Abstract—Memory scalability is an enduring problem and bottleneck that plagues many parallel codes. Parallel codes designed for High Performance Systems are typically designed over the span of several, and in some instances 10+, years. As a result, optimization practices which were appropriate for earlier systems may no longer be valid and thus require careful optimization consideration. Specifically, parallel codes whose memory footprint is a function of their scalability must be carefully considered for future exa-scale systems.

In this paper we present a methodology and tool to study the memory scalability of parallel codes. Using our methodology we evaluate an application’s memory footprint as a function of scalability, which we coined memory efficiency, and describe our results. In particular, using our in-house tools we can pinpoint the specific application components which contribute to the application’s overall memory foot-print (application data-structures, libraries, etc.).

I. INTRODUCTION

Memory scalability is an enduring problem and bottleneck that plagues many parallel codes. Parallel codes designed for High Performance Systems are typically designed over the span of several, and in some instances over 10, years. As a result, optimization practices which were appropriate for earlier systems may no longer be valid and thus require careful optimization consideration. Specifically, parallel codes whose memory footprint is a function of their scalability must be carefully considered for future exa-scale systems.

The memory footprint is defined as the amount of memory that an application uses during its runtime. This includes the total amount of various application segments (code, data), as well as the allocation of dynamic and stack memories. We define memory efficiency as the metric describing the application’s memory usage with respect to scalability. For example, an application whose memory footprint grows non-linearly may be described as having low memory efficiency.

Ideally, an application’s memory footprint will remain constant with respect to scalability. Memory efficiency is not to be confused with memory usage. An application’s memory usage is a metric that describes how well an application is using the allocated memory. In this paper we do not focus on memory usage but rather memory allocation patterns as a function of scale.

In order to study the memory behavior of parallel codes we rely on several in-house tools. We developed and tweaked our tools specifically for this study and hope that their use will continue to be useful for other researchers too. Our tools rely on an instrumentation framework and a plug-in tool described here [1]. Using our tool we can pinpoint the specific application components which contribute to the application’s overall memory footprint (eg. application data-structures, libraries, etc.) and trace their liveness. For terminology accuracy we will define an object to be any allocated chunk of memory. An object group is a logical representation of two or more allocated objects that stem from the same module, sub-directory, or function. We stated earlier that our tools are based on binary instrumentation frameworks capable of tracing into applications’ sub-structures and track their memory usage. This information is surprisingly underutilized as it does give great insight into the memory behavior of specific application phases and allows us to track the usage and footprint patterns. As a direct benefit we can observe if particular data-structures are being over-/ or under-utilized and if they are prone to increase in size at scale.

In this paper we present a methodology of a memory scalability study of parallel codes particularly focusing on dynamic memory behavior patterns, as well as memory overheads with respect to scalability. In order to make our case we have chosen an application that is known to have scalable performance, we proceed by evaluating its memory footprint as a function of scalability and by offering an attempt to quantify this behavior. We also elaborate on our methodology and our experimental setup.

Our study aims to expose the behavior of applications’ memory allocation patterns as the applications scale. If appropriate, we can pinpoint specific application components which contribute to the inefficient use of memory thereby degrading...
the overall application performance. Our goal is to give a
detailed profile of the application’s components and by using
our methodology we can potentially help steer critical future
optimization. In this paper we do not make any claims about
memory performance bottleneck manifestations.

The rest of the article is organized as follows: in Section II
we will discuss related work and elaborate why scalability
is a very important topic and we will present studies that
complement this work. In Section III we will explain how our
tools work and provide examples of collected data, and how
to interpret the graphical representation of data. In Section
IV we present a step by step analysis methodology for the
application as well as its accompanying message passing library.

We conclude with tables showing regression models for the
application and library as well as their sub-modules. In Section
V we will summarize our findings and conclude the paper
by offering future research directions as well as advise of
potential memory bottlenecks likely to manifest as a result
of scaling.

II. RELATED WORK

Studying application performance encompasses a broad and
extensively studied research area. It is well understood that
application performance is the product of software and hardware
that contribute to the application’s overall performance. An
application’s execution time depends on the application’s main
code including any additional run-time system and library
components or modules.

