 0.251

src Potential 76719.11 + −1.91 × x 0.243 0.493
lua 27337.28 + −0.40 × x 0.268 0.518

include 1.77 × 109 + −687024.04 × x 0.268 0.518

TABLE II: Application sub-directories regression table.

Table II shows the regression fit table for the major sub-
directory components. The fastest growing component is the
src/VORPOL module, followed by objects in src/Core. Notice
that observations in Figure 8 show that most smaller objects
remain fairly constant; however, the regression table shows us
that they are growing in fact.

In Figure 9 we can observe the memory allocation pattern
for a single process during the application’s execution. The
y-axis shows the current amount of allocated memory in
bytes, the x-axis shows the number of allocations. We can
clearly observe the allocation pattern for the larger object.
However, we can also observe a large number of allocations
and deallocations for smaller objects. Generally this is an
undesired behavior, because a large number of allocations
and deallocations can lead to external memory fragmentation.
Moreover, depending on the allocator’s performance a large
number of reallocations can severely degrade performance,

especially for long running applications. While we only show
a single process allocation and – minding that for obvious
reasons it would be impractical to show for every process
from the running process pool – we also noticed that for most
processes the behavior shown in Figure 9 is uniform. That
is to say, virtually all processing elements observe the same
allocation pattern.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 0 500
 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

M
e
m

o
ry

 (
b
y
te

s
)

Execution (No. of Allocations)

LSMS_src_Core
LSMS_src_Madelung
LSMS_src_Potential

Other

LSMS_include
LSMS_lua

LSMS_src_Main
LSMS_src_TotalEnergy

LSMS_src_Communication
LSMS_src_VORPOL

LSMS_src_MultipleScattering

Fig. 9: Memory usage during process execution (main objects,
single process).

In Figure 10 we show the memory allocation pattern for
smaller objects by omitting allocated objects from /include. We
can clearly observe the allocation frequency. The allocation
pattern shown in Figure 10 is an example of peak memory
allocation pattern.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 500
 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

M
e
m

o
ry

 (
b
y
te

s
)

Execution (No. of Allocations)

LSMS_src_Core
LSMS_src_Madelung
LSMS_src_Potential

Other

LSMS_lua
LSMS_src_Main

LSMS_src_TotalEnergy
LSMS_src_Communication

LSMS_src_VORPOL
LSMS_src_MultipleScattering

Fig. 10: Memory usage during process execution (without
main objects, single process).

The general rule on allocation patterns is that smaller objects
are allocated and deallocated more frequently than larger
objects [15]. This can also be an indicator of an object’s
life-time. In order to test this, we formulated our plots to
show object’s average life-time vs. their size. In Figure 11 we
show the average lifetime in superblocks versus the objects
size. It is somewhat puzzling that larger objects, presumably
objects that comprise the /include category are experiencing a
relatively short average life-time. Similarly, in Figure 12 we

show the number of allocation/deallocations for specific object
sizes. We can observe that smaller objects have a significantly
smaller number of allocation and deallocations occurring. This
behavior is consistent with Figure 10. We are still unsure as to
why we are experiencing a short life-time behavior on larger
objects and continue to investigate.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

8 1
6

2
4

2
5

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
9

4
0

4
2

4
8

5
1

5
6

6
4

7
2

8
0

9
3

9
6

1
1

2
1

2
0

1
2

8
1

6
0

1
6

2
2

2
4

2
4

0
2

5
6

3
2

0
3

3
6

5
1

2
6

1
6

6
4

0
7

2
0

7
8

4
1

0
2

4
1

2
0

0
1

2
8

0
1

5
3

6
1

5
6

8
2

0
4

8
2

0
8

0
2

5
6

0
4

0
9

6
8

0
3

2
8

1
9

2
8

4
0

8
8

4
1

6
1

2
2

8
8

1
6

1
9

2
1

6
3

8
4

1
6

8
1

6
1

6
8

3
2

1
9

6
0

0
2

0
7

2
0

2
9

9
7

6
3

3
6

3
2

6
5

5
3

6
6

7
3

2
8

7
8

4
0

0
1

3
4

5
2

8
1

5
6

8
0

0
1

6
7

1
9

2
1

9
6

6
0

8
2

5
9

0
7

2
2

6
2

1
4

4
4

7
0

4
0

0
3

7
7

1
0

4
0

A
v
e
ra

g
e
 l
if
ti
m

e
 (

S
u
p
e
rB

lo
c
k
s
)

Objects (bytes)

Fig. 11: Object’s average life-time.

