Optimizing Cray MPI and Cray SHMEM for Current and Next Generation
Cray-XC Supercomputers

K. Kandalla, D. Knaak, K. McMahon, N. Radcliffe and M. Pagel
Cray Inc.

{kkandalla, knaak, kmcmahon, nradcliff, pags}@cray.com

Abstract—Modern compute architectures such as the Intel
Many Integrated Core (MIC) and the NVIDIA GPUs are
shaping the landscape of supercomputing systems. Current
generation interconnect technologies, such as the Cray Aries,
are further fueling the design and development of extreme
scale systems. Message Passing Interface (MPI) and SHMEM
programming models offer high performance, portability and
high programmer productivity. Owing to these factors, they are
strongly entrenched in the field of High Performance Comput-
ing. However, it is critical to carefully optimize communication
libraries on emerging computing and networking architectures
to facilitate the development of next generation science. Cray
XC series supercomputers are some of the fastest systems in the
world. Current generation XC systems are based on the latest
Intel Xeon processors and the Aries high performance network.
In addition, the Cray XC system enables users to accelerate
the performance of their applications by leveraging either the
Intel MIC, or the NVIDIA GPU architectures. In this paper,
we present six major research and development thrust areas
in Cray MPI and Cray SHMEM software products targeting
the current and next generation Cray XC series systems. In
addition, this paper also includes several key experimental
results.

I. INTRODUCTION

Current generation supercomputers offer unprecedented
computational power and are facilitating the generation of
high fidelity scientific data with significantly shorter turn-
around times. Cray [1] is a world-wide leader in the field of
High Performance Computing (HPC) and supercomputing.
Over the years, Cray has established a strong track record of
designing and deploying some of the largest and the fastest
supercomputing systems in the world.

Current generation supercomputers are based on state-of-
the-art multi-/many-core compute architectures, accelerators,
and I/O architectures. In addition, modern supercomputers
also rely on high performance interconnects to facilitate
high bandwidth and low latency communication. Cray Aries
interconnect [2] technology is based on the Dragonfly topol-
ogy and offers excellent communication performance and
allows parallel scientific applications to scale to hundreds of
thousands of processes. Until recently, HPC systems were
largely homogeneous and relied on dual-/quad- socket pro-
cessor architectures. The adoption of new processor archi-
tectures, such as the Intel Many-Integrated Core architecture
(MIC) [3] and the NVIDIA GPU [4], in mainstream HPC
marks a critical inflection point in the evolution of the HPC
ecosystem. It is widely envisioned that next generation HPC
systems will primarily rely on these compute architectures.
The Intel MIC architecture offers unprecedented compute

density, with more than 50 compute cores per chip. However,
each individual compute core offers significantly slower
scalar speeds. Similarly, the latest NVIDIA K80 GPU offers
up to 2.91 TFlops double precision performance, but requires
the transfer of data between the host processors and the
accelerators, across the network. In summary, the MIC and
GPU architectures offer increased computational capabili-
ties, but also pose new challenges. On such systems, the
design and development of application and system software
stacks need careful consideration in order to achieve high
performance and extreme scaling.

Message Passing Interface (MPI) [5] and Partitioned
Global Address Space (PGAS) [6] are two of the most
common programming models used to develop parallel
applications. MPI and PGAS offer primitives to implement
various communication, synchronization and Input/Output
operations. Parallel scientific applications rely on these prim-
itives to exchange data, perform file I/O operations, and to
manage the computational work-load across the individual
compute tasks. As parallel applications are scaled out to
utilize hundreds of thousands of processes, system software
stacks that implement MPI and PGAS need to be designed
in a highly optimized and scalable manner. Essentially,
software stacks that implement the MPI and PGAS models
on next generation systems must offer low latency, high
bandwidth communication along with excellent scalability,
computation/communication overlap and I/O performance.
Considering the rapid rate of adoption of MIC and GPU
architectures in mainstream HPC, unless communication
libraries are optimized to reduce the cost of moving data
between these compute devices across the interconnect,
parallel applications will not be able to scale efficiently on
next generation supercomputers.

