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Abstract—Synthetic I/O benchmarks and tests are often
insufficient in realistically stressing a complex end-to-end I/O
path. Evaluations built solely around these benchmarks can
help establish a high-level understanding of the system and
save resources and time. However, they fail to identify subtle
bugs and error conditions that can occur only when running
at large-scale. The Oak Ridge Leadership Computing Facility
(OLCF) recently started an effort to assess the I/O path more
realistically and improve the evaluation methodology used for
major and minor file system software upgrades. To this end, an
I/O test harness was built using a combination of real-world sci-
entific applications and synthetic benchmarks. The experience
with the harness and the testing methodology introduced are
presented in this paper. The more systematic testing performed
with the harness resulted in successful upgrades of Lustre on
OLCF systems and a more stable computational and analysis
environment.
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I. INTRODUCTION

Synthetic I/O benchmarks such as IOR and mdtest are
often insufficient in realistically stressing large-scale and
complex end-to-end I/O paths. Evaluations built around
these benchmarks can help establish a high-level under-
standing of the system performance while saving resources
and time. However, synthetic benchmarks are mostly run
with predefined configurations for predefined test scenarios.
Oftentimes, they fail to reveal subtle bugs, edge-case race
conditions and errors that can occur only when running at
large-scale. The entries in the Lustre bug tracking system
[1] can testify to the limited effectiveness of synthetic
benchmarks in identifying extreme error cases at very-large
scales.

In early 2014, an attempt to upgrade the Lustre clients
and servers at the Oak Ridge Leadership Computing Facility
(OLCF) caused several unexpected problems due to a series
of previously unidentified issues that surfaced on upgraded
production systems. Although these newer versions of the
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Lustre software were tested on smaller scale testbed systems
prior to deployment, production jobs exposed severe issues
that affected the functionality and stability of the Lustre file
system.

Learning from this experience, the OLCF started an effort
to assess the end-to-end I/O path more realistically, aiming
to improve the evaluation of all major, as well as minor
file system software upgrades. In order to comprehensively
test new Lustre software versions, the OLCF staff built an
I/O test harness using a combination of real-world scientific
applications and synthetic benchmarks. This paper describes
the new testing methodology and process established and
presents experiences gained from the utilization of the I/O
test harness.

The I/O test harness pulls in scientific applications from
the OLCF workload including combustion, fusion, and cli-
mate. These applications, as a mix, were identified as being
representative of the type of workloads OLCF users run on
Titan. Harness tests were chosen to exercise various middle-
layer I/O libraries, methods, and I/O patterns commonly seen
on OLCF systems. The test harness also includes common
user operations that can generate a high load on the file
system.

The new testing procedure incorporates multiple test cases
of these I/O harness applications running concurrently to
better simulate a production workload. As part of the new
test methodology, tests are performed at different scales
starting with testbed systems of a few nodes, moving on
to medium-size systems, and finally testing at large-scale on
Titan. In addition, at each stage, several configurations are
used to more accurately replicate the workload executed on
Titan by OLCF users.

The addition of a more realistic workload utilizing the I/O
test harness has allowed the OLCF to perform systematic
testing to identify and isolate issues, which has resulted in a
successful major version upgrade of the Lustre software on
OLCF systems. The methodology introduced also provides
a more stable computational and analysis environment for
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OLCF users. The experiences with the I/O test harness
shared in this work could be valuable to other members of
the Lustre community.

II. BACKGROUND

The OLCF at Oak Ridge National Laboratory (ORNL)
has a long track record of hosting some of the world’s
fastest supercomputers. It is now the home to Titan [2],
the second fastest supercomputer in the world [3] Titan is
a hybrid system and is the largest GPU supercomputer in
the world [4]. Titan is a Cray XK7 system and has 18,688
compute nodes. Each node has a 16-core 2.2 GHz AMD
Interlagos processor and an NVIDIA Kepler K20X GPU
accelerator. Users of OLCF resources span a wide range of
scientific domains [5], [6] utilizing a diverse programming
models and I/O patterns [7], [8].