 0

 100

 200

 300

 400

 500

 600

 700

8 1
6

2
4

2
5

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
9

4
0

4
2

4
8

5
1

5
6

6
4

7
2

8
0

9
3

9
6

1
1

2
1

2
0

1
2

8
1

6
0

1
6

2
2

2
4

2
4

0
2

5
6

3
2

0
3

3
6

5
1

2
6

1
6

6
4

0
7

2
0

7
8

4
1

0
2

4
1

2
0

0
1

2
8

0
1

5
3

6
1

5
6

8
2

0
4

8
2

0
8

0
2

5
6

0
4

0
9

6
8

0
3

2
8

1
9

2
8

4
0

8
8

4
1

6
1

2
2

8
8

1
6

1
9

2
1

6
3

8
4

1
6

8
1

6
1

6
8

3
2

1
9

6
0

0
2

0
7

2
0

2
9

9
7

6
3

3
6

3
2

6
5

5
3

6
6

7
3

2
8

7
8

4
0

0
1

3
4

5
2

8
1

5
6

8
0

0
1

6
7

1
9

2
1

9
6

6
0

8
2

5
9

0
7

2
2

6
2

1
4

4
4

7
0

4
0

0
3

7
7

1
0

4
0

N
u
m

b
e
r

o
f
c
a
lls

Objects (bytes)

Allocations Frees

Fig. 12: Object’s number of allocations/deallocations.

D. OpenMPI Peak Memory

Unlike the memory behavior of the main application, the
OpenMPI library’s memory footprint is a function of scale.
That means, that due to the control structures which must
be allocated in order to allow communication of various
processing elements the memory footprint of the library is
increasing. This behavior is visible in the overall memory
footprint figure, Figure 5. Similarly to the previous subsection
we can decompose the components of the overall memory
consumption by sub-directory structure. In OpenMPI we find
three distinct memory consumers. The Open run-time system
(ORTE), Open Portable Access Layer (OPAL), and OpenMPI
(OPMI). Figure 13 shows the memory footprint decomposition
based on those three modules.

In Figure 13 we can observe that all three modules expe-
rience an increase in peak memory usage with an increased

number of processes. The largest and fastest growing con-
tributor is the OMPI module. OPAL remains constant except
when the number of nodes doubles from 1024 PEs (64 nodes)
to 2048 PEs (128 nodes). Albeit smaller, ORTE’s memory
consumption also increases.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

0 16 32 64 128
256

512
1024

2048

P
e
a
k
 M

e
m

o
ry

 (
b
y
te

s
)

Processing Elements (PEs)

other orte opal ompi

Fig. 13: Peak memory usage (openmpi).

object regression r2 r
ompi y = 25560598.851 + 2906.177× x 0.971 0.985
opal y = 8237864.787 + 952.509× x 0.777 0.882
orte y = 14114.224 + 552.774× x 0.999 1.000

other y = −4.259 + 0.504× x 0.912 0.955

TABLE III: OpenMPI subdirectories regression table.

Similarly to the previous sub-section we can show Open-
MPI’s memory allocation pattern as a function of time. Figure
14 shows the memory allocation pattern for the OpenMPI
library for a single process. We can observe a spike in
memory consumption by the OMPI module. This can be an
indication of a communication phase in the application. Recall
that we previously stated that allocation patterns are uniform
across processing elements. While that was true for the main
application’s objects, OpenMPI has different behavior. We
noticed that certain individual tracefiles are different in size
(See tracefile structure in Figure 4. This can mean one of
two things: 1) The process runs longer, meaning that more
superblocks are processed, or 2) There are more allocation
and deallocation calls taking place.