In this paper, we take a closer look at some of the latest
performance optimizations and features in Cray MPI and
Cray SHMEM [7] software stacks. Cray MPI and Cray
SHMEM software stacks are proprietary implementations of
the MPI and SHMEM specifications, optimized for the Cray
Aries [2] interconnect. Specifically, we discuss some of the
latest optimizations and new features in these software stacks
targeting the current generation processor architectures, and
Cray interconnects. This paper presents some of our recent
efforts to improve the performance of I/O intensive scientific
applications. This paper also describes our approach to
improve the performance of multi-threaded MPI communi-
cation. Finally, this paper includes a brief discussion on our



prototype implementation of a fault-resilient version of Cray
MPI. The rest of this paper is organized as follows. Section
IT describes the relevant background information. Section
III includes a discussion of some of the new features and
optimizations introduced in Cray MPI and Cray SHEMEM.
Section IV includes a brief summary of some of the ongoing
and future work in Cray MPI and Cray SHMEM.

II. BACKGROUND

This section provides a brief discussion of the relevant
background material.

A. Cray XC Series

The Cray XC series is a distributed memory system ca-
pable of sustained multi-petaflops performance. It combines
multiple processor technologies, a high performance net-
work and a high performance operating system and program-
ming environments. The Cray XC series uses a novel high-
bandwidth, low-diameter network topology called “Dragon-
fly”. The Cray Aries interconnect provides high performance
communication in a cost-effective manner. In addition, the
Aries network offers a hardware Collective Engine to per-
form global communication patterns in a highly optimized
manner.

The Cray software stack leverages many advanced fea-
tures of the Cray XC network to provide highly optimized
and scalable implementations of MPI, SHMEM, UPC [8],
Coarrays [9] and Chapel [10]. These communication li-
braries are layered on top of the user level Generic Network
Interface (uGNI) and/or the Distributed Memory Applica-
tions (DMAPP) libraries [11], which perform Cray network-
specific operations.

B. MPI Collectives

Collective operations in MPI offer a convenient abstrac-
tion layer to implement complex data movement operations.
Owing to their ease of use, collective operations are com-
monly used across a wide range of applications, ranging
from turbulence simulations [12] to numerical solvers [13].
In many cases, collective operations involve exchanging
data in a coordinated manner across tens of thousands
of processes. The current MPI standard also defines non-
blocking, or asynchronous collective operations. Parallel
applications can utilize non-blocking collectives to achieve
computation/communication overlap. It is critical to imple-
ment blocking and non-blocking collective operations in
MPI in a highly efficient and scalable manner. Cray MPI
offers an optimized suite of collective operations. When
applicable, Cray MPI utilizes the hardware features offered
by the Aries Interconnect to accelerate various collective
operations. Section III-A presents a summary of the latest
optimizations and features that improve the performance of
various important collective operations.

C. MPI-3 RMA

Remote Memory Access (RMA) offers one-sided com-
munication semantics and allows one process to specify all
communication parameters, both for the source and target
processes. When compared to traditional two-sided point-
to-point operations, RMA facilitates the development of
scientific applications that have dynamically changing data
access patterns. Additionally, RMA operations also remove
the need for messages to be explicitly matched between
the source and the target processes. Cray MPI offers an
optimized RMA implementation by taking advantage of the
low level DMAPP [11] interface. This paper presents a
summary of the recent enhancements in the RMA interface
in Cray MPI (Section III-B).

D. Multi-Threaded MPI Communication

The MPI standard offers various levels of threading
support to parallel applications. Parallel applications can
request a specific level of support during the initialization,
via the MPI_Init_thread(..) operation. It is not uncommon for
applications to request MPI_THREAD_MULTIPLE, which
implies that multiple threads can concurrently perform MPI
operations. However, in order to ensure thread-safety, many
MPI software stacks rely on a global lock to serialize the
threads. On emerging compute architectures that offer slower
scalar speeds, but higher compute density, applications must
utilize multiple threads to concurrently perform compute and
communication operations. In this context, it is critical to
explore design alternatives within the MPI software stack to
improve thread concurrency, while also guaranteeing thread-
safety. Section III-C summarizes the current status of the
new multi-threaded Cray MPI library.