Titan has access to Spider 2, OLCF’s 1 TB/s, 32 PB
center-wide Lustre file system [9]. Lustre is a parallel file
system and very popular in large-scale supercomputers. As
of 2013, it was deployed in 70% of Top10 and 60% of
Top100 systems in the Top500 list [10]. More details on
Lustre can be found in [10], [11].

OLCF has extensive experience deploying and operating
large-scale Lustre file systems. The first Lustre file system
at OLCF was deployed in 2005 to serve the Jaguar XT3
supercomputer. Since then, OLCF has deployed two large
scale Lustre file systems (i.e. Spider 1 and 2) and a multitude
of smaller scale Lustre file systems. OLCF contributes to the
Lustre community by providing large-scale test resources
and significant staff resources for Lustre code development
and bug fixes.

A. Testing at the extreme scale

A file system should be designed according to production
environment needs. Scale, number and type of computational
platforms to support directly influence design complexity.
The number of concurrent applications running on these
systems and variety of applications also increase the de-
mands of a production file system. Therefore, large-scale
file system design, acquisition, and deployment phases all
include rigorous technology evaluation and testing efforts.
Test methodologies vary across supercomputing facilities
and institutions. Upgrading production file system also re-
quires similar levels of testing and effort at the large-scale.

Traditional methods of testing large-scale production file
systems mainly involve executing a set of predefined I/O
scenarios and observing the response of the file system.
The tests, whether conducted pre-production at the acqui-
sition/deployment phase or in-production at the file system
upgrade phase, are contending with the facility and system
resources that were allocated for production cycles to users.
Therefore, such tests are usually condensed in time, scope,
and resources.

Furthermore, in the extreme scale (i.e. top tier of the
Top500 systems), file system vendors are lacking the ca-
pabilities to adequately test features and fixes before public
releases. Testing at these scales is currently assumed as the
customer responsibility.

Popular tools for file system testing, especially for Lustre,
are mainly centered around synthetic benchmarks, such as
IOR and mdtest. While it is possible to mimic a vast majority
of I/O workloads in isolation with such tools, they are not
successful in identifying edge-cases or race-conditions that
are often observed under real production workloads. A quick
look at the Lustre bug tickets will confirm this.

It is because of these reasons, OLCF decided to augment
existing test procedures and tools with more realistic ones.
Similar efforts are now being undertaken by several other
large-scale supercomputing facilities all around the world.
Our idea for improvement was simple: to assess the end-
to-end I/O path realistically, we need to stress our systems
using better tools in more realistic ways. This does not
exclude the use of synthetic benchmarks, rather it augments
them. Sanity checks and small- or large-scale performance
tests are still being conducted at OLCF using a combination
of community or in-house developed synthetic benchmarks.
However, we believe running various mixes of real-world
scientific applications in a multitude of configurations and
scales provides a clearer picture of the end-to-end system
characteristics and responses.

III. END-TO-END I/O PATH

A. Spider 2

Spider 2 is the primary Lustre file system resource for the
OLCF. It is broken up into two file systems. Figure 1 shows
OLCF’s end-to-end I/O path and the Spider 2 architecture.
Each of the Spider 2 file systems are roughly 20 times larger
than our largest test resource. This presents issues when
testing the Lustre server or client side software because
large-scale systems can behave differently under different
workloads than small-scale systems. For example, a code
that writes a single-shared file on a test system may only
be able to write using 50 stripes, but on one of the Spider
2 file systems it can write using 1008 stripes. The number
metadata operations involved in lock coordination for this
file is much higher on the larger system and can expose
bugs in the Lustre software that are not otherwise exposed
on a test system.

To help address the scale issue on the test systems, each
stripe on the Spider 2 file systems was divided into two
pieces at the deployment phase: a large partition that will be
used in production, and an small partition that will be used in
testing. This allowed us to create another file system on the
smaller partition that can be used to run the I/O harness and
other tests at large-scale during a test without affecting the
production partition or user data. The small test file systems
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Figure 1. OLCF Spider 2 end-to-end I/O path.

have been critical in being able to stress the Lustre client
and server codes using the I/O test harness at scale.