Table III shows the regression formulas derived from our
data. It shows that all modules have relatively strong growth
and thus are likely to exert heavy memory usage when scaled
to Exa-scale. As we explained earlier we can further distill
into individual modules to find the running culprits of memory
usage as well as memory growth.

Our analysis shows that when the application started ex-
ecuting on multiple nodes we found one processes whose
tracefile is larger relative to other processes, meaning that the
process is performing additional allocation and deallocation
calls. From previous figures we can observe that OpenMPI’s
peak-memory consumption increases significantly when exe-
cuting on multiple nodes (Figure 5). This behavior is expected

because of the added computational requirements to coordinate
messages across multiple nodes. The reason of why this is
happening is outside the scope of this paper, however, for
reference we included Figure 15 that shows the seemingly
abnormal behavior. Specifically the Figure shows that this
process’ OpenMPI memory consumption is growing linearly.
There can be various reasons behind this behavior; however,
we must stress that this peak memory abnormality does not
negatively impact overall peak memory usage. This is because
the scripts that aggregate our data will discard or average any
peak-memory outliers.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 0 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 170000

 180000

 190000

 200000

 210000

 220000

 230000

 240000

 250000

 260000

 270000

 280000

 290000

 300000

 310000

 320000

 330000

 340000

 350000

 360000

M
e
m

o
ry

 (
b
y
te

s
)

Execution (Allocations)

ORTE OMPI OPAL

Fig. 14: Memory usage during process execution (OMPI,
ORTE, OPAL, single process).

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 0 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 240000

 260000

 280000

 300000

 320000

 340000

 360000

 380000

 400000

 420000

 440000

 460000

 480000

 500000

 520000

 540000

 560000

 580000

 600000

 620000

M
e
m

o
ry

 (
b
y
te

s
)

Execution (Allocations)

ORTE OMPI OPAL

Fig. 15: Memory usage during process execution (OMPI,
ORTE, OPAL, single process).

Table IV shows the derived regression formulas of object
groups that stem from the OMPI module. An object group is a
logical grouping of individual object allocation per originating
file or function. We can observe that the largest contributor
to object growth is the btl openib endpoint c file, followed
by object groups bml base btl c, pml ob1 comm c, etc. The
reasons behind the object growth is beyond this paper; how-
ever, we hope that our methodology for memory efficiency as
a function of scale analysis may yield an interesting way of
studying software memory footprints.

Object Regression, f(x) = r2 r

btl openib endpoint c −16945.79 + 1743.03 × x 1.000 1.000
bml base btl c −3443.84 + 377.17 × x 1.000 1.000

pml ob1 comm c −1978.89 + 242.80 × x 1.000 1.000
ompi free list c 2369880.18 + 241.47 × x 0.677 0.823

mpool rdma module c 22725836.32 + 178.43 × x 0.284 0.533
btl openib proc c −1416.56 + 140.39 × x 1.000 1.000

btl openib connect oob c 61311.70 + 42.20 × x 0.714 0.845
btl tcp proc c 730.29 + 25.14 × x 1.000 1.000

allocator bucket alloc c 241836.98 + 22.60 × x 0.185 0.430
coll tuned module c 414.86 + 16.76 × x 1.000 1.000
coll basic module c −137.14 + 16.76 × x 1.000 1.000

bml r2 c −73.14 + 16.76 × x 1.000 1.000
btl openib component c 28189.19 + 4.07 × x 0.632 0.795

coll tuned allreduce c 1863.49 + −1.25 × x 0.354 0.595
btl openib connect rdmacm c 906.20 + −0.00 × x 0.037 0.193

rcache vma component c 664.00 + 0.00 × x 1.000 1.000
mpool rdma component c 656.00 + 0.00 × x 1.000 1.000
dpm base common fns c 117.00 + 0.00 × x 1.000 1.000