E. Cray SHMEM

Cray SHMEM offers a high performance suite of one-
sided communication operations, specifically optimized for
the Cray XC series supercomputers. The Cray SHMEM
implementation supports remote data transfers via “put” and
“get” operations. Some of the other supported operations
include broadcast and reduction, barrier synchronization
and atomic memory operations. Cray SHMEM software is
layered directly on top of the low-level DMAPP API and
offers excellent performance for highly parallelized scalable
programs.

FE. MPI I/O

MPI 1/O is a standard interface for MPI applications that
do I/0O operations. It is part of the MPI standard and a
higher level of abstraction than POSIX I/0. POSIX I/O deals
primarily with files as a simple sequence of bytes, while
MPI 1/O can deal with more complex data types. The MPI
library converts MPI I/O calls to lower-level I/O calls, but in
the process, may also do additional data manipulation based
on the data types and optionally perform I/O performance



optimizations for the application. Data-intensive parallel ap-
plications spend a significant fraction of their execution time
in I/O operations. Hence, it is critical to design solutions to
optimize the performance of MPI I/O, and also develop new
tools that assist users in understanding the I/O bottlenecks
in their applications. Section III-E describes some of the
latest work in Cray MPI to improve the I/O performance of
scientific applications.

G. Fault Tolerance in MPI

As supercomputing systems continue to scale, they are be-
coming increasingly vulnerable to hardware failures. Hard-
ware failures often result in the termination of the entire
parallel job. Invariably, this leads to inefficient utilization of
computing resources. State-of-the-art solutions to address-
ing this problem include capturing checkpoint images to
allow applications to re-start from a previous consistent
state. However, there are currently no standardized solutions
within MPI to allow application developers to design fault-
resilient codes. The MPI community is currently working
towards achieving a standardized approach to detect and
mitigate system failures. This effort is referred to as the
User Level Fault Mitigation (ULFM) [14]. This feature is
not yet included in the official MPI specification.

An MPI implementation that offers ULFM support should
ensure that any MPI operation that involves a failed process
must not block indefinitely. ULFM also mandates that MPI
operations that do not involve failed processes must com-
plete normally. ULFM defines extensions to existing MPI
interfaces, and new MPI interfaces to detect and manage
system failures. For example, a ULFM capable MPI imple-
mentation allows a parallel job to re-build MPI objects, such
as MPI communicators and windows to exclude dead pro-
cesses. Parallel applications can utilize the ULFM interface
to sustain system failures and continue execution. Section
III-F describes a prototype implementation of the ULFM
framework in Cray MPICH.

ITII. CRAY MPI AND CRAY SHMEM: NEW DESIGNS
AND FEATURES

This section describes some of the recent features and
optimizations in Cray MPI and Cray SHMEM software
stacks. The performance data presented in this section were
generated using common micro-benchmarks, such as the
Intel MPI Benchmark (IMB), and the OSU Micro Bench-
marks (OMB). The experiments were performed on Cray
XC systems in batch mode.

A. MPI Collectives

MPI_Alltoall and MPI_Alltoallv: Typically, the pair-wise
exchange algorithm is used to implement large message All-
to-All Personalized Exchange collective operations [15]. The
pair-wise exchange algorithm performs the communication
operations via point-to-point send/recv operations. Cray MPI
also offers an optimized implementation of the MPI_Alltoall

and MPI_Alltoallv operations by taking advantage of the
low-level DMAPP interface. On Cray XC systems, the
DMAPP-based implementation significantly outperforms the
basic send/recv-based implementation. However, this feature
is not enabled by default, and requires users to explicitly link
their executable against the DMAPP library, and enable the
corresponding environment variables.