The research area of software performance is vast and
ranges from addressing code-path optimizations, algorithm
optimizations, to fine-grain memory layout optimizations. Per-
formance and optimization research of HPC systems and
HPC applications are undoubtedly addressing the memory
aspects. This can range from memory usage, memory locality
analysis, to memory footprint analysis. Specifically, research in the
area of memory scalability typically focuses on observing
an application’s overall memory consumption with respect to
the growing number of processing elements. This research is
generally facilitated using various tools such as Pin[2],
Valgrind[3], Vampir Trace[4], PAPI hardware counters [5], or
others. The majority of these tools as well the majority of
related studies focus, however, on observing and explaining
the overall memory consumption as a function of increased
number of processing cores and seldom touch on identifying
the root causes of a growing memory footprint. The detailed
understanding of a software’s memory footprint is thus left
to the developers who are deeply engaged in the development
cycle. The studies range from studying relatively small shared-
memory SPEC OpenMP benchmarks [6], [7] to detailed stud-
ies of message passing interfaces such as MPICH2 [8], [9].

It is important to note that scalability analysis and memory
consumption of widely used libraries such as OpenMPI has
been extensively studied. The conclusions of such studies if
convincing enough often nudge developers into redesigning
their applications to facilitate the ever-increasing core count
[10], [11].

Modern large-scale HPC system already consist of several
hundred thousand cores, and it can be argued that as we
approach the Exa-scale era the core count will likely be in the
billions. Thus it is of vital importance to continue to study the
effects of application’s memory-scalability and develop models
for future systems. Moreover, the current set of performance
monitoring tools suffer from similar memory usage scalability
problems, thus it is also increasingly important to address
and engage with tool-developers to develop tools for Exa-

scale system analysis. There are several efforts addressing the
scalability of application performance monitoring tools such
as WMTools [12], or by using built-in modules to help analyze
codes such as MPI_T interface [13].

III. ANALYSIS FRAMEWORK

A. Memory Allocation Tracing

To complete this study we modified our in-house tools
to generate the needed data, and developed a set of in-
house post-processing tools for analysis purposes. Our main
data collection tool is based on the Valgrind instrumentation
framework [3] and a modified version of our memory-tracing
tool, Gleipnir [14]. Gleipnir’s unique ability to trace and map
allocations to objects makes Gleipnir an ideal candidate tool.
However, since we are not interested in generating the entire
memory-transaction stream we modified Gleipnir to make it
faster and easier to use. We have previously studied the
scalability of our tracing-tool in [1] and concluded that for the
purposes of this study it meets our needs. The modified output
of the tool is a trace of memory allocation and deallocation
function calls mapped to an application’s internal objects.

We can choose to logically group our objects or create tree-
like directory structures in order to identify root allocation
modules.

<table>
<thead>
<tr>
<th>X,1,MALLOC,018dcee70,196608,</th>
<th>/lustre/atlas1/stf010/</th>
<th>proj-shared/janjust/OLCF/coral-benchmarks/LSMS_3_</th>
<th>rev237/include,Matrix_hpp_97,0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X,1,FREE,018dcee70,196608,</td>
<td>Matrix_hpp_97,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1: An example malloc()/free() trace line.

Figure 1 shows a sample trace-line produced by our tool.
The trace consists of intercepted allocation/deallocation func-
tion calls annotated with CSV meta-data. For example, in
Figure 1 we can observe an intercepted malloc() call. The trace
shows the malloc()’s returned pointer address 0x018dcee70,
the calls originating directory ../LSMS_3_rev237/include, the
originating file and line number Matrix_hpp_97, and finally the
instance of the allocated object 0. An object instance denotes
the number of allocated objects, in this case this is the first
instance of this object. Similarly, in the trace we will find
deallocation functions, e.g. free(). The deallocation trace-line’s
meta-data consist of the pointer address of the to-be-freed ob-
ject, the object name Matrix_hpp_97, and the objects instance.
Note that tracking object allocation/deallocation instances may
be beneficial if we want to study potential fragmentation issues.