coll tuned bcast c 11.21 + 0.00 × x 0.035 0.187
btl sm component c 16.00 + 0.00 × x 1.000 1.000

btl openib mca c 245.00 + 0.00 × x 1.000 1.000
btl openib lex c 82002.00 + 0.00 × x 1.000 1.000
btl openib fd c 368.00 + 0.00 × x 1.000 1.000

allocator bucket c 319.79 + −0.00 × x 0.035 0.187
btl openib ip c 9772.00 + 0.00 × x 1.000 1.000

btl openib async c 32.00 + 0.00 × x 1.000 1.000
mpool sm component c 322.00 + 0.00 × x 0.192 0.438

btl openib connect base c 279.00 + 0.00 × x 1.000 1.000
proc c −256.85 + 25.32 × x 1.000 1.000

pml base select c 48.00 + 0.00 × x 1.000 1.000
btl self component c 8.00 + 0.00 × x 1.000 1.000
btl tcp component c 912.00 + 0.00 × x 1.000 1.000

btl sm c 2435.79 + −0.00 × x 0.035 0.187
pml base open c 7.00 + 0.00 × x 1.000 1.000
btl openib ini c 5627.00 + 0.00 × x 1.000 1.000
btl base mca c 280.00 + 0.00 × x 1.000 1.000
pml v output c 123.07 + 0.00 × x 0.208 0.456

coll tuned topo c 444.40 + −0.00 × x 0.912 0.955
btl openib c 50880.12 + −0.00 × x 0.764 0.874

TABLE IV: OpenMPI OMPI regression table.

Object Regression, f(x) = r2 r
oob tcp msg c 14160.46 + 573.46× x 0.997 0.999

grpcomm base modex c −2463.98 + 317.05× x 1.000 1.000
nidmap c −62.55 + 8.37× x 1.000 1.000

session dir c 1272.25 + 0.00× x 0.511 0.715
orte dt packing fns c 4.00 + 0.00× x 1.000 1.000

oob tcp c 256.00 + 0.00× x 1.000 1.000
name fns c 124.31 + 0.00× x 0.714 0.845
proc info c 135.94 + 0.00× x 0.235 0.485

rml oob contact c 264.83 + 0.00× x 0.419 0.648
rml base contact c 64.46 + 0.00× x 0.472 0.687

orte dt unpacking fns c 8.00 + 0.00× x 1.000 1.000
rml oob send c 32.00 + 0.00× x 1.000 1.000
rml oob recv c 96.00 + 0.00× x 1.000 1.000

rml oob component c 128.00 + 0.00× x 1.000 1.000
oob tcp addr c 256.00 + 0.00× x 1.000 1.000

orte mca params c 169.00 + 0.00× x 1.000 1.000

TABLE V: OpenMPI ORTE regression table.

Table V shows the ORTE module’s object growth. Here
too we can observe that in fact some objects have peak
memory usage as function of scale. Similarly, we have also
analyzed and summarized regression functions for objects that
originated from the OPAL module, shown in Table VI.

V. CONCLUSIONS

Understanding application’s memory scalability is important
for any application that targets Exa-scale. Even current appli-

Object Regression, f(x) = r2 r

opal object h 18879.44 + 2792.00 × x 1.000 1.000
dss unpack c 19499.00 + 44.04 × x 0.944 0.972

opal pointer array c 9662.07 + 30.44 × x 1.000 1.000
dss internal functions c 38027.87 + 10.80 × x 0.981 0.991

argv c 1376.61 + 2.37 × x 0.823 0.907
output c 307.33 + 0.01 × x 0.456 0.676

opal hash table c 127776.39 + −0.04 × x 0.757 0.870
opal datatype optimize c 2208.00 + 0.00 × x 1.000 1.000
timer linux component c 568.00 + 0.00 × x 1.000 1.000

topology c 11520.86 + 0.00 × x 0.365 0.604
topology-xml c 26412.86 + 0.00 × x 0.365 0.604