Cray MPI-7.2.0 includes new optimizations to signif-
icantly improve the performance of All-to-All Personal-
ized Exchange collective operations. These designs directly
leverage the low-level uGNI API and can outperform the
default send/recv based implementation of the pairwise ex-
change algorithm. The new uGNI-based implementation also
outperforms the optimized DMAPP-based implementation.
Figure 1(a) compares the performance of the uGNI-based
implementation with the send/recv implementation. This
experiment was performed on a Cray XC system, with 4,096
MPI processes, with 24 MPI processes per compute node.
For the purpose of this experiment, we measure the commu-
nication bandwidth observed per compute node for various
message lengths during the execution of the MPI_Alltoall
and MPI_Alltoallv operations. We observe that the new
uGNI-based designs can improve the communication band-
width by about 5X for small message lengths, and continue
to perform well for large payload sizes, when compared
to the basic point-to-point send/recv implementation. Fig-
ure 1(b) compares the performance of the new uGNI-based
implementation with the Cray optimized DMAPP-based im-
plementation. The new uGNI-based design outperforms the
existing DMAPP-based implementation by 20% for small
message lengths, and by up to 15% for larger payloads.
Since the uGNI-based solution does not rely on DMAPP,
this feature has been enabled by default. Hence, users can
automatically benefit from this new optimization. We also
note that the use of hugepages is strongly recommended to
obtain the best performance. The 64M hugepage module was
used for these experiment.

MPI_Allreduce: Cray MPI-7.2.0 offers new optimiza-
tions to improve the performance of MPI_Allreduce and
MPI_Bcast collective operations. These optimizations rely
on implementing intra-node phases of collective operations
via buffers dedicated for collective operations in the shared-
memory region. Cray MPI relies on the Aries hardware
Collective Engine to optimize the Allreduce operation. Fig-
ure 1(c) compares the average communication latency for
MPI_Allreduce with 119,648 MPI processes on a Cray
XC system, with 32 processes per compute node, with
and without the new shared-memory optimization. This
figure also compares the performance of the DMAPP-based
implementation of MPI_Allreduce with and without the
shared-memory optimization. We note that Cray MPI-7.2.0
performs about 8% better than Cray MPI-7.0.0 implemen-
tation. We attribute this performance improvement to the
new shared-memory based optimization. In addition, the



Bandwidth MB/sec/node

~+-A2A uGNI-direct
-+A2AV uGNI-direct

-=-A2A Netmod
--A2AV Netmod

~A2A uGNI-direct

—~+7.0.0 -=700-DMAPP =720 -=7.20-DMAPP

-=A2A DMAPP

6
6000 000

60

50

o
S
3
3

~
S
=1
3

) S—

40

P I 7~
VAR N

@
S
=1
3

30

Bandwidth
MB/sec/node

/
/S 1.l

0w

Avg. Latency (usec)

20

w L A
=

—
0 0

LR S S N S S N A - Y
N Y X DY N AT
\’"'»e\é“,\‘e,e%\\g:{;\&

Message Size (bytes)

Figure 1.

DMAPP-based implementation of MPI_Allreduce in Cray
MPI-7.2.0, together with the new shared-memory optimiza-
tion performs about 23% better than that of the Cray MPI-
7.0.0 implementation. We recommend users to enable the
shared-memory based optimization, in conjunction with the
DMAPP-based hardware Collective Engine implementation
for MPI_Allreduce. The new shared-memory based opti-
mization can be enabled by setting the following flag:
MPICH_SHARED_MEM_COLL_OPT. This feature will be
enabled by default in upcoming Cray MPI releases.

Non-Blocking collectives: Over the years, Cray MPI has
offered support to achieve communication/computation over-
lap via asynchronous progress mechanisms [16]. Cray MPI-
7.2.0 offers improved computation/communication overlap
for various non-blocking collectives on XC systems. Cray
MPI also offers designs to leverage the Aries Collective
Engine support for small message MPI_Iallreduce oper-
ations. Figures 2(a) (i) and (ii) demonstrate the latency
and overlap characteristics of the improved async-progress
optimizations for the MPI_lalltoall operation, with 8,192
MPI processes on a Cray XC system. For the purpose of
these experiments, compute nodes based on the 24-core
Intel Ivy-Bridge processors were used. The MPI_Ialltoall
benchmark was configured to run with 24 MPI processes
per compute node. Cray MPI-7.2.0 offers up to 70% com-
putation/communication overlap for large message Ialltoall
operations. In comparison, Cray MPI-7.0.1 offered very
little overlap. In addition, the communication latency of
the optimized Ialltoall operation is comparable with that of
Cray MPI-7.0.0. Similarly, figures 2(b) (i) and (ii) demon-
strate the benefits of the new designs with small message
MPI_Iallreduce operations. These experiments were also
performed on a Cray XC system with 8,192 MPI processes,
and 24 MPI processes per compute node. Each compute
node was based on the 24-core Ivy-Bridge processor. This
design takes advantage of the Aries hardware collective
engine to achieve computation/communication overlap. Ap-
plications using small message MPI_lallreduce operations
on a Cray XC system can observe up to 80% compu-
tation/communication overlap. In addition, the optimized
lallreduce implementation offers lower communication la-

