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Abstract—With SMW 7.2.UP02 and CLE 5.2.UP02, Cray
released its platform monitoring and management API called
CAPMC (Cray Advanced Platform Monitoring and Control).
This API is initially directed toward workload manager ven-
dors to enable power-aware scheduling and resource manage-
ment on Cray XC-series systems and beyond. In this paper,
we give an overview of CAPMC features, applets, and their
driving use cases. We further describe the RESTful architecture
of CAPMC and its security model. Finally, we preview future
enhancements to CAPMC in support of in-band control and
additional use cases.
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I. I NTRODUCTION

Cray Advanced Platform Monitoring and Control
(CAPMC) was first described in [1] in section IV-A “Work-
load manager (external) power monitoring and management
interface”. Initial CAPMC functionality shipped with the
SMW 7.2.UP02 and CLE 5.2.UP02 releases in the fall of
2014. At the time of this writing, CAPMC functionality has
been or is being integrated into the offerings of workload
management (WLM) software products that support Cray
XC systems. With the monitoring and control functionality
exposed with the CAPMC service, Cray’s WLM partners are
enabled to develop innovative solutions to tackle customers’
power and energy problems and provide them with powerful
telemetry data from their systems for system administrators
and users alike.

This work is organized as follows: In section II, we
outline some of the use-case drivers considered during the
initial design and development of CAPMC. These use cases
provide the base functionality needed by WLMs to deliver
high value power monitoring and management functionality
on Cray systems. In section III, we describe the backend
infrastructure, security framework, and client frontend of
the CAPMC service. Section IV reviews the features of the
client frontend and their parameters and output. Finally, in
section V, we describe the future direction of CAPMC.

II. CAPABILITIES AND USE CASES

The development of CAPMC was initially driven by the
need to enable WLM software partners to provide cus-

tomers with advanced power monitoring and management
capabilities. In [2], the authors present a detailed set of
power/energy related use cases for HPC systems. In [3], the
authors describe “Power/Energy Measurement and Control
Scenarios” of interest for the Trinity system.

In this section we will first describe some basic use cases
and then look at how they may be combined to support
higher level use cases.

In all of the following use cases the actor is the WLM. The
text will focus on a brief description of the use-case scope,
the basic flow that the WLM software would be expected to
take, and other considerations where appropriate. There are
likely other actors that could drive some of these use cases.

A. System power monitoring

Capability: The CAPMC ability to access minimum,
maximum, and average system- and cabinet-level power data
for a specified time period.

Use case:WLM periodic collection of system-level power
consumption for workload-aware power utilization tracking,
capacity planning, and WLM driven analytics and logging.

Code flow for periodic system power monitoring:
1) The WLM selects a timing interval, likely in the range

of five minutes to an hour.
2) The WLM sets up an internal timer, or otherwise

schedules periodic polling of system power usage data
at the chosen interval.

3) The WLM calls CAPMC and requests system power
data for the chosen interval.

4) CAPMC validates the caller’s credentials and returns
the requested data in a JSON-formatted data structure.

5) The WLM validates the return code in the response,
then extracts data from the JSON-formatted data struc-
ture.

6) The WLM updates internal logs, data structures, and
external clients with updated system power informa-
tion.

Alternate flows or considerations:The WLM may want
or need to track power at the cabinet level, for all or selected
sets of cabinets in the system. CAPMC provides cabinet-
level power data with the same infrastructure and calling



convention as used to query system power. The cabinet-level
call returns minimum, maximum, and average power data for
each cabinet in the system.

B. Node power/energy monitoring

Capability: CAPMC supplies the ability to collect node-
level energy data for selected nodes in the system for a
specified time period. CAPMC also provides flexibility to
WLMs in how the nodes are specified, how the time period
is specified, and what level of abstraction the data is returned
in.

Use case:WLM on-demand collection of power and
energy statistics for a running or recently completed appli-
cation.

Code flow for responding to a user request for appli-
cation energy statistics from a generic WLM:

1) The WLM receives a request for power/energy statis-
tics data from a user for a running application.

2) The WLM validates that the user making the request is
authorized to access data for the requested application.

3) The WLM calls CAPMC requesting application-level
energy statistics for all of the nodes assigned to the
application.