The tool generates a separate trace-file for every processing element (PE) or simply process. Thus we must post-process all trace-files in order to account for all memory related allocation/deallocation activities during an application’s runtime. Because Valgrind is a binary instrumentation tool, similar to a virtual-machine, it does not provide run-time cycle accurate information. In order to get any time references we must use the number of instructions. Valgrind operates on a set of instructions known as super-blocks SBs. An SB consists of no more than 50 instructions. Thus, we can get an idea of timing by measuring the number of continuous superblocks. This, often overlooked information, is important because in order to understand an application’s memory usage, and allocation/deallocation patterns we must get a sense of when they occur with respect to the total running time. Figure 2 shows a sample trace snippet of two malloc calls interleaved by approximately 120-200 instructions (4 SBs). Finally, the tool concludes every trace-file with a summary of invoked malloc family function calls, shown in Figure 3.

Fig. 2: An example malloc() with superblocks trace line.

B. Post-processing and Analysis

The set of post-processing tools consists of various scripts to analyze and aggregate the collected data into meaningful metrics. For example we can find the average number of allocation and deallocation calls for every object size, or the average life-time for every object size. We can choose to logically group or categorize individual objects based on our findings. We can also produce a high-level view of the application’s memory usage data as we scale. This includes analyzing memory allocation patterns, peak memory usage, and object life-time analysis per process. We can then further categorize the memory usage based on application components e.g. the originating libraries.

The generated data and metrics allows us to reason about potential memory usage problems and provide a high-level view of the major memory usage contributors. However, using our trace meta-data we can drill into the root causes of memory usage and allocation patterns. Finally, the fine-grain breakdown of memory usage statistics comprises dissemination on a per object basis. The final step in our post-processing mechanism is to run a function-fit script to generate a model of object growth. The generated data is necessary in order to establish regression models on individual objects. We argue that this information gives application developers insights into the potential hazards that may arise as their software scales.

```
X,STATS
  total_lines: 157337
  flush_at: 18446744073709551615
  total_flushes: 1
  malloc calls: 57881
  calloc calls: 2558
  realloc calls: 672
  free calls: 50943

  Instructions: 0
  Loads: 0
  Stores: 0
  Modifies: 0

--
```

Fig. 3: A malloc et al. summary for every trace-file.

C. Memory Allocation and Usage Patterns

Dynamic memory allocation and memory management is a ubiquitous process in virtually all computing systems. Due to the strain on the memory system high-performance applications are especially sensitive to memory mismanagement and over-allocation of memory objects. A good memory allocation scheme, and by implication good memory allocation management, must carefully consider the properties of standard memory allocators as well as the impact of memory allocation on the overall system performance. The nature of dynamic memory requests make allocation algorithms complex and it has been shown that for any allocation algorithm there exists a worst-case allocation pattern [15].

Long running application such as HPC applications are likely to be severely affected by allocation patterns. The study in [15] offers a review and critique of well known allocation algorithms. It also shows some well known allocation patterns. As a general rule most application will experience three distinct allocation patterns:

1) **Peak** memory allocation is observed when memory is continuously allocated and freed in short bursts. If the application shuffles objects of varying sizes this behavior can lead to high external fragmentation.

2) **Plateau** memory allocation is observed when applications allocate constant blocks of memory and frees the memory at the end. We expect that most high-performance applications will observe this type of allocation pattern.

3) **Ramp** memory allocation pattern is observed in applications that continuously allocate memory resulting in a steady increase in memory usage. If the memory requests exceed available system resources the application will either run out of space or cause heavy memory swaps.

Figure 4 illustrates what a potential application’s allocation pattern may look like. Note that the figure only shows a high-
level view of a single process split into memory usage categories of: Application, Communication library (OpenMPI), and Other—reserved for allocated but unknown fragments of memory. The x-axis shows the number of allocations, and the y-axis shows the number of currently allocated bytes. In this example we can observe that during the majority of allocation/deallocation events the application maintained a constant memory consumption\(^1\). In the final stages of the allocation pattern we notice a burst of memory usage in both the application and the MPI library. The burst in memory usage could be an indicator of a distinct phase in the application’s execution.

Fig. 4: Memory allocation pattern example.

In order to understand the memory usage, scalability, and efficiency in terms of scalability we ask the following questions:

1) Which objects are the primary drivers of memory usage?
2) Do all processes exhibit similar allocation patterns?
3) Does peak or average memory usage change with respect to scalability?
4) If 3) is true, can we reason about which objects are the primary drivers of the overall memory usage as a function of scalability and how fast do they grow?

