
Resource Utilization Reporting, Two Year Update

Andrew Barry
Cray Inc.

Saint Paul, USA
e-mail: abarry@cray.com

Abstract—In the two years since Resource Utilization
Reporting was announced, half a dozen variants of the
software have been released as part of CLE releases.
Sequential releases have included additional plugins to
record a growing list of data points, as well as more output
plugins and controls for how the data is presented. This
document reviews the purpose and design of RUR, and
describes the addition of functionality through time.

I. Introduction
Since the earliest days of time-sharing systems,

administrators have wanted to track what users are doing on
a system. Given limited system resources, carefully tracking
usage of the resources can affect site policies for how users
share resources, or billing. Usage statistics may also impact
future upgrade plans, and requirements for successor
systems.

Over the years, Cray has supported a number of
accounting tools, including BSD process accounting,
Comprehensive System Accounting (CSA), and Mazama
Application Completion Reporting. Each of these tools
reported a fixed set of tracked data elements, some quite a
modest list, and some with more complete data. All of these
tools supported scalability adequate for system sizes at the
time of their initial release, but struggle to support systems
with many thousands of compute nodes.

Starting with the CLE4.2UP02 release, Cray has
supported a new feature: Resource Utilization Reporting
(RUR). RUR allows for the collection of large, extensible,
and arbitrary sets of data through a plugin mechanism, and
allows for data to be stored and reported through another
plugin mechanism, which is similarly versatile. RUR is also
designed to support greater scalability than previous
solutions.

II. How RUR Works
RUR comprises both a scalable framework for collecting

utilization data from the nodes in a user's applications, and
also plugins that capture the exact data elements of interest to
the administrator. The framework works in five main phases:
launch, staging, collection, post-processing, and output.

• Launch happens immediately prior to application
launch, and allows each data plugin to launch any
required data collection process, or to record the
initial state of some resource. RUR refers to this as

the “pre” component of data staging. This happens
on every compute node used by the application.

• Staging happens immediately following application
completion. In RUR terminology, this is the “post”
component of data staging. Staging includes closing
any data collecting processes, and recording the state
of resources. Resources used after the application
can be compared to the state prior to the application.
This data is then stored in a staging file on the
compute node. This happens on every compute node
used by the application.

• Collection happens when the staged data on each
compute node is collected to the login/mom node
used to launch the application. This is done through
the scalable fanout tree also used by Cray Node
Health Checker.

• Post processing occurs on the login/mom node, and
summarizes per-node data into a condensed
representation.

• The Output phase happens on the login/mom node,
and includes copying the summarized data to one or
more logs, files, databases, or other form of
permanent storage.

Resource Utilization Reporting is built around a plugin

architecture, supporting both data plugins and output plugins.
Data plugins collect data about a particular sort of system
resource, such as general Unix process accounting,
accelerator usage, energy usage, etc. Output plugins store
summarized RUR data to a particular form of permanent
storage such as a log, a text file, a database, or similar.
Several data plugins and output plugins are included in the
RUR package in CLE. If an administrator finds that these
don’t collect a piece of desired data, he or she may create a
custom plugin. The plugins within the CLE package are
published with a BSD license, and may be used as a guide
for creating custom plugins.

Data plugins include two components: staging, and post-
processing. During the launch and staging phases of RUR,
each data plugin staging component is called on each
compute node, where it (typically) captures state prior to and
after application run-time, and compares the two. During the
post-processing phase of RUR, each data plugin post-
processing component is called on the login node, and
summarizes the data from the compute nodes, in a fashion
appropriate to that data.

III. Example of RUR Usage
In this example, an administrator has configured ALPS to

run RUR, by setting the ALPS config file to call the RUR
prologue and epilogue scripts as part of the apsys prolog and
epilog, respectively. The administrator has set the RUR
config file to run the taskstats data plugin, and the LLM
output plugin. To test RUR, the administrator runs three
simple commands: sleep, hostname, and uptime.

crayadm@login1$ aprun –n 1 hostname
Nid00020
Application 2627651
crayadm@login1$ aprun –n 1 uptime
 14:42pm up 3:35, 0 users,
 load average: 0.03, 0.11, 0.19
Application 2627652
crayadm@login1$ aprun –n 1 sleep 1
Application 2627653

Following this, the administrator checks the messages log

on the SMW.