4) CAPMC validates the request, then gathers the re-
quired data and calculates the requested energy statis-
tics, returning data to the WLM in a JSON response
data structure.

5) The WLM validates the return code in the response,
then extracts data from the JSON formatted data struc-
ture and returns relevant data to the user in whatever
format is specified in the WLMs API.

Alternate flows or considerations:In the example above,
the WLM may be calling CAPMC on behalf of an unpriv-
ileged user. It is the WLM’s responsibility to implement
policy on behalf of the site with respect to who should
or should not have access to the data. We expect WLM
software to excel at handling such site-level policy. CAPMC
provides the capability to access the data and is not intended
to implement policy.

The current release of CAPMC provides three applets
that support requests for node-level data at different levels
of abstraction. The applets are described in more detail in
section IV. All node-level energy data currently supported
by CAPMC are collected out-of-band by Cray’s Hardware
Supervisory System (HSS). Their collection is not a source
of jitter or noise that could impact application performance.

C. Node power on / off control

Capability: CAPMC provides the ability to cleanly shut
down, then power off and power on, then reboot selected
compute nodes. This capability allows for WLM software to
manage the number of compute nodes that are ready to run
jobs. The WLM can use CAPMC to shut down and power off
idle nodes when they will not be needed for some reasonable

amount of time, and then request that they be powered on
and rebooted in time to be used when needed. In [4] this use
case is addressed from the SLURM WLM’s point of view.

Use case:The WLM dynamically manages a pool of
available idle compute nodes so that when possible there
is a configurable number of nodes ready to run new jobs at
all times, and that the number of idle nodes in the system
is not excessive.

Code flow (simplified) for managing a pool of idle
compute nodes:

1) Launch available workload until all pending jobs are
started, no idle nodes are available, or some other
resource constraint or limit is hit.

2) Place nodes that have just become “idle” back into the
idle pool.

3) If the pending-restart or pending-shutdown pools are
not empty, call into CAPMC for updated status on
nodes in the pending pools. Use the updated status
information returned by CAPMC to create a list of
nodes that are newly transitioned into the “ready” or
“off” states.

4) Place nodes that have just become “ready” into the
idle pool, and remove them from the “pending-restart”
pool.

5) Place nodes that have just become “off” into the
powered-off pool, and remove them from the pending-
shutdown pool.

6) If the number of nodes in the idle and pending-
restart pools is below a lower limit, and there are
nodes available in the powered-off pool, then call
CAPMC and request a configurable number of nodes
be powered on, placing those nodes into the restart-
pending pool.

7) If the number of nodes in the idle pool is above
an upper limit, and the scheduler is not waiting for
nodes to launch a large pending job (or a job that
will launch in the near future) then call CAPMC and
request a configurable number of nodes be shutdown
and powered off. Moving the requested nodes from
the idle pool into pending-restart pool.

Alternate flows or considerations: One consideration
worth mentioning with respect to the node power on/off
capability is the amount of time it takes to complete the op-
erations, and that latency’s impact on that capability’s usage.
CAPMC provides an applet that allows the WLM to query
information about expected latency and other parameters that
we expect to be useful when using this feature.

D. Power capping control

Capability: The CAPMC ability to support dynamically
managing node-level power capping of compute-nodes.

Use case:WLM support of a system with multiple job
queues, where each queue represents nodes that are capped
with a different maximum node-level power setting. The



WLM uses CAPMC to dynamically modify node power caps
when assign nodes to queues to match demand and site level
policy consideration.

Code flow illustrating an implementation with three
dynamically managed job queues:

1) Assume a system with a total of 1000 identically
configured compute nodes with a worst case power
draw of 400 watts and an idle power draw of 50 watts.

2) Assume a job queue named “unlimited” with no power
limit and an initial allocation of 0 compute nodes.

3) Assume a job queue named “300W” with a 300 watt
power limit and an initial allocation of 0 nodes.

4) Assume a job queue named “200W” with a 200 watt
power limit and an initial allocation of 1000 nodes.

5) Assume a site-level policy that charges users based
on total energy allocated to compute nodes assigned
to their jobs. That is, they get charged more for a 10
node job that runs for 10 minutes on the “unlimited”
queue than the same job running for 10 minutes on the
“300W” queue even if the actual power consumption
is the same.