As a final note, we stress that memory allocation effects are intensified in parallel applications because of the added complexity. Therefore any application whose memory behavior is a function of scale most carefully analyze its memory usage in order to avoid potential bottlenecks.

C. Application Peak Memory

We will start by analyzing the application’s major memory footprint contributors. For this purpose we can categorize the memory allocation origin and plot the results. The LSMS’ benchmark directory structure is shown in Table I. We will use the directory structure as basis in order to determine the main drivers of memory footprint as well observe any changes in allocation frequency and size as a function of scale. We found that the major memory contributors originates from the include directory.

Fig. 5: Total peak memory usage.

\(^1\)A more careful analysis of Figure 4 shows that during the execution several smaller blocks are allocated and deallocated in short bursts; however, due to the high-level view this behavior is hidden to the naked eye.

this study we chose the LSMS [16] benchmark from the set of CORAL-benchmarks. Because of the benchmarks ease of deployment and scalability LSMS is a code that characterize both single node performance and full system scalability.

B. Total Peak Memory Usage

We start by observing the application peak memory performance as we scale the application from 1 to 128 nodes. Figure 5 shows the application’s total memory usage as well as the major memory contributors. We categorized the main memory usage components based on their origin. In this case we have only two: the application and the OpenMPI library. We can observe from Figure 5 that the overall memory consumption is decreasing. This is to be expected since we are employing strong scaling. That is, we do not increase the problem size with the number of nodes. Notice that while overall memory consumption is decreasing, the communication library’s memory footprint is increasing. This too is expected because of the added complexity when communicating with an increased number of processing elements. Our question is thus: are all application’s objects decreasing as a function of scale, and which objects of the OpenMPI library are increasing and how quickly?

C. Application Peak Memory

We will start by analyzing the application’s major memory footprint contributors. For this purpose we can categorize the memory allocation origin and plot the results. The LSMS’ benchmark directory structure is shown in Table I. We will use the directory structure as basis in order to determine the main drivers of memory footprint as well observe any changes in allocation frequency and size as a function of scale. We found that the major memory contributors originates from the include directory.

Figure 6 show the peak memory usage of all objects originating from the include sub directory. We notice that the memory footprint reduces significantly as we increase the number of processing elements almost identical to what we observe in Figure 5. However, even with memory decay over the number of processing elements, can we determine if any
objects are in fact growing due to the added complexity of more processing elements?

TABLE I: LSMS directory structure

<table>
<thead>
<tr>
<th>Object</th>
<th>Regression, f(x) =</th>
<th>r²</th>
<th>(\varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>src_VORPOL</td>
<td>1.902987.79 + 6.71 \times x</td>
<td>0.732</td>
<td>0.610</td>
</tr>
<tr>
<td>src_Core</td>
<td>1.17964.54 + 1.71 \times x</td>
<td>0.791</td>
<td>0.878</td>
</tr>
<tr>
<td>Other</td>
<td>18.4520.81 + 0.97 \times x</td>
<td>0.259</td>
<td>0.509</td>
</tr>
<tr>
<td>src_MultipleScattering</td>
<td>74812.36 + 0.18 \times x</td>
<td>0.853</td>
<td>0.925</td>
</tr>
<tr>
<td>src_Madelung</td>
<td>196656.03 + 0.17 \times x</td>
<td>0.248</td>
<td>0.498</td>
</tr>
<tr>
<td>src_TotalEnergy</td>
<td>0.2946.12 + 0.98 \times x</td>
<td>0.498</td>
<td>0.685</td>
</tr>
<tr>
<td>src_Communication</td>
<td>65532.76 + 0.01 \times x</td>
<td>0.787</td>
<td>0.957</td>
</tr>
<tr>
<td>src_Main</td>
<td>8214.09 + 6.00 \times x</td>
<td>0.063</td>
<td>0.251</td>
</tr>
<tr>
<td>src_Potential</td>
<td>76719.11 + 1.91 \times x</td>
<td>0.243</td>
<td>0.493</td>
</tr>
<tr>
<td>lua</td>
<td>24739.89 + 0.40 \times x</td>
<td>0.298</td>
<td>0.818</td>
</tr>
<tr>
<td>include</td>
<td>1.77 \times 10^7 + 687024.04 \times x</td>
<td>0.268</td>
<td>0.518</td>
</tr>
</tbody>
</table>

TABLE II: Application sub-directories regression table.