Complexity is an issue that comes with working on at-
scale systems. Performance degradations can occur for a
number of reasons, such as networking problems, software
bugs, slow disks, and contention with other users that are
running on the same systems.

B. Lustre server and client software

Testing in a complex environment introduces an additional
challenge in that the vendors that support our software stack
do not have test resources at the scale we operate. This
results in the OLCF having to take system outages to test
code changes.

In general, the Lustre server code (the code that handles
reading and writing the data to/from a disk) does not change
often on our file systems. The client code (the code that runs
on the compute node and orchestrates reading and writing
data to the Lustre servers) is where we encounter most bugs.
However, rigorous testing for both server and client software
updates are necessary to ensure new problems from software
incompatibilities are not introduced leading to performance
regressions.

IV. I/O HARNESS

User applications and workloads at the OLCF represent a
diverse scientific community [5] [6] and utilize a broad range
of programming models and I/O patterns [7] [8]. The OLCF
developed an I/O harness to better evaluate the functionality,
stability, and performance of the Spider 2 file systems when
stressed by the typical OLCF production workload. To bal-
ance between testing-window time constraints and capturing

real application behavior, the I/O harness test suite includes
micro-benchmark tests, application I/O kernels, and real-
world applications. Tests are run simultaneously to create
contention, as seen during production, to identify adverse
impacts from interactions between applications using shared
system resources, such as the file system and network.

A. I/O Harness Infrastructure

In addition to the application workload, the I/O harness
attempts to replicate typical user behavior exerted on the
system. To simulate this, the I/O harness includes file system
operations users frequently perform (e.g. ls, find, grep, etc.),
as well as compiling complicated applications directly on
the Lustre file system. Although OLCF users have 10 GB
of home directory space on the NFS storage to store source
files and build their applications, multiphysics application
source and build files can often exceed this capacity, forcing
users to build their applications directly on the Lustre
file system. The entire production user workflow, including
building, running, and analyzing data, is captured in the I/O
harness tests and automated through a harness infrastructure
written in Python. The harness infrastructure was created
at the OLCF for use during acceptance testing to build
applications, submit jobs to the queue, analyze correctness
and performance requirements at the end of the job, and
archive results. This workflow is common at the OLCF and
stresses the file system beyond a single application run.

B. I/O Harness Applications

To mimic the real-user workload and behavior, we cre-
ated the application-centric I/O test suite to exercise the



file system on several aspects including: scale, diverse I/O
patterns (e.g. single shared file, file per process, size of files,
file striping, etc.), I/O library usage (e.g. HDF5, NetCDF,
MPI-IO), and application workflow interaction with the file
system. The current tests were chosen from the daily OLCF
workload, which are representative of the I/O behavior of
typical user applications. The current I/O harness test suite
includes the following applications:

S3D: Combustion modeling in flames: S3D [12] is
a combustion modeling application providing high-fidelity
simulations using direct numerical simulation (DNS) meth-
ods in combustion regimes where turbulence-chemistry in-
teractions are needed to describe the system. S3D uses
explicit nearest-neighbor local communication with MPI and
is primarily written in FORTRAN. Both CPU-only and
GPU-ready via OpenACC versions of S3D are used for
OLCF systems evaluation. Table I shows the S3D test sizes
available in the I/O harness. S3D tests scaled to roughly
80% of Titan system resources.

I/O Test Attributes:
• Fortran I/O, 1 process/core (16 cores/node on Titan)
• File per process writes/reads for checkpoint/restart files
• Each checkpoint file is small (3.3MB)
• Each checkpoint creates a new directory with a Lustre

stripe count of 1 (each file only uses 1 OST)
• 3 checkpoints during the test

Table I
S3D I/O TEST SIZES

No. processes (writers) No. Titan nodes Total Memory\ checkpoint
600 38 2.025 GB
2400 150 7.92 GB
6,000 375 20.25 GB