6) Assume a site-level policy that gives preference to jobs
in the “200W” queue between 8:00 AM and 5:00 PM
on week days.

7) Each time the scheduler runs it can adjust the number
of nodes assigned to each of the three queues to meet
demand by calling CAPMC to adjust the power cap
settings for compute nodes that are reassigned.

8) The WLM calls CAPMC and collects job statistics
including energy used and average power per node,
then provides feedback to the user to help them select
the most cost effective queue for their next job run.

9) Over time data collected can be used to create more
queues, or to adjust the power cap settings of available
queues to match the needs of the site and it’s users.

Alternate flows or considerations: While the above
example is simple, it may be worth more investigation with
respect to making users more aware of job energy usage and
how awareness and pricing might affect system throughput
and total cost of ownership.

E. Power aware scheduling of an over-provisioned system

Capability: CAPMC enables WLMs to leverage dynamic
system power monitoring and control capabilities to manage
an over-provisioned system. In [5] and [6], the authors
describe over-provisioned systems and their related research.

Use case:The WLM schedules jobs in a power aware
manner that maximizes system productivity while preventing
total power consumption from exceeding a site imposed
maximum power limit. The maximum power limit in this
example is static, but in a production implementation the
limit would be expected to be adjusted over time. This use
case uses CAPMC system and node level power monitoring
and node-level power capping. The goal for power capping

in this example is to allow the scheduler to treat power as a
consumable resource. Power capping in this example is not
intended to limit job or workload performance.

Code flow example for power aware scheduling of an
over-provisioned system:

1) Assume a system operating under a 2 megawatt power
cap that has 8000 identical nodes with:

• Maximum application observed un-capped power
draw of 400 watts per node.

• Minimum usable node-level power cap of 200
watts per node.

• Idle power draw of 50 watts per node.
• Zero power draw when powered off.

The scheduler manages pools of idle and powered-off
nodes.

2) Assume a starting system state where:
• New jobs can be submitted with a requested power

cap (call it UPCAP). UPCAP is then not increased
by the scheduler.

• 2125 nodes are powered off.
• 1000 nodes are idle.
• 4875 nodes are allocated to running jobs.
• All running jobs are launched with nodes capped

at 400 watts.
• All available power is allocated.

3) Assume that the scheduler has access to system- and
job-level power data collected by periodically calling
CAPMC. The following power statistic are assumed
to be available to the scheduler:

• System-level minimum, average, and maximum
power data for rolling 24, 4, 1, and .25 hour
intervals.

• Per-job minimum, average, and maximum power
data for the job lifetime, and for 60, 30, 15, and
1 minute intervals.

• Per-job maximum remaining runtime (call it
RRT), likely via a policy limit at job launch time.

4) Top-of-loop:
5) Look at pending work and determine how aggressive

to be in lowering per-job power caps.
6) Calculate new power cap targets for all jobs using rules

like the following:
• If RRT ≤ 1 minute, do not update the job power

cap.
• If the job has been running≤ 1 minute, do not

update the job power cap.
• If the job’s power cap has been updated in the

past minute, do not update the job power cap.
• Target≤ 400 watt maximum.
• Target≤ UPCAP.
• Target≤ current power cap + 7 watts.
• Target≥ current power cap - 5 watts.
• Target≥ job lifetime average power + 10 watts.



• Target≥ job 60 minute average power + 7 watts.
• Target≥ job 30 minute average power + 5 watts.
• Target≥ job 15 minute average power + 4 watts.
• Target≥ job 1 minute average power + 4 watts.
• Target≥ 200 watt minimum.
• If aggressive power capping is selected, choose

the lowest valid target, otherwise choose the high-
est valid target power cap.

7) Apply updated power capping targets for all jobs.
Note that all nodes in multi-node jobs get the same
power cap. This step is also complicated in that any
adjustments that increase power cap levels must not
cause a violation of the system level power cap.

8) Manage idle and powered-off node pools.
9) If there is no new work that can be scheduled, goto

Top-of-loop.
10) Assign nodes to new jobs with the default 400 watt

power cap unless the user requested a lower power
cap.

11) Goto Top-of-loop.