D O D S SN A . I L LT Y
“3@0'\9?\6"@‘,@% S

4 8 16 32 64 128

QS P
S \Q '5""\ & Message Length (Bytes)

Message Size (bytes)

(a) MPI_Alltoall Performance Comparison (b) MPI_Alltoall - uGNI vs DMAPP Comparison (c) MPI_Allreduce Latency Comparison

tency, due to the utilization of the hardware collective engine
(Section II-A). Optimized asynchronous progress support
is not enabled by default. This is because the asynchronous
progress design involves spawning an internal helper thread
for each MPI process, and utilizing the interrupt-based uGNI
transport mechanism. These factors negatively affect the
performance of latency sensitive applications. However, this
design will improve computation/communication overlap for
applications that utilize non-blocking collective operations.
Users need to set the following run-time parameters to en-
able this feature: MPICH_NEMESIS _ASYNC_PROGRESS
and MPICH_MAX_THREAD_SAFETY. To enable the
MPI_Iallreduce optimization, users need to link against the
DMAPP library, and also need to set the following run-time
variable: MPICH_USE_DMAPP_COLL.

B. MPI-3 RMA

Cray MPI 7.2.0 offers new designs to improve the perfor-
mance of some of the one-sided operations by leveraging the
hardware atomic operations offered by the Aries network.
The hardware atomic operations are particularly well suited
for small message RMA operations. In Figure 3(a), we com-
pare the performance of the optimized MPI_Fetch_and_op
implementation when compared with the default imple-
mentation. The new designs improve the average latency
of the MPI_Fetch_and_op operation by more than 80%,
when compared with Cray MPI-7.1.3. Users can enable
this feature by setting the MPICH_USE_NETWORK_AMO
runtime variable.

C. Multi-threaded MPI Communication

The MIC architecture offers more than 50 compute cores
per chip. However, the scalar speed of each compute core
is much lower when compared to the state-of-the-art Xeon
processors. On such architectures, communication libraries
that rely on a single thread to service the communication
requirements of a parallel application may no longer be able
to saturate the high performance communication networks.
Parallel applications may need to utilize multi-threaded de-
signs to perform compute and communication operations in
parallel across several slower compute cores. In this context,
the MPI and SHMEM communication libraries must allow



—-Cray MPI-7.0.0 -=-Cray MPI-7.2.0

oy
8 4000 —
E£.3500
3000
©'2500
S 2000
= 1500
-1 1000
= 500
3: 0
8K 16K 32K 64K
Message Length (Bytes)
(i) MPI_lalltoall: Comm. Latency
80

< 70 - o

£

40

2%

O1p -

0 : ; :
8K 16K 32K 64K
Message Length (Bytes)
(ii) MPI_lalltoall: Comm./Comp. Overlap
Figure 2.
~+MPT 7.2.0 +MPT 7.13 700
6 160

Latency (usec)
Noow s o
Latency (usec)

-

-#-7.2.0 (Fine-Grained Threading)

Latency (usec)

—--7.0.0 =720

< 4 8
Message Length (Bytes)
(i) MPI1_lallreduce: Comm. Latency

16

4 8
Message Length (Bytes)
(if) MPI_lallreduce: Comm./Comp. Overlap

16

Latency and Overlap Comparison (a) MPI_Ialltoall (b) MPI_Iallreduce

720 701

7000

6000

5000

J——I

4000

/

/
o

w
=}
1<)
S

2000

.