c0-0c0s1n1 RUR 11086 p0-20150326t103954
[RUR@34] uid: 12795, apid: 2627651, jobid:
0, cmdname: /bin/hostname, plugin: taskstats
{"core": 0, "exitcode:signal": ["0:0"],
"max_rss": 704, "stime": 8000, "wchar": 101,
"rchar": 4524, "utime": 0}

c0-0c0s1n1 RUR 11537 p0-20150326t10395
4 [RUR@34] uid: 12795, apid: 2627652, jobid:
0, cmdname: /usr/bin/uptime, plugin:
taskstats {"core": 0, "exitcode:signal":
["0:0"],"max_rss":868, "stime":12000,
"wchar":155, "rchar":7875, "utime":0}

c0-0c0s1n1 RUR 11727 p0-20150326t10395
4 [RUR@34] uid: 12795, apid: 2627653, jobid:
0, cmdname: /bin/sleep, plugin: taskstats
{"core": 0, "exitcode:signal": ["0:0"],
"max_rss": 732, "stime": 8000, "wchar": 92,
"rchar": 4524, "utime": 0}

IV. RUR Evolution

From its initial release in CLE4.2UP02 RUR has slowly
added functionality in the form of additional data plugins,
more output plugins, greater configurability, and more
modes of operation.

A. CLE4.2UP02 and CLE5.1UP00
The initial release of RUR included only the taskstats,

energy, and gpustats data plugins and the LLM and File
output plugins. The taskstats plugin provides basic process
accounting, including cpu, memory, and filesystem
utilization metrics, and process exit codes. The gpustat
plugin provides GPU and memory utilization metrics for
processes using nvidia accelerators. The energy plugin
reports the amount of energy used, in joules, by all of the
compute nodes in the application. The LLM plugin writes
RUR data to the LLM log on the SMW. By default this ends
up in the messages-date file. The ‘file’ plugin writes the

RUR output to a flat text file in a filesystem accessible from
the login/mom node; If the filesystem is not a shared
filesystem, each login/mom node will write its own file.
While this initial release of RUR has been superseded by
others with more features, these plugins remain the most
used.

B. CLE5.1UP01
The second release of RUR added plugins and expanded

existing ones. The taskstats plugin was modified to report
application exit-codes as an exit-code:signal pair. This is
similar to what is reported to a user’s shell. Previously the
reported value was an integer of the two values
concatenated. In this release the timestamp plugin was
added, which prints the application starting time and ending
time. The ‘user’ output plugin was added, which writes
RUR data to a file in the user’s home directory, for all
applications he or she runs.

C. CLE5.2UP00
This release added the Kncstats plugin, and further

improved the Taskstats plugin. The Kncstats plugin
provides the same process accounting statistics as the initial
taskstats implementation, but for processes run on Intel
Knights Corner accelerators, when running autonomous
mode applications. The memory plugin was also added in
this release. It reports a wide array of Linux kernel memory
allocation statistics for each compute node used by the
application. Because the memory plugin output is not
summarized, it can create a very large volume of data, and is
most applicable for diagnosing a known problem, rather
than running all of the time.

The taskstats plugin, was given two optional arguments:
extended-process-accounting and per-process accounting.
Extended-process-accounting (xpacct) aims to collect all of
the process statistics formerly collected by the CSA tool.
The per-process accounting option instructs taskstats to not
summarize the accounting data, instead reporting on every
process on every compute node in the application.
Obviously this can create a great deal of data, and is
generally not appropriate during regular system operation,
but may be suitable to debugging periods.

D. CLE5.2UP01
In this release, no new plugins were added. Both the

taskstats and energy plugins were given a new configuration
option: json-dict. This option instructs the post-processing
component of the plugin to output data in a JSON dictionary
format. The dictionary format is generally simpler to parse
with complex data-types as elements. Both plugins also gain
a json-list option, which provides the previous format.

When the energy plugin is configured to use the json-
dict format, it also reports a greatly expanded list of energy
statistics including information on accelerator energy usage,
and thermal and power throttling.

In this release, the user output plugin has also been
extended with the opt-in argument. When this is selected,

RUR data will only be written to a user’s home directory if
they indicate their interest in the data by creating one of
several files in their ~/.rur/ directory.

E. CLE5.2UP03
This release introduces job scope RUR, extended config

file semantics, service node RUR, and RUR scalability
enhancements.

Job scope RUR does not run from the apsys
prolog/epilog, rather out of the WLM prologue and
epilogue. In this mode, RUR captures data for the entire
span of the job, rather than for the individual applications
that constitute the job. This can provide subtly different
metrics, compared to looking at the RUR data from the
constituent applications. One example of this is energy
usage in a job where some nodes are idle for some part of
the job’s duration.