Alternate flows or considerations: There are many
policy-driven choices to consider when managing over-
provisioned HPC systems. As the cost of compute-node
hardware drops in comparison with other costs in operating
HPC systems, the number and scale of over-provisioned
systems is expected to increase. This increase will drive con-
tinued need for innovation in both WLM software and the
monitoring and control capabilities provided by CAPMC.

III. A RCHITECTURE

To the outside world, CAPMC appears much like a typical
web services API operating over HTTP. Clients POST HTTP
requests containing payloads formatted in JavaScript Object
Notation (JSON) [7]. Internally CAPMC translates HTTP
API requests into platform monitoring and control operations
such as node boot, shutdown, power-cap set or get, job
profiling, or job-energy reporting.

CAPMC, the service, is implemented using standardized
off-the-shelf technology where applicable. Additionally, it
contains a custom bridge interface into the proprietary
Cray HSS.capmc, the script, is the remote command line
interface to CAPMC, the service. The client access script is
implemented in Python with the only dependency being the
Python 2 standard library. The high-level architecture of the
CAPMC service is pictured in Figure 1.

A. Remote Access

The officially supported client interface is the capmc
utility. However, the following shell command most clearly
demonstrates access control and the end-to-end communica-
tion path. The example presented in Figure 2 demonstrates
how a JSON-formatted object containing a node ID (nid)
list is posted via a third-party tool to the CAPMC service
handler which returns component state and result status.

shell:˜> curl \
-H ’Content-type: application/json’ \
-X POST --cacert certificate_authority.crt \
--cert client.crt --key client.key \
-d ’{"nids":[1,2,65]}’ \
https://<smw-hostname>:8443/capmc/get_node_status

{
"e": 0,
"err_msg": "",
"disabled": [65],
"ready": [1,2]

}

Figure 2: Example API call using curl

Additionally, the example presented in Figure 2 demon-
strates several key concepts. The “Content-type” header and
HTTP “POST” verb indicate to the server that there will be
an application-specific JSON payload in the request body.
The client side SSL library will verify that the server host
certificate was issued by the X.509 [8] authority identified in
the certificate_authority.crt PEM file, and that
the server certificate’s common name field matches the DNS
host name specified in the URL. Because a client certificate
and private key are also specified as command line options,
the server side SSL library will perform the same type of
validation on the specifiedclient.crt PEM file.

B. Security Considerations

The CAPMC HTTP server, nginx [9], is configured by
default to require SSL and reject connection requests which
do not supply a valid X.509 client certificate. All X.509
certificates must be validated against the preconfigured
authority. Therefore, only if both sides of the connection
successfully validate each other will the request be allowed
to proceed. This type of two-way authentication is a standard
capability build into most HTTP servers and clients such
as nginx, curl, Python’s standard library, or a typical web
browser.

The X.509 certificate authority is automatically generated
and configured at SMW install time using several invoca-
tions of OpenSSL and Cray specific setup scripts. The files
are unique to each installation. An additional host certificate
and private key are created for use with nginx, enabling
encrypted communications. A client access certificate and
private key are generated as well, for use with the remote
command line utility.

Ultimately it is the duty of the system administrator to
take appropriate security precautions when distributing and
configuring the client access private key file. For example,
a pass-phrase may be added to the private key before instal-
lation to a remote system if the files are to be transported
via an insecure medium. Upon deployment appropriate file
permissions must be set on the private key such that only the
intended user may have read access. All private keys must
remain private.



Figure 1: CAPMC Architecture

C. Command Line Interface

As previously mentioned, the officially supported com-
mand line interface is called capmc. Internally it operates
much as the command example using curl. It performs all
the same actions with respect to X.509 certificate validation,
encrypted communication, and JSON data structure passing.
The primary difference is that it can construct and transmit
appropriate JSON data structures based on user specified
command line arguments. The example presented in Figure
3 accomplishes the same task as in Figure 2, only it does
so with a much simpler syntax.

shell:˜> capmc node_status --nids=1-2,65
{

"e": 0,
"err_msg": "",
"disabled": [65],
"ready": [1,2]

}

Figure 3: Example API call using capmc

The simpler syntax is a direct result of having precon-
figured parameters with respect to X.509 certificate path
locations, the SMW service URL, and operation specific
command line argument parsing. The configuration syntax
demonstrated in Figure 4 conforms to JSON. All parameter
values are represented using the string data type.