SN YN D e %\’\.\&h"&@’@b%\n’»é&h
N

0

~ oo v ¥
«© N o

128
512
32K
128K

Message Length (Bytes) Message Length (Bytes)
(a) 32-Core Haswell

Figure 3.

multiple threads to concurrently perform communication
operations.

Over the years, Cray MPI has offered a thread-safe MPI
software stack by relying on a global lock to guarantee
thread-safety. Recently, a new multi-threaded flavor of the
Cray MPI software stack was released. This library relies on
fine-grained locks to improve concurrency within the MPI
library. Figure 3(b) compares the average communication
latency of OMB multi-threaded MPI point-to-point bench-
mark (osu_latency_mt.c). The new library with fine-grained
locking significantly outperforms the default Cray MPI li-
brary that uses a global lock to ensure thread-safety. We also
observe that the new multi-threaded library performs signif-
icantly better across two Intel KNC co-processor devices,
across the Aries network. Users can link against the new
library by using the “-craympich-mt” driver flag, and setting
the MPICH_MAX_THREAD_SAFETY run-time parameter
to “multiple”. The parallel application should also request
MPI_THREAD_MULTIPLE during initialization.

D. Cray SHMEM Optimizations

Cray SHMEM 7.2.0 offers new optimizations to improve
the performance of the broadcast operation. The new designs
are specifically geared towards improving the performance

1000

Communication Latency (usec)

L

0

eNey XX 8 16 32 64 128 256

Message Length (Bytes)

512 1024 2048

128
512

X
I
o

128K

Message Length (Bytes)
(b) 32-Core KNC

(a) MPI-3 RMA Performance Optimizations, (b) Multi-Threaded Pt2Pt MPI latency, and (c) Cray SHMEM Broadcast Latency

of the broadcast operation with small payload sizes, in
the range of 8 bytes to 2KB. In Figure 3(c), we compare
the SHMEM broadcast communication latency of the Cray
SHEMM 7.2.0, with Cray SHMEM 7.1.0. For small pay-
loads, the new optimizations improve the communication
latency by up to 75%.

E. MPI I/O Optimizations

When the performance of the I/O portion of an application
is not good enough, it is usually very difficult for the
application developer to understand the causes of the poor
performance and what might be done to improve it. Cray
MPI-7.2.0 offers an MPI I/O performance analysis feature to
show I/O patterns on a set of time line plots, giving visibility
to and allowing focus on specific, poorly performing parts of
the application. Rather than just reporting the total amount
of data transferred and the total time spent doing I/O, this
feature plots a rich set of I/O pattern statistics as timelines.
This provides important insights for possible I/O tuning
hints or application modifications. A Cray Apprentice2 fea-
ture currently under development will provide even greater
visibility of the software stack at any point along the I/O
timelines.

Figures 4 (a) and (b) show an example of an improvement



Before: MFPIIO MWrite Calls

Collective Write + ]
Independent MWrite b3

E % % x %
x xxx ]
+ x
i i

1A

X
10 % +
+
1 — : —
450 500 550 600 650
After: MPIIO MWrite Calls
L Collective Write * ]
10000
I+ Independent Write x
1000 &
100 | E Y ]
10 ¢ » ]
>
1 L PO i i
450 500 550 600 650

Before: Aggregate Write Bandwidth

450 500 550 8600 650

After: Aggregate Hrite Bandwidth

-
[=3
feT=]
feg=1
[=3
[=3
T T T T

450 500 550 600 650

Figure 4. MPI I/O Profile Timeline

made in an application as a result of understanding the file
access pattern and then modifying that part of the application
for better performance. Figure 4 (a) shows the before and
after where the red X’s are MPI independent write calls and
the blue +’s are MPI collective write calls. The before plot
shows that independent calls dominate. Cray MPI cannot do
the collective buffering optimization on independent calls.
After modifications to the application, most of the MPI I/O
calls are collective. The vertical scale is a log scale of the
aggregate number of write calls. The horizontal scale is
time. The total time for the I/O was reduced from about
200 to about 70. Figure 4(b) shows the before and after
for the aggregate write bandwidth. The vertical scale is a
log scale of MB/sec and the horizontal scale is time. Most
of the low bandwidth in the before case has been replaced
with high bandwidth. There is still a tail of independent
writes and low bandwidth that could be looked at for
more optimization. Users can enable this tool by setting the
following environment variable: MPICH_MPIIO_STATS=2.