30,000 1,875 101.25 GB
96,000 6,000 324 GB
150,000 9,375 495 GB
210,000 13,125 693 GB
240,000 15,000 810 GB

GTC: Particle-in-cell simulations of plasma microtur-
bulence in fusion: The Gyrokinetic Toroidal Code (GTC)
[13] uses the gyrokinetic particle-in-cell method in full
toroidal geometry to study magnetically confined plasmas,
with specific application to modeling turbulent transport
in the burning plasma fusion device at the International
Tokamak Experimental Reactor (ITER). GTC is written in
FORTRAN90 and C/C++ with nearest-neighbor commu-
nication and parallelism from MPI and OpenMP. There
are multiple versions of GTC using a variety of I/O and
math libraries depending on platform and research group.
The CPU-only version of GTC is used for OLCF system
evaluation. This I/O pattern and compute node utilization is
common for many scientific applications at the OLCF. Table
II shows GTC test sizes available in the I/O harness. GTC
tests scale to 82% of Titan resources.

I/O Test Attributes:
• Fortran I/O, MPI/OpenMP, 2 processes/node, 8

threads/process on Titan
• File per process writes a checkpoint/restart file to a

single directory
• Each checkpoint file is mid-size (274 MB)
• The checkpoint directory uses the default Lustre stripe

count of 4
• 1 checkpoint during the test

Table II
GTC I/O TEST SIZES

No. processes (writers) No. Titan nodes Total Memory\ checkpoint
64 32 17.5 GB

128 64 35.1 GB
256 128 70.1 GB
512 256 140.3 GB
960 480 280.6 GB

1,920 960 561.2 GB
3,840 1,920 1,122.3 GB
7,680 3,840 2,244.6 GB
15360 7,680 4,489.2 GB
30,720 15,360 8,417.3 GB

FLASH 4.2: I/O Kernel with a single restart write
and read : FLASH [14] is a publicly available parallel
multiphysics simulation code used to simulate many astro-
physical environments. FLASH exercises the HDF5 library
and performs a large number checkpoints during the course
of the entire simulation. A single checkpoint operation,
including the reading and writing of a checkpoint file, was
used in the test suite to track I/O performance variability in
read and write operations across multiple runs during a test
period. This test also highlighted and isolated differences
in read and write performance across file system partitions
with varying utilization and fragmentation.

I/O Test Attributes:
• HDF5 library
• Read in and write out of 1 average checkpoint file (54

GB), default striping of 4
• 625 nodes, 5000 processes
• Runtime 5 minutes

MPI-IO Kernel: Large single shared file with wide
stripes: Some I/O patterns, such as many writers to a large
single shared file, were identified to be potential stressors of
the system resources based on Titan’s performance degrada-
tion during the 2014 Lustre upgrade attempt. Pin-pointing a
specific application or I/O pattern to be the source of system
stress is a complicated process in a shared environment.
Often the offending application can cause other applications
to struggle and generate system errors. To verify that the
use of collective MPI-IO was the source of the system
degradation, the pattern was captured in the MPI-IO kernel
and verified through our testing procedures. This test only



manifested system errors when using 450 clients or more
and increased in system disruptions, such as hangs or error
messages in system logs, with a greater number of clients.
Table III shows the variations to the number of clients and
file striping in the MPI-IO test suite.

I/O Test Attributes:
• Collective MPI-IO; Large file (512 GB)
• Tests varied striping and number of clients
• Each test performed 3 successive reads and then 3

successive writes to new files in a single directory
• The second and third reads show substantial perfor-

mance improvements from caching

Table III
MPI-IO TEST SIZES

No. processes (writers) Stripe Size
450 32, 128
512 32
1024 4, 32, 128, 360, 720

CESM 1.2: Community Earth System Model: CESM
[15] is a fully-coupled, community, global climate model
used extensively by users at the OLCF and across multiple
HPC centers. Due to the high frequency of I/O operations
performed in a CESM run, it is anecdotally the first ap-
plication to manifest issues in the file system. Build times
of CESM can range from 40 minutes to 1 hour, depending
on the file system. During the CESM application run, there
are a large number of frequent writes to capture the status
and history of the simulation for each coupled model. These
history files are small in size, but accessed frequently. At the
end of the CESM run, their internal scripts compress and
archive the results and all supporting files used in the run.
This frequent interaction with the file system makes CESM
highly dependent on responsiveness of the command line
and overall file system performance.