shell:˜> cat /etc/opt/cray/capmc/capmc.json
{
"os_key":

"/etc/opt/cray/capmc/client.key",
"os_cert":

"/etc/opt/cray/capmc/client.crt",
"os_cacert":

"/etc/opt/cray/capmc/certificate_authority.crt",
"os_service_url":

"https://example-smw.us.cray.com:8443"
}

Figure 4: Example capmc client configuration file

For more advanced use cases or cases where third party
integrators may find it simpler to construct data structures

themselves, capmc supports reading the request payload via
standard input. The only required argument identifies the
resource which will handle the request. The example in
Figure 5 demonstrates the same request as in Figures 2 and
3 using standard input redirected from a string.

shell:˜> capmc json \
--resource=/capmc/get_node_status <<< \
’{"nids":[1,2,65]}’

{
"e": 0,
"err_msg": "",
"disabled": [65],
"ready": [1,2]

}

Figure 5: Example API call using capmc standard I/O

D. Application Server

The CAPMC server-side components utilize a widely
popular HTTP server, nginx. The CAPMC infrastructure
uses nginx in one of its common deployment roles. It
provides encryption and user authorization capabilities to
an independent, application-specific server. In this case,
that application-specific server is calledxtremoted. It is the
bridge between the external world and the proprietary Cray
HSS.

The two components, xtremoted and nginx, communicate
with one another over a UNIX domain stream socket using
an open protocol known as the Simple Common Gateway
Interface or SCGI [10]. The protocol allows interoperability
between off-the-shelf HTTP servers and long running state-
ful servers that don’t natively support HTTP, encryption, or
one of the many standardized HTTP authorization schemes.
Internally xtremoted is a simple command dispatcher. It
receives a request, parses the input parameters, completes
or rejects the request, and returns a response.

IV. A PPLETS

The CAPMC service implements multiple applets to meet
the use cases described in section II among others. In the
following we review the available applets in terms of their



usage incontrolling and monitoring the Cray system. As
discussed in the section III, the client for CAPMC service
is the capmc command [11]. Through the capmc command,
WLMs and other authorized software or users can execute
the following applets. Upon successful transmission of a
request to the CAPMC service, the capmc command awaits
a JSON-formatted response. That response always includes
an “e” number and an “errmsg” string. An “e” value
of zero represents success, while any non-zero values are
accompanied by a non-empty “errmsg” string describing
the failure or error.

A. Control Applets

Cray presents node-level control for powering on or off
compute nodes, setting node-level power caps, querying
node state information, and Cray- and site-specific CAPMC
service usage rules.

1) Node-level Power Controls:Given its knowledge of
the system’s job queues, WLMs may intelligently manage
power using node-level power controls. The simplest man-
agement may be to turn off compute nodes which may be
idle for a significant time interval. For this purpose, CAPMC
presents the WLMs with two applets:node on andnode off.

The node off applet cleanly shuts down and powers off
a specified set of nodes, while thenode on applet powers
on and boots a specified set of nodes into a usable state.
The node off and node on applets are implemented as
non-blocking operations, in that the service completes after
communication of the request to the system. These applets
only fail if that communication fails or invalid parametersare
detected. Only compute nodes may be controlled in this way.
Example invocations ofnode off andnode on are shown in
Figures 6 and 7, respectively.

shell:˜> capmc node_off -n 1-5,99
{

"e": 0
"err_msg": ""

}

Figure 6: Example usage ofnode off : Shutdown and power
off nodes 1, 2, 3, 4, 5, and 99.

shell:˜> capmc node_on -n 1-5,99
{

"e": 0
"err_msg": ""

}

Figure 7: Example usage ofnode on: Power on and boot
nodes 1, 2, 3, 4, 5, and 99.

2) Node-level State:Because thenode on and node off
applets are asynchronous in nature, Cray provides the
node statusapplet which can be used to return node states
for the system or a subset of specified nodes. Additionally,

given a filter, nodes may be queried by state. The states
available through this applet mirror those in the Cray HSS:
‘on’, ‘off’, ‘halt’, ‘standby’, ‘ready’, ‘diag’, ‘disabled’. Once
a node is gracefully shutdown and powered off using the
node off applet, that node is in the ‘off’ state. Once a node
is powered on and booted into a useable state, that node is
in the ‘ready’ state. An examplenode status invocation is
shown in Figure 3.