slist c 32.00 + 0.00 × x 1.000 1.000
opal convertor c 664.00 + 0.00 × x 1.000 1.000
opal progress c 32.00 + 0.00 × x 1.000 1.000
opal params c 115.00 + 0.00 × x 1.000 1.000

opal value array h 152.00 + 0.00 × x 1.000 1.000
signal c 152.00 + 0.00 × x 1.000 1.000

lt alloc c 438.00 + 0.00 × x 1.000 1.000
if c 800.00 + 0.00 × x 1.000 1.000

epoll c 928.00 + 0.00 × x 1.000 1.000
cpuset c 54296.00 + 0.00 × x 1.000 1.000
event c 1600.00 + 0.00 × x 1.000 1.000

dss register c 471.00 + 0.00 × x 1.000 1.000
distances c 0.00 + 0.00 × x 1.000 1.000

private h 25056.00 + 0.00 × x 1.000 1.000
path c 4.00 + 0.00 × x 1.000 1.000

os dirpath c 32816.00 + 0.00 × x 1.000 1.000
net c 40.00 + 0.00 × x 1.000 1.000

mca base param c 96613.14 + −0.00 × x 0.191 0.437
mca base components open c 2756.90 + 0.00 × x 0.757 0.870

opal free list c 30039.41 + −0.00 × x 0.122 0.350
opal datatype create c 2016.00 + 0.00 × x 1.000 1.000

keyval lex c 82002.00 + 0.00 × x 1.000 1.000
os path c 193.98 + 0.00 × x 0.546 0.739

basename c 96.21 + 0.00 × x 0.556 0.746
opal value array c 138992.00 + 0.00 × x 1.000 1.000

opal bitmap c 3.02 + 0.13 × x 1.000 1.000
memory linux ptmalloc2 c 8388640.00 + 0.00 × x 1.000 1.000

keyval parse c 568.00 + 0.00 × x 1.000 1.000
mca base open c 306.05 + 0.00 × x 0.228 0.478

carto base graph c 7.00 + 0.00 × x 1.000 1.000
topology-linux c 32856.00 + 0.00 × x 1.000 1.000

shmem mmap module c 4.00 + 0.00 × x 1.000 1.000
installdirs base expand c 1318.00 + 0.00 × x 1.000 1.000

opal object c 9519.62 + −0.00 × x 0.540 0.735
mca base component compare c 115.00 + 0.00 × x 1.000 1.000

ltdl c 32937.00 + 0.00 × x 1.000 1.000

TABLE VI: OpenMPI OPAL regression table.

cation’s which are developed for current system may benefit
from understanding the memory efficiency using methodolo-
gies present in this paper. Because most application’s run on
multiple systems with different memory footprint and memory
hierarchies. This makes our methodology and tools developed
for this study of special interest for HPC applications and
developers who must have efficient memory scalability built
in, or planning on targeting future systems.

As part of this study we developed a modified version of
our tracing tool as well as engaged with industry partners
to develop a more robust mechanism to run codes at an
even greater number of cores. Similarly, this study forms a
solid base for more in-depth research required to form more
rigorous memory scalability modeling. The goal of this paper
is to present a methodology to study memory efficiency as a
function of scalability and to present a mechanism (or tool) to
trace memory allocation patterns.

We believe that such information is of vital interest to the
broader scientific community and welcome future collabo-

rations on specific applications to study memory efficiency.
Finally, a very preliminary and worrisome projection of the
memory footprint using the regression formulas, but ignoring
topology and density, for the current two largest systems is
shown in Table VII.

Titan Tianhe-2 Hypothetical
Objects 300k cores 384k cores 100m cores

src VORPOL 20 MB 23 MB 372 MB
ompi 897 MB 1.14 GB 290 GB
opal 293 MB 374 MB 95 GB
orte 166 MB 212 MB 69 GB

TABLE VII: Per core memory footprint projections using
regression tables in the context of LSMS.

REFERENCES

[1] D. W. Tomislav Janjusic, Christos Kartsaklis, “Scalability analaysis of
gleipnir, a memory tracing tool, on titan,” in Cray User Group (CUG),
Lugano, Switzerland, May 2014.