Fig. 6: Peak memory usage (LSMS/include).

Fig. 7: Peak memory usage (main objects).

Fig. 8: Peak memory usage (smaller memory allocations).

we must also consider smaller objects whose memory footprint behavior may go unnoticed. In this example these objects originate from various sources of the directory structure. We have isolated these objects into: /lua, /src/{Core, Potential, Communication, TotalEnergy, etc. } sub-directories. The peak memory usage of these objects is shown in Figure 8. We can observe a nearly constant memory consumption for all remaining objects rendering this application highly scalable. In fact, to our knowledge the only memory bottleneck that may cause this application to under-perform is the amount of available memory per node.

Figure 7 shows objects from the /include directory further categorized based on their file of origin. These objects are named "Matrix_hpp", and "Array3d_hpp". Note that these represent the files of the originating blocks, in theory we can drill even further to determine exactly which objects they are based on the originating function and source-code line number; however, as we will show later, in this example this is not necessary in order to understand the application’s memory footprint.

For most practical purposes we can already observe the application’s scalability memory footprint behavior. However
especially for long running applications. While we only show a single process allocation and – minding that for obvious reasons it would be impractical to show for every process from the running process pool – we also noticed that for most processes the behavior shown in Figure 9 is uniform. That is to say, virtually all processing elements observe the same allocation pattern.

In Figure 10 we show the memory allocation pattern for smaller objects by omitting allocated objects from \texttt{/include}. We can clearly observe the allocation frequency. The allocation pattern shown in Figure 10 is an example of peak memory allocation pattern.

The general rule on allocation patterns is that smaller objects are allocated and deallocated more frequently than larger objects [15]. This can also be an indicator of an object’s life-time. In order to test this, we formulated our plots to show object’s average life-time vs. their size. In Figure 11 we show the average lifetime in superblocks versus the objects size. It is somewhat puzzling that larger objects, presumably objects that comprise the \texttt{/include} category are experiencing a relatively short average life-time. Similarly, in Figure 12 we show the number of allocation/deallocations for specific object sizes. We can observe that smaller objects have a significantly smaller number of allocation and deallocations occurring. This behavior is consistent with Figure 10. We are still unsure as to why we are experiencing a short life-time behavior on larger objects and continue to investigate.

D. OpenMPI Peak Memory

Unlike the memory behavior of the main application, the OpenMPI library’s memory footprint is a function of scale. That means, that due to the control structures which must be allocated in order to allow communication of various processing elements the memory footprint of the library is increasing. This behavior is visible in the overall memory footprint figure, Figure 5. Similarly to the previous subsection we can decompose the components of the overall memory consumption by sub-directory structure. In OpenMPI we find three distinct memory consumers. The Open run-time system (ORTE), Open Portable Access Layer (OPAL), and OpenMPI (OMPI). Figure 13 shows the memory footprint decomposition based on those three modules.

In Figure 13 we can observe that all three modules experience an increase in peak memory usage with an increased
number of processes. The largest and fastest growing contrib-
utor is the OMPI module. OPAL remains constant except when the number of nodes doubles from 1024 PEs (64 nodes) to 2048 PEs (128 nodes). Albeit smaller, ORTE’s memory consumption also increases.

because of the added computational requirements to coordinate messages across multiple nodes. The reason of why this is happening is outside the scope of this paper, however, for reference we included Figure 15 that shows the seemingly abnormal behavior. Specifically the Figure shows that this process’ OpenMPI memory consumption is growing linearly. There can be various reasons behind this behavior; however, we must stress that this peak memory abnormality does not negatively impact overall peak memory usage. This is because the scripts that aggregate our data will discard or average any peak-memory outliers.

Similarly to the previous sub-section we can show OpenMPI’s memory allocation pattern as a function of time. Figure 14 shows the memory allocation pattern for the OpenMPI library for a single process. We can observe a spike in memory consumption by the OMPI module. This can be an indication of a communication phase in the application. Recall that we previously stated that allocation patterns are uniform across processing elements. While that was true for the main application’s objects, OpenMPI has different behavior. We noticed that certain individual tracefiles are different in size (See tracefile structure in Figure 4. This can mean one of two things: 1) The process runs longer, meaning that more superblocks are processed, or 2) There are more allocation and deallocation calls taking place.