The node rules applet informs the third party software
about hardware (and perhaps site-specific) rules and tim-
ing constraints that allow for efficient and effective man-
agement of idle node resources. The data returned by
the node rules command informs the caller of how long
“on” and “off” operations should be expected to take,
the minimum amounts of time nodes should be left off
to reasonably save energy, and (optionally) limits on the
number of nodes that should be turned on or off. Cray
supplies values for these rules where appropriate, specifically
the expected latencies fornode on and node off and the
minimum amount of time a node should be off. Other values
like the maximum node counts fornode on or node off
and the maximum amount of time a node should be left
off are left unset. Site administration may customize these
values by editing therules.ini file on their SMW un-
der /opt/cray/hss/default/etc/xtremoted . It
is important to note that these rule values are not strictly
enforced by the software. Instead, they are meant to provide
guidelines for authorized callers in their use of the CAPMC
service. An examplenode rules invocation is shown in
Figure 8.

shell:˜> capmc node_rules
{

"e": 0,
"err_msg": "",
"latency_node_off": 60,
"latency_node_on": 600,
"max_off_req_count": -1,
"max_off_time": -1,
"max_on_req_count": -1,
"min_off_time": 900

}

Figure 8: Example usage ofnode rules: Query the rules for
node-level power control.

3) Node-level Power Capping Controls: The
get power cap capabilities, get power cap, and
set power cap applets allow for third-party software
management of node level power capping. These three
applets enable flexible, efficient node-level and accelerator-
level capabilities that can support multiple use cases without
enforcing policy.

Given a list of nodes, theget power cap capabilities
applet returns information about power capping capabilities,
controls, and valid ranges. These capabilities are returned
in a structured way where information is grouped for all



cases where the hardware is common. Thus, even though
the call may request capabilities for all of the compute
nodes in a system, the maximum response size is limited
to one group for each hardware node configuration in the
system, and all nodes in each group are listed. On current
two socket XC nodes, there is a single ‘node’ control that has
minimum/maximum range information in watts. Cray XC
nodes with accelerators have an additional ‘accel’ control
that also has minimum/maximum range information in watts.
An example invocation ofget power cap capabilities is
shown in Figure 9.

shell:˜> capmc get_power_cap_capabilities \
-n 761-763

{
"groups":[{

"name":
"01:000d:306f:00f0:0018:0080:0855:0000",
"desc":
"ComputeANC_HSW_240W_24c_128GB_2133_NoAccel",
"supply":425,
"host_limit_min":180,
"host_limit_max":360,
"static":0,
"powerup":140,
"controls":[{

"name":"node",
"desc":"Node manager control",
"min":180,
"max":360

}],
"nids":[

761,
762,
763

]
}],
"e":0,
"err_msg":""

}

Figure 9: Example usage ofget power cap capabilities:
Query power capping capabilities, controls, and valid ranges
for nodes 761 through 763.

The get power cap applet returns the power-capping
control(s) and current settings for all requested compute
nodes. Note that a power cap setting (value) of zero has a
special meaning of‘not-capped’. Theset power cap applet
allows the authorized caller to set the same controls that are
returned byget power cap within the minimum/maximum
constraints returned by getpower cap capabilities. Exam-
ple invocations ofget power cap and set power cap are
shown in Figures 10 and 11, respectively. If setting multiple
different power caps is desired, it is recommended that those
be set programmatically using thejson applet as shown
in Figure 5, which would allow third-party software to
pass its own JSON-formatted power cap request in a single
transaction with the CAPMC service.

shell:˜> capmc get_power_cap -n 761
{

"nids":[{
"nid":761,
"controls":[{

"name":"node",
"val":0

}]
}],

"e":0,
"err_msg":""

}

Figure 10: Example usage ofget power cap: Query the
existing power cap on node 761. A node power cap value
of zero means there is no cap set.

shell:˜> capmc set_power_cap -n 761 --node 220
{

"e":0,
"err_msg":""

}

Figure 11: Example usage ofset power cap: Set the node
power cap on node 761 to 220 watts.