I/O Test Attributes:
• pnetCDF library for checkpointing
• 3,567 Titan nodes, 57,072 cores
• Capture performance of build ( 40 minutes - 1 hours)

and run of test ( 20 minutes)

V. TESTING METHODOLOGY

In addition to developing the I/O test harness, the OLCF
implemented a test procedure that is now regularly used
before a Lustre software upgrade is deployed to user-facing
systems. The test procedure is the product of a collaborative
effort between several different groups within the OLCF
including computational scientists, system engineers, system
administrators, and user assistance specialists.

A. OLCF File Systems Testing Team

The OLCF file systems testing team was formed to ensure
that both the tests chosen and the methodology used include

a diverse set of perspectives, which in turn, allows us to
perform a more comprehensive evaluation. The expertise
from each group is needed in order to fully exercise the
new version of the Lustre software.

System administrators are responsible for verifying the
hardware, installing and validating the software, preparing
testbed systems, and troubleshooting issues encountered
during any test stage. We also leverage the storage system
expertise from system engineers to validate the new version
of the Lustre software, and to identify, characterize, and fix
any bugs that are discovered while running tests. Computa-
tional scientists select, prepare, and execute application tests
that are representative from current workloads run at the
OLCF. User assistance specialists execute tests from the I/O
test harness, and also identify, troubleshoot, and replicate
user reported issues that could help detect edge-cases in
future tests. Of course, given the collaborative nature of this
effort, team members from different groups work together
on most of these tasks. In particular, during a test, all-hands
are on deck to monitor the file system at the server and
client levels, as well as monitor any observable change or
degradation on the file system or on application performance
while tests are running. Having members from each of the
different groups available during a test has proven to be
extremely effective when identifying and troubleshooting
issues on-the-fly.

B. Test Planning and Procedure

The OLCF file system test team established a weekly
meeting to discuss future Lustre upgrades, performance
issues reported by users, and any upcoming systems and
features. This meeting allows us to start planning well in
advance of a Lustre software upgrade. When a new version
of Lustre, major or minor, is under consideration a test
timeline is created to keep track of all test stages. The
first test phase usually requires packaging the new software,
building a new Lustre image for the testbed system, and
deploying it. Phase 1 usually takes 7 days and is executed
at small scale with dedicated test resources. These small
scale systems include a vast majority of storage, networking,
and computing technologies. This first step allows us to
evaluate features and bug fixes more quickly and, since they
are dedicated resources, do not requires us to compete with
production priorities. Most obvious performance regression
problems are identified and corrected at this first phase of
testing.

After successful completion of the first phase of testing,
we then move to mid-scale testing. This next phase usually
involves testing on medium user-facing compute resources
at the OLCF which adds an extra layer of coordination to
the process. To minimize impact to users, tests are run only
during the regularly scheduled maintenance windows and are
announced with at least one week notice. Planning, coordi-
nation with all OLCF stakeholders, and resource allocation



at this phase is moderate, but still significant compared to
the first phase of testing.

If both test phases are successful, a large-scale system test
is scheduled on Titan and is usually coupled with regular
hardware maintenance schedules. Planning, coordination,
and resource allocation at this phase is key and it requires
successful completion of the first two testing phases. Any
failure, restarts the testing effort from the previous phase.

1) Phase 1: Small-scale testing: Our testing procedure
starts at small scale, using one node jobs on a dedicated
XK7 test resource (Arthur) and running two microbench-
marks: simul and IOR. If the tests are successful (i.e. tests
completed without errors and showed no major performance
regressions), the application I/O harness is used. To run
real-world applications we use a larger XK7 testbed system
(Chester) that has the same configuration per node as Titan,
and a test development file system (TDS) capable of stripe
counts of up to 56. Because Chester is fairly small, at this
stage we only run the first two tests from GTC, and only the
first test from S3D. In addition, we execute only the build
step from CESM, and run MPI-IO using a small 128MB
input file.