Table III shows the regression formulas derived from our data. It shows that all modules have relatively strong growth and thus are likely to exert heavy memory usage when scaled to Exa-scale. As we explained earlier we can further distill into individual modules to find the running culprits of memory usage as well as memory growth.

Our analysis shows that when the application started ex-
acting on multiple nodes we found one processes whose tracefile is larger relative to other processes, meaning that the process is performing additional allocation and deallocation calls. From previous figures we can observe that OpenMPI’s peak-memory consumption increases significantly when executing on multiple nodes (Figure 5). This behavior is expected

<table>
<thead>
<tr>
<th>object</th>
<th>regression</th>
<th>r²</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>omni</td>
<td>y = 25560959.851 + 2966.177 × x</td>
<td>0.971</td>
<td>0.985</td>
</tr>
<tr>
<td>opal</td>
<td>y = 8237864.787 + 952.509 × x</td>
<td>0.777</td>
<td>0.882</td>
</tr>
<tr>
<td>orle</td>
<td>y = 14114.224 + 852.774 × x</td>
<td>0.999</td>
<td>1.000</td>
</tr>
<tr>
<td>other</td>
<td>y = −4.259 + 0.504 × x</td>
<td>0.912</td>
<td>0.955</td>
</tr>
</tbody>
</table>

TABLE III: OpenMPI subdirectories regression table.

Fig. 13: Peak memory usage (openmpi).

Fig. 14: Memory usage during process execution (OMPI, ORTE, OPAL, single process).

Fig. 15: Memory usage during process execution (OMPI, ORTE, OPAL, single process).

Table IV shows the derived regression formulas of object groups that stem from the OMPI module. An object group is a logical grouping of individual object allocation per originating file or function. We can observe that the largest contributor to object growth is the btl_openib_endpoint.c file, followed by object groups bml_base_btl.c, pml_obl_comm.c, etc. The reasons behind the object growth is beyond this paper; however, we hope that our methodology for memory efficiency as a function of scale analysis may yield an interesting way of studying software memory footprints.
Table V shows the ORTE module’s object growth. Here too we can observe that in fact some objects have peak memory usage as function of scale. Similarly, we have also analyzed and summarized regression functions for objects that originated from the OPAL module, shown in Table VI.

V. CONCLUSIONS

Understanding application’s memory scalability is important for any application that targets Exa-scale. Even current applications’ which are developed for current system may benefit from understanding the memory efficiency using methodologies present in this paper. Because most application’s run on multiple systems with different memory footprint and memory hierarchies. This makes our methodology and tools developed for this study of special interest for HPC applications and developers who must have efficient memory scalability built in, or planning on targeting future systems.

As part of this study we developed a modified version of our tracing tool as well as engaged with industry partners to develop a more robust mechanism to run codes at an even greater number of cores. Similarly, this study forms a solid base for more in-depth research required to form more rigorous memory scalability modeling. The goal of this paper is to present a methodology to study memory efficiency as a function of scalability and to present a mechanism (or tool) to trace memory allocation patterns.

We believe that such information is of vital interest to the broader scientific community and welcome future collabora-
ations on specific applications to study memory efficiency. Finally, a very preliminary and worrisome projection of the memory footprint using the regression formulas, but ignoring topology and density, for the current two largest systems is shown in Table VII.

<table>
<thead>
<tr>
<th>Objects</th>
<th>Titan 300k cores</th>
<th>Tianhe-2 384k cores</th>
<th>Hypothetical 100m cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>src_VORPOL</td>
<td>20 MB</td>
<td>23 MB</td>
<td>372 MB</td>
</tr>
<tr>
<td>mpi</td>
<td>897 MB</td>
<td>1.14 GB</td>
<td>290 GB</td>
</tr>
<tr>
<td>opal</td>
<td>293 MB</td>
<td>374 MB</td>
<td>95 GB</td>
</tr>
<tr>
<td>orte</td>
<td>166 MB</td>
<td>222 MB</td>
<td>69 GB</td>
</tr>
</tbody>
</table>

TABLE VII: Per core memory footprint projections using regression tables in the context of LSMS.

REFERENCES