B. Monitor Applets

Cray provides a number of flexible applets meant to query
useful power and energy statistics from the Power Manage-
ment Database (PMDB) [1] [12]. System-level applets report
power at system and cabinet levels. Node-level applets can
report energy statistics at node, job, and application levels.
Power is reported in watts, and energy is reported in joules.

1) System-level Monitoring Applets:WLMs and other
authorized software or users may want to check the overall
system’s use of power. WLM software might poll for this
type of system power data on each scheduling cycle, at
regular intervals, or on-demand from an interactive system
workload administrator. To facilitate this, the CAPMC ser-
vice offers two applets. Theget systempower applet is
used to access minimum, average, and maximum power
for the system over a window of time in the past. The
get systempower detailsapplet is used to request the same
statistics as getsystempower but for each of the cabinets in
the system. For both applets, the caller may supply a starting
time and window length. In the absence of the starting time
parameter, a default starting time of “now” minus the win-
dow length is used. If no window length is specified, default
window length is ten seconds. The ability to access historical
data is limited by the size of the system and the amount
of resources dedicated to the backing database (PMDB).
The maximum valid time window is one hour. Examples of
get systempower and getsystempower details calls are
shown in Figures 12 and 13, respectively.

2) Node-level Monitoring Applets: The
get node energy stats, get node energy and
get node energy counterapplets allow flexible querying to
node energy data by node list, job ID, or ALPS application



shell:˜> capmc get_system_power -w 600
{

"start_time":"2015-04-01 17:02:10",
"avg":5942,
"min":5748,
"max":6132,
"window_len":600,
"e":0,
"err_msg":""

}

Figure 12: Example usage ofget systempower: Query the
average, minimum, and maximum system power values over
the last five minutes.

shell:˜> capmc get_system_power_details \
-w 600 \
-s "2015-04-01 17:00:00"

{
"cabinets": [

{
"avg": 5941.3316666666669,
"max": 6170,
"min": 5695,
"x": 0,
"y": 0

}
],
"e": 0,
"err_msg": "",
"start_time": "2015-04-01 17:00:00",
"window_len": 600

}

Figure 13: Example usage ofget systempower details:
Query the average, minimum, and maximum power values
for each cabinet in the system over the five minutes prior to
2015-04-01 17:00:00. Cabinets are indexed by their x and y
coordinates.

ID (apid). For these commands, the flexibility starts with
the option of supplying an apid that the CAPMC service
can then use to generate node-list, start-time and end-time
information. The caller can also supply an apid or job
ID with explicit start time and end time options to get
information on a running application or job.

The get node energy stats applet returns total energy for
the selected nodes, average energy for nodes in the set,
standard deviation of energy for nodes in the set, two ordered
pairs of (node, energy) for the minimum and maximum
energy nodes, the duration of the interval in seconds, and
the node count. This output format is intended to be very
useful and efficient when dealing with large node counts,
as it can fully leverage the capabilities of the CAPMC
service to generate statistics. An example invocation of
get node energy stats is shown in Figure 14.

The get node energy applet takes the same user inputs as
get node energy stats but rather than returning aggregate
statistics, it returns the time window in seconds for the
queried set, the total node count, and an array of node/energy
data pairs with one element for each selected node. This

shell:˜> capmc get_node_energy_stats \
--jobid 627929.sdb

{
"e": 0,
"energy_avg": 88039.40178571429,
"energy_max": [

59,
102988

],
"energy_min": [

127,
15118

],
"energy_std": 24871.40549279,
"energy_total": 9860413,
"err_msg": "",
"nid_count": 112,
"time": 293.53360400000003

}

Figure 14: Example usage ofget node energy stats: Query
job energy statistics for job “627929.sdb”

output format scales with the number of selected nodes, and
allows the caller more flexibility in processing the energy
data. Both getnode energy and getnode energy stats ap-
plets handling of jobs and application timings account for
multiple time intervals for the job or application as would
be true in the case of suspended and resumed jobs and
applications. An example invocation of getnode energy is
shown in Figure 15.

shell:˜> capmc get_node_energy --apid 122232
{

"err_msg": "",
"nodes": [

{
"energy": 615,
"nid": 12

}
],
"e": 0,
"nid_count": 1,
"time": 7.3095230000000004

}

Figure 15: Example usage ofget node energy: Query node
energy values for a single-node aprun with apid 122232.