2) Phase 2: Medium-scale testing: After we have verified
the Lustre software is stable on testbed systems, we move
to the medium-scale testing phase which is conducted on
two OLCF compute resources: Rhea, a Red Hat Enterprise
Linux cluster with 512 nodes, and Eos, a Cray XC30
supercomputer with 736 nodes. The larger number of nodes
allows us to execute MPI-IO tests with up to 450 nodes, in
addition to repeating the tests from Phase 1.

3) Phase 3: Large-scale testing: If all tests in the previ-
ous two phases are successful, a test on Titan is scheduled at
the next planned maintenance window. The testing window
begins after preventive hardware maintenance is completed
and both Titan and Spider 2 are placed into the configuration
being tested. When a reboot of Titan is required, this process
can take several hours. As soon as system administrators
verify the configuration, the large-scale evaluation of the
Lustre software can begin.

C. A Test on Titan

First, an initial stability check is performed using synthetic
benchmarks. For mid- to large-scale synthetic workloads, we
aim to stress the file system as much as we can. This set of
tests is designed to accomplish three objectives: (1) sanity
check at scale; (2) basic scaling test; (3) hero runs. The size
of the parameter space is potentially large, and we try to
explore it judicially to make efficient use of resources. The
following example makes use of IOR options to illustrate
some of our choices:

• We run both single shared file as well as file-per-process
runs for both read and write.

• We iterate from as few as 1 node on Titan all the way
to 4,096 nodes to observe scalability characteristics for

both read and write. The single client performance can
be revealing at times.

• We usually set transfer size at 1 MB as it is stripe
aligned with our backend RAID storage.

• We always make sure write sync happens.
• The block size is chosen to balance the need for miti-

gating cache effects and overall runtime with increasing
number of clients.

• We conduct both POSIX and MPI-IO tests as these
two are the prevalent choice of interfaces for user
applications.

• To test wide striping, we usually drive two cases: one is
to fix the number of clients, and scale from 4 stripes all
the way up to the partition limit (1,008); the other case
is to increase the number of clients and the stripe count
at the same time and observe its scalability trends.

The permutations of above test cases can be huge. De-
pending on the window of time available for the test, we
sometimes choose to break it up or cherry pick cases that
we have identified to be more problematic than the others. It
is worth noting that these tests serve as a basic sanity check
as well as scalability check, and they are not designed to
test edge cases. To test for the latter, we utilize a mixed
application workload which is described next.

The hero runs are designed to extract the maximum
performance out of the system under ideal circumstances.
Under this assumption, we can carefully place client nodes
evenly around I/O routers as well as considering other
resource balance along the end-to-end I/O path. The exact
setup and details are out of the scope of this paper.

The synthetic benchmark testing stage is followed by an
application stability test that consists of a subset of test cases
used to assess the stability of the Lustre software under real-
world scenarios. This subset includes MPI-IO test cases with
450 and 1,024 clients and stripe counts of 32, 128, 360, and
720. In several occasions, this workload was sufficient to
trigger Lustre errors that resulted in Lustre client evictions.

If no problems are detected during the MPI-IO runs, we
launch the full-suite of applications described in Section IV.
The goal at this stage is to simulate a realistic workload
by launching jobs that use a diverse number of nodes and
I/O patters, and that are representative of the workload
on Titan when it is in production. Consecutive MPI-IO,
S3D, and GTC jobs are submitted continuously to the batch
system for the duration of the application testing window.
Simultaneously, we launch the CESM test case which first
builds the code and then submits a job. The idea here is
to simulate an activity that users frequently perform on the
Lustre file system. If successful, the CESM launch script
submits a job to the queue that can be used to assess
performance. In addition, the large FLASH test is launched
to generate as much contention as possible. Throughout the
period when jobs are running, system administrators and
system engineers carefully monitor the different components
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of the end-to-end I/O path. If at any point Lustre errors are
identified, the test is terminated so that Titan and Spider 2
can be returned to their production configuration and user
jobs.

Since the harness generates a continuous workload, in
the absence of errors and abnormal behavior, jobs are only
terminated once the testing window ends. At this point,
we gather performance data from all stages of the test and
generate a report that is used to compare the performance of
the Lustre software being tested against previously measured
reference results. Usually the reference results are obtained
from the Lustre software version currently in production.