FE. User Level Fault Mitigation (ULFM)

An internal prototype implementation of the Cray MPI
with ULFM support is under development. This prototype
offers preliminary support for the ULFM framework on
Cray XC systems. The current implementation detects node-
failures and allows parallel jobs to tolerate such events. Cray
MPI also takes advantage of the fault tolerance capabilities
offered by the Cray PMI library to dynamically detect failed
nodes. The current version of the prototype allows parallel
applications to successfully re-build MPI communicators via
the new MPI_Comm_shrink, MPI_Comm_revoke() and the
MPI_Comm_agree() functions. The prototype implementa-
tion of the ULFM framework in Cray MPI is currently not
supported in Cray MPI-7.2.0. Future design and develop-
ment of the ULFM framework in Cray MPI is subject to the
ULFM proposal being accepted in the MPI specification.

IV. SUMMARY AND FUTURE WORK

In this paper, we discussed some of the latest optimiza-
tions in Cray MPI and SHMEM software stacks. Several
of these optimizations are geared towards improving the
performance of scientific applications on modern compute
processors and architectures. As discussed in Section III,
many new optimizations directly leverage the advanced fea-
tures offered by the XC network to improve communication
performance, communication/computation overlap and I/O
performance. Furthermore, a new multi-threaded library has
also been released to improve the performance of MPI
communication operations in multi-threaded environments.
A prototype implementation of a fault tolerant Cray MPI
software is also under development. Future releases of Cray
MPI and Cray SHMEM software stack will continue to offer
new optimizations and features to improve the performance
of scientific applications on current and next generation Cray
supercomputers.

REFERENCES

[1] “CRAY: The Supercomputer
http://www.cray.com/Home.aspx.

[2] Cray XC Series, http://www.cray.com/Assets/PDF/products/
xc/CrayXC30Networking.pdf.

[3] “XEON-PHI Software Developer’s
http://www.intel.com/content/dam/www/public/us/en/
documents/product-briefs/xeon-phi-software-developers-
guide.pdf.

[4] NVIDIA, http://www.nvidia.com/object/cuda_home_new.html.

[5] MPI Forum, “MPI: A Message Passing Interface (MPI-3),”
in http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf.

[6] Partitioned Global Address Space, http://www.pgas.org/.

[7] Cray, Inc., “Man Page Collection: Shared Memory Access
(SHMEM),” (S-2383-23).

[8] Berkeley UPC, “Unified Parallel C,” in http://upc.lbl.gov/.

[9] Coarray Fortran, https://gcc.gnu.org/wiki/Coarray.

[10] Cray Chapel, http://chapel.cray.com.

[11] Using the GNI and DAMPP APIs,
http://docs.cray.com/books/S-2446-5202/S-2446-5202.pdf.

Company,”

Guide,”



[12]

(13]

[14]
[15]

(16]

Parallel 3-D Fast Fourier Transform,
http://www.sdsc.edu/us/resources/p3dfft/.

R.D. Falgout, J.E. Jones, and U.M. Yang, “ The Design and
Implementation of hypre, a Library of Parallel High Perfor-
mance Preconditioners,” in chapter in Numerical Solution of
Partial Differential Equations on Parallel Computers, A.M.
Bruaset and A. Tveito, eds., Springer-Verlag, 51 (2006), pp.
267-294. UCRL-JRNL-205459. .

User Level Fault Mitigation, http://fault-tolerance.org/.

J. Bruck, C. T. Ho, S. Kipnis, and D. Weathersby, “Effi-
cient Algorithms for All-to-All Communications in Multi-
Port Message-Passing Systems,” in Proc. of the 6th ACM Sym.
on Par. Alg. and Arch., 1994, pp. 298-309.

Howard Pritchard, Duncan Roweth, David Henseler, and Paul
Cassella, “Leveraging the Cray Linux Environment Core
Specialization Feature to Realize MPI Asynchronous Progress
on Cray XE Systems,” Proceeding of the Cray User Group
(CUG), 2012.