The get node energy counter applet requires an explicit
point in time and does not calculate energy used over a time
interval like the previous two applets. The data returned by
get node energy counter are the raw accumulated energy
counter values for each selected node. The raw accumulated
energy (snapshot) data for any given node are only useful
when compared to another snapshot for the same node. This
command places the most amount of work in the hands of
the caller but allows for the most flexibility. Using this call,
third-party software can track total energy of a set of nodes
and the energy usage of long running applications, where
the runtime of the application may be longer then the history
kept in the PMDB. This also would allow third-party WLM



software to directly deal with other advanced use cases like
suspend/resume, job migration, etc. Note that this interface
can not be used to access data at granularity finer than one
second. An example invocation of getnode energy counter
is shown in Figure 16.

shell:˜> capmc get_node_energy_counter \
-n 1008-1010 \
-t ’2015-04-01 23:45:00’

{
"e": 0,
"err_msg": "",
"nid_count": 3,
"nodes": [

{
"energy_ctr": 3865217,
"nid": 1008,
"time": "2015-04-01 23:45:00.39833-05"

},
{

"energy_ctr": 3998809,
"nid": 1009,
"time": "2015-04-01 23:45:00.39833-05"

},
{

"energy_ctr": 3919829,
"nid": 1010,
"time": "2015-04-01 23:45:00.39833-05"

}
]

}

Figure 16: Example usage ofget node energy counter:
Query the node accumulated energy counters on nodes 1008
through 1010 at time 2015-04-01 23:45:00.

V. ROADMAP

Roadmap considerations mentioned are subject to change,
but at this time are expected to become available in the next
nine to eighteen months.

Near-term additions to CAPMC fall into two categories.
The first is a set of platform controls targeting the ability
for WLM to manage hardware configuration settings in
upcoming blades. The ability for the WLMs to manage these
settings is very important because it allows customers to
maximize the value of their system by configuring hardware
to match the needs of diverse applications and work flows.
Details on all of the actual hardware controls for new blade
types are out of scope for this paper. We can however
indicate that one of the new CAPMC applets will allow
the WLM to reinitialize a node or list of nodes. This new
“reinitialize” applet would function in a similar way to:

1) Call CAPMC nodeoff.
2) Wait for the node(s) to transition to the off state.
3) Call CAPMC nodeon.

The reinitialize applet will enable the WLM to modify one
or more node hardware settings that require node BIOS
reinitialization and then make them take effect.

The second category is a set of in-band controls that
will allow WLMs to dynamically control maximum node

level c-states, as well as minimum and maximum node-
level p-states. These new in-band controls are planned as
the first Cray use of node-level controls based on the HPC
PowerAPI [13]. This initial support for the HPC PowerAPI
functionality on compute nodes will allow the WLM to
query c-state and p-state capabilities, read current c-state
and p-state limit settings, and write new c-state and p-state
limits.

There are many drivers for dynamic control of p-states.
The planned support in CAPMC for managing node-level p-
state minimum and maximum frequency will give flexibility
to WLM software. This new p-state limiting capability will
integrate cleanly with Cray’s current ALPS support for set-
ting a p-state via APBASIL or the aprun p-state=< freq >

command line options. We also believe this feature will
allow the WLM to set boundaries for future application
and/or run-time p-state controls, where the local node-level
actors should be constrained by the higher authority WLM
software. From a system power management prospective,
dynamic c-state and p-state limiting is an important control
for implementing system power-band management.

VI. CONCLUSION

In this work, we outlined some of the use cases that
drove the design and development of CAPMC. Further,
we described the underlying architecture and features – its
backend infrastructure, security framework, client frontend,
and applets. Finally we described forward-looking, near-
term additions to CAPMC.

Cray continues to invest heavily in providing and building
up novel power and platform management and monitoring
features. CAPMC is one of the fruits of that investment.
With this service, WLMs and authorized callers are able to
monitor and control Cray systems like never before. Power
budgets can be managed. System power can be monitored.
WLMs can communicate to users energy statistics for their
jobs and applications. It is our hope that this work provides
Cray customers and administrators with exciting new tools
to implement power policies through their chosen WLMs.
We also hope that through their WLMs, Cray users will
avail themselves of these capabilities providing novel ways
to look at their jobs, applications, and usage of the system
moving toward exascale.
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