Imagine a job that reserves four nodes, but the first
application is a single-threaded pre-processing task. For that
time one node is busily working, while three sit idle. Then
the compute job runs for several minutes. In this scenario,
three nodes sit idle for a couple minutes, and only a single
node is busy for the entire five minutes. Application scope
RUR only tracks utilization for nodes that are part of a
running application. Job scope RUR would capture energy
data from all nodes, for the duration of the job, including the
time spent idle. Idle nodes use a lot less power than a busy
node, but the total can add up across many nodes.

Job scope RUR may be configured in the place of
application scope RUR, or both may be enabled at the same
time. The apid field, of all job scope RUR output, will
always be zero.

crayadm@login1$ qsub –I –l mppwidth=1
qsub: job 2001549.sdb ready
crayadm@login1$ aprun –n 1 hostname
Nid00020
Application 2627661
crayadm@login1$ aprun –n 1 uptime
 14:42pm up 3:35, 0 users,
 load average: 0.03, 0.11, 0.19
Application 2627662
crayadm@login1$ exit
qsub: job 2001549.sdb completed

In the RUR output data, the constituent applications and

the full job report all have the same jobid, but the apid and
cmdname differ.

c0-0c0s1n1 RUR 11086 p0-20150326t104954
[RUR@34] uid: 12795, apid: 2627661, jobid:
2001549.sdb, cmdname: /bin/hostname, plugin:
taskstats {"core": 0, "exitcode:signal":
["0:0"], "max_rss": 704, "stime": 8000,
"wchar": 101, "rchar": 4524, "utime": 0}

c0-0c0s1n1 RUR 11537 p0-20150326t104954
[RUR@34] uid: 12795, apid: 2627662, jobid:
2001549.sdb, cmdname: /usr/bin/uptime,
plugin: taskstats {"core": 0,

"exitcode:signal": ["0:0"],"max_rss":868,
"stime":12000, "wchar":155, "rchar":7875,
"utime":0}

c0-0c0s1n1 RUR 11727 p0-20150326t104954
[RUR@34] uid: 12795, apid: 0, jobid:
2001549.sdb, cmdname: N/A, plugin: taskstats
{"core": 0, "exitcode:signal": ["0:0"],
"max_rss": 868, "stime": 20000, "wchar":
247, "rchar": 12399, "utime": 0}

In the case of the taskstats plugin, job scope does not
provide any additional data. The information gleaned from
the job scope RUR report could be created from a simple
arithmetic combination of the reports from the constituent
applications. As mentioned above, this is not true for the
energy plugin.

crayadm@login1$ qsub –I –l nodes=4
qsub: job 2001550.sdb ready
crayadm@login1$ aprun –n 1 setup.sh
Application 2627671
crayadm@login1$ aprun –n 4 compute.sh
Application 2627672
crayadm@login1$ exit
qsub: job 2001550.sdb complete

c0-0c0s1n1 RUR 11086 p0-20150326t114893
[RUR@34] uid: 12795, apid: 2627671, jobid:
2001550.sdb, cmdname: setup.sh, plugin:
energy {“energy”: 4165}
c0-0c0s1n1 RUR 11086 p0-20150326t115037
[RUR@34] uid: 12795, apid: 2627672, jobid:
2001550.sdb, cmdname: compute.sh, plugin:
energy {“energy”: 43007}
c0-0c0s1n1 RUR 11086 p0-20150326t115040
[RUR@34] uid: 12795, apid: 0, jobid:
2001550.sdb, cmdname: N/A, plugin: energy
{“energy”: 50292}

Figure 1 summarizes the RUR data graphically. Note
that the dark grey field and red field do not match. In this
example, that the three nodes idle during the setup
application use a significant fraction of the energy used by
the one node that is setting up the data. This is over a short
period, and may not be representive the steady-state power
usage of idle nodes.

In order to simultaneously configure job scope RUR and
application scope RUR, two options are available. One
option is to have a config file for each. Alternately, if the
config files are very similar, it may be simpler to use
configsets. Each plugin definition in the RUR config file
can be tagged with a ‘config_sets’ descriptor, which can

 Job 50292j
Sum 47172j Setup 4165j Compute 43007j

Node1 Setup 4165j Compute 10752j
Node2 Idle 1040j Compute 10752j
Node3 Idle 1040j Compute 10752j
Node4 Idle 1040j Compute 10752j

Figure 1.

take one or more config set names. When the RUR scripts
are called with the command line argument “-s” option, and
a config set name, only those plugins tagged with a
matching config set name will be run. Thus different plugin
definitions with different options and arguments, can be
defined for the job scope case, and for the application scope
case.

Another feature added in the 5.2UP03 release, is support
for running RUR plugins on service nodes. Like job-scope
RUR, this is will require either a separate configuration file,
or config-sets to control RUR behavior. A list of targeted
service nodes must be supplied to the RUR scripts. Cray
does not currently provide any plugins for collecting useful
data from service nodes, though that capability is available
for custom plugins.