In addition to exercising the Lustre software, the appli-
cation I/O harness is used to check for correctness and to
measure performance from a user’s standpoint. The appli-
cations in the I/O harness were designed to include a built-
in correctness script that ensures the results from each test
are accurate, and that no data corruption occurred. Using
reference values from tests run with the Lustre software
version in production, we can quickly identify when a
significant performance degradation has occurred.

To account for I/O operations that can exercise the file
system in unexpected ways, we closely watch user reports
after upgrades. Using the information from these reports we
have augmented the I/O test harness to include metadata
intensive operations: compiling large code bases, copying
collections of small files, and performing sequential reads
using single clients.

As part of our testing procedure, we also test the Lustre
recovery feature by simulating failures that can occur in
production. The failures are simulated by first rebooting
an MDS, then an OSS, and finally both simultaneously.
The feature is marked as verified only if the file system
is able to recover quickly and cleanly. The functionality of
the recovery feature is critical since it keeps users’ data
safe when a critical event occurs. Furthermore, during a
test, we verify a set of files that were created using Titan’s
production configuration. This test is designed to test for file
corruption that can occur when changing to a new version of
the Lustre software. Once Titan is returned to its production
configuration, the data verification test is repeated using files
created during the test. The goal of this test is to identify
scenarios that could cause data loss, in the event that the
upgrade is performed and we need to rollback to a previous
configuration.

VI. EXPERIENCES UPGRADING FROM LUSTRE 1.8 TO 2.5

Before the move to the new Spider 2 file system, the
OLCF was using the Intel release of Lustre version 1.8 (the
final Lustre release before moving to 2.x). After the Spider
2 deployment, the smaller production clusters began the
process of migrating to the Lustre 2.4 client. The evaluation
of the new client in our test and development system (TDS)
using the synthetic benchmark workloads, failed to expose

many issues that we encountered once Titan underwent the
upgrade process. Once the Cray version of the Lustre 2.4
clients was rolled into production on Titan on January 28,
2014, user reports of slowness started to flood into our
ticketing system. Besides slow metadata performance, Lustre
clients would regularly get evicted from Lustre servers caus-
ing even greater user perceived performance degradations.
After a two week period, Titan was rolled back to the
previously deployed Lustre 1.8 client. A detailed timeline
describing the events that transpired during the upgrade to
Lustre 2.4 can be found in Table IV.

Table IV
TIMELINE OF EVENTS

Date Description

1/28/14 Upgraded Titan to the Lustre 2.4 client

1/30/14 Users started reporting slowness issues

2/10/14 Titan rebooted to revert back to the Lustre
1.8 client. Spider 2 was rebooted to pick up
LNET draining issue patch and a debugging
patch for the MDS performance issue and
Titan rebooted to revert back to the Lustre
1.8 client

2/26/14 LU-4008 signed off by Intel and put in
production on Spider 2

10/7/14 Upgraded Titan to the Lustre 2.5.2 client

3/10/15 Upgraded Titan to CLE5.2UP02 and got the
Lustre 2.5.1+ Cray client

While the rollback of the Lustre client to the previous
version did resolve many of the issues that OLCF users were
experiencing, a subset of the problems remained. This was
a clear indication that the remaining issues originated from
the server side. With help from Lustre engineers at Intel,
we were able to track down the bugs responsible for the
remaining issues. One of these problems would manifest
when a user created a single shared file striped across
the entire file system (1,008 stripes), causing the servers
to hold a global lock while allocating a larger chunk of
memory. This problem was only exposed on a file system
with greater than 672 stripes. If a user was striping across
less than 672 stripes they would never encounter this issue
since a different allocation method was used for smaller
kernel memory allocations. It was also discovered that the
layout locks internal to Lustre that handle memory allocation
always allocated for the maximum possible stripe count,
making the servers always encounter the global kernel lock.
The details for this particular issue are covered in the Intel
bug tracker system under ticket LU-4008.