[2] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. Janapa, and R. K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in In Program-
ming Language Design and Implementation. ACM Press, 2005, pp.
190–200.

[3] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” SIGPLAN Not., vol. 42, pp. 89–100,
June 2007. [Online]. Available: http://doi.acm.org/10.1145/1273442.
1250746

[4] M. S. Muller, A. Knupfer, M. Jurenz, M. Lieber, H. Brunst, H. Mix,
and W. E. Nagel, “Developing scalable applications with vampir,
vampirserver and vampirtrace.” in PARCO, ser. Advances in Parallel
Computing, vol. 15. IOS Press, 2007, pp. 637–644.

[5] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A portable interface
to hardware performance counters,” in In Proceedings of the Department
of Defense HPCMP Users Group Conference, 1999, pp. 7–10.

[6] D. Molka, R. Schöne, D. Hackenberg, and M. S. Müller, “Memory per-
formance and spec openmp scalability on quad-socket x86 64 systems,”
in Proceedings of the 11th International Conference on Algorithms and
Architectures for Parallel Processing - Volume Part I, ser. ICA3PP’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 170–181.

[7] K. Fürlinger, M. Gerndt, and J. Dongarra, “Scalability analysis of
the spec openmp benchmarks on large-scale shared memory multi-
processors,” in Proceedings of the 7th International Conference on
Computational Science, Part II, ser. ICCS ’07. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 815–822.

[8] D. Goodell, W. Gropp, X. Zhao, and R. Thakur, “Scalable memory use
in mpi: A case study with mpich2,” in Proceedings of the 18th European
MPI Users’ Group Conference on Recent Advances in the Message
Passing Interface, ser. EuroMPI’11. Berlin, Heidelberg: Springer-
Verlag, 2011, pp. 140–149.

[9] O. Perks, D. Beckingsale, A. Dawes, J. Herdman, C. Mazauric, and
S. Jarvis, “Analysing the influence of infiniband choice on openmpi
memory consumption,” in High Performance Computing and Simulation
(HPCS), 2013 International Conference on, July 2013, pp. 186–193.

[10] M. Luo, H. Wang, J. Vienne, and D. K. Panda, “Redesigning mpi
shared memory communication for large multi-core architecture,”
Comput. Sci., vol. 28, no. 2-3, pp. 137–146, May 2013. [Online].
Available: http://dx.doi.org/10.1007/s00450-012-0210-8

[11] P. Shamis, R. Graham, M. Venkata, and J. Ladd, “Design and imple-
mentation of broadcast algorithms for extreme-scale systems,” in Cluster
Computing (CLUSTER), 2011 IEEE International Conference on, Sept
2011, pp. 74–83.

[12] O. Perks, S. D. Hammond, S. J. Pennycook, and S. A. Jarvis, “Wm-
tools - assessing parallel application memory utilisation at scale,” in
Proceedings of the 8th European Conference on Computer Performance
Engineering, ser. EPEW’11. Berlin, Heidelberg: Springer-Verlag, 2011,
pp. 148–162.

[13] R. Rajachandrasekar, J. Perkins, K. Hamidouche, M. Arnold, and D. K.
Panda, “Understanding the memory-utilization of mpi libraries: Chal-
lenges and designs in implementing the mpi t interface,” in Proceedings
of the 21st European MPI Users’ Group Meeting, ser. EuroMPI/ASIA
’14. New York, NY, USA: ACM, 2014, pp. 97:97–97:102.

[14] T. Janjusic, K. M. Kavi, and B. Potter, “International conference on
computational science, iccs 2011 gleipnir: A memory analysis tool,”
Procedia CS, vol. 4, pp. 2058–2067, 2011.

[15] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, “Dynamic
storage allocation: A survey and critical review.” Springer-Verlag, 1995,
pp. 1–116.

[16] “Future proofing wl-lsms: Preparing for first principles thermodynamics
calculations on accelerator and multicore architectures,” in Cray User

Group (CUG), Fairbanks, Alaska, May 2011.