RUR scalability enhancements is a feature created to
improve RUR scalability to large node-count applications,
and to lessen RUR’s dependence on high scalability of the
DVS filesystems. The problem is that the RUR config file,
infrastructure scripts, the python base package, and RUR
plugins are all hosted on the /dsl filesystem of the compute
nodes. This is exported from the boot node, by way of DVS
servers. When RUR is run on a compute node, all of these
files need to be paged into the compute node via DVS. If
RUR is simultaneously running from a large number of
compute nodes, this can put a large load on the DVS
servers, particularly if they are busy serving other data, or if
the ratio of compute nodes to DVS servers is high. This
contributes to RUR taking a long time to complete.

To reduce this problem, two steps were made in the
5.2UP03 release. The first enhancement is always used,
which sends the config file from the launching login/mom
node to compute nodes, as part of the launch message.

The second enhancement is optional, and requires using
the compute_local_python configuration option in the RUR
config file. If this is selected, RUR will not run compute
node scripts out of the /dsl filesystem. Instead, the compute
node components of RUR are compiled with pyInstaller,
and installed into the ramdisk filesystem of the compute
node. This packages the python scripts up with a python
interpreter, into a stand-alone binary. Thus the infrastructure
and plugins are loaded from the local filesystem, and do not
depend on the /dsl filesystem and associated DVS servers.
Using the compute_local_python configuration option
reduces load on the DVS system of the Cray, and improves
scalability. Running in this manner is still slower for large
node-count applications, than it is for a single node, but the
scalability is improved.

V. Sample RUR statistics from Cray internal Systems
and a large customer system

Here are presented some sample RUR output from a
XC30 system in Cray’s datacenter. The system has one
hundred and forty compute nodes, and is used for a mix of

system software development, and application testing. This
proves somewhat different from RUR output gathered from
a very large XE6 belonging to a Cray customer.

A very average job on the Cray XC30 system, followed
by a very average application on the customer XE6 system:

apid: 2787476, jobid: 169739.sdb, cmdname:
/cray/css/ostest/binaries/MPI_Test_p_F, plugin:
taskstats ['btime', 1425363224, 'etime', 321698,
'utime', 20000, 'stime', 68000, 'coremem', 164904,
'max_rss', 6968, 'max_vm', 95888, 'pgswapcnt', 0,
'minfault', 7341, 'majfault', 0, 'rchar', 338712,
'wchar', 704, 'rcalls', 312, 'wcalls', 30,
‘bkiowait', 48332261, 'exitcode:signal', ['0:0'],
'core', 0, 'abortinfo', ['0']]

apid: 6821745, jobid: 1335865.nid11293, cmdname:
/u/team/user/NAMD_build.latest/NAMD_2.10_CRAY-XE-
MPI-system/namd2, plugin: taskstats ['utime',
189040172800, 'stime', 57707188000, 'max_rss',
191024, 'rchar', 195746806, 'wchar', 3844321678,
'exitcode:signal', ['0:0'], 'core', 0]

The Cray XC30 is much smaller than the XE6 system.
As such, it runs smaller jobs. The maximum cpu usage of an
application on the XC30 is 8,862,578 core*seconds,
compared to 1,730,219,193 core*seconds on the XE6. The
average is much closer: 6,706 core*seconds compared to
12,356 core*seconds. Similarly the maximum filesystem
write usage of the XC30 was smaller: 5277 GB, compared
to 3460 TB; again the average values are close at 1.5 GB
and 3.0 GB. The not surprising analysis of the collected
RUR data is that larger machines can and do run larger jobs,
though modest sized jobs still dominate even very large
machines. Another unsurprising statistic is that development
machines run a lot of applications that complete with a
failure. The success to failure ratio on the XC30 was 1.92,
compared to 15.01 on the XE6.

The RUR statistics do not show two areas in which the
systems differ quite severely. The XC30 in Cray’s
datacenter spends a lot of time idle, waiting for developer or
administrator action, whereas the XE6 is almost never idle.
The XC30 also averages 3.3 reboots per day, a very high
level, even in a development environment.

VI. Conclusion
Resource Utilization Reporting has now been deployed

on a large number of Cray customer systems, including
some of the largest supercomputers in the world. RUR
replaces several previous accounting tools on Cray systems,
expanding the data variety that is collected, and allowing
greater scalability. RUR is included in all currently
supported releases of CLE and will be supported on future
releases of CLE, currently in development. Cray continues
to solicit input on useful features or plugins that might
benefit users of this feature.