After the Lustre 1.8 Cray client and Lustre 2.4 server
configuration was stabilized, the focus was to resolve the
Lustre 2.4 client issues encountered after the attempted
upgrade in January of 2014. Using our small-scale systems,
we were able to replicate and track down bugs causing client
evictions and other single shared file performance issues.



Some examples of the problems detected using our synthetic
benchmarks were tracked under Intel tickets LU-5294 and
LU-4829. See Table V for some examples of bugs that were
identified since the new testing procedure was put in place.

During the same time frame, Intel moved the maintenance
branch from Lustre 2.4 to Lustre 2.5, which contained
many of the fixes to problems we had been tracking in
our Lustre 2.4 clients. Over the next few months, the new
Lustre 2.5 clients began passing all tests using our synthetic
benchmarks and application I/O harness. Larger clusters
were being put into production at this time, which gave us
new opportunity to run our tests at an intermediate scale
before running on Titan. At this larger scale of testing, again,
all synthetic benchmarks passed.

From our previous large scale deployments it was evident
that we needed to expand the scope of our testing to cover
cases that cannot be reproduced on our smaller test systems.
One case which is particularly difficult to test at small-scale
is when large stripe counts are utilized. Besides the vmalloc
global locking issues discussed earlier, another bug we could
not have easily duplicated at small-scale was filed under
Intel ticket LU-4719. This bug made it possible for a user
to kernel panic the MDS when using a very large stripe
count for a single shared file. What makes this problem so
pronounced is the ease with which a user can set the stripe
count to the maximum value. A simple lfs setstripe
-c -1 will communicate to the file system that all OSTs
in the file system must be used.

Our team also understood the limitations of our synthetic
benchmark test suite, making the addition of the new appli-
cation harness a useful tool on our small and medium sized
systems. In our initial runs of the new application suite,
we could easily reproduce client evictions which were later
addressed under the Intel ticket LU-2728. These evictions
could not be reproduced with the synthetic benchmark test
suite alone. On May 20, 2014 the next test was performed
on Titan using both the traditional method of testing and the
new application test harness so we could simulate the mixed
I/O workload typically observed in production. More client
evictions and performance issues were exposed using the
application harness at this scale that would otherwise have
remained hidden. Using the data logs collected, the issues
found would typically be addressed by the time the next test
on Titan was scheduled.

CONCLUSIONS

The Oak Ridge Leadership Computing Facility (OLCF)
has recently changed its methods and tools for conducting
large-scale file system tests. A file system should be tested
for functionality, correctness, and performance at every step
throughout its operational life. It was recently found that
testing using synthetic benchmarks cannot adequately stress
the end-to-end I/O path and our test cases and tools have
been augmented with real-world scientific applications as

Table V
LUSTRE BUGS IDENTIFIED

Date BugID Identified by Bug Description

02/26/14 LU-4008 Application I/O harness vmalloc contention
on MDS

07/04/14 LU-5294 Synthetic Benchmarks Cannot unlink or
rm

05/08/14 LU-4578 Application I/O harness Adaptive timeout
bug causing MDS
to reboot

05/08/14 LU-4584 Application I/O harness Client evictions in
lustre-2.4. Same is-
sue as LU-2728 in
lustre-2.5

03/20/14 LU-4719 Synthetic Benchmarks Kernel panic with
large stripe files

08/07/14 LU-4829 Synthetic Benchmarks Crash on mount

10/16/14 LU-5724 Application I/O harness Imperative Recov-
ery Issues

10/14/14 LU-5803 Application I/O harness Recovery Issues,
server not able
to keep up with
requests

a result. The OLCF’s new test procedure includes testing
in increasing scales with automated and comprehensive test
patterns, and includes the execution of a mixed workload of
applications and synthetic benchmarks. Our experience over
the last year and a half has proven that our new method
and tools can better detect edge-cases, race-conditions, and
bugs at large-scales. With this new method we identified
more bugs before releasing the file system after an upgrade,
therefore minimizing service interruptions due to file system
issues.

Our future work includes periodic investigation of the
aggregate I/O workload on the system, allowing us to
reevaluate our choices of applications in the I/O harness to
ensure that the mix of applications and synthetic benchmarks
as needed to fit observed workloads.
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