
Experiences Running and Optimizing the
Berkeley Data Analytics Stack on Cray

Platforms

Kristyn J. Maschhoff and Michael F. Ringenburg
Cray Inc.
CUG 2015

Copyright 2015 Cray Inc

Legal Disclaimer
Information in this document is provided in connection with Cray Inc. products. No license, express or implied,
to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause
the product to deviate from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced
for release. Customers and other third parties are not authorized by Cray Inc. to use codenames in advertising,
promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system hardware
or software design or configuration may affect actual performance.

Cray and Sonexion are registered trademarks of Cray Inc. in the United States and other countries, and Cray
XC30, Cray CS300, Cray XK7, Cray XE6, Cray Linux Environment, Cray XE6m, Cray XE6m-200, Cray XT6,
Cray XT5, Cray XT4, Cray SHMEM, CrayPat, NodeKARE and Urika are registered trademarks of Cray Inc.

Other names and brands may be claimed as the property of others. Other product and service names
mentioned herein are the trademarks of their respective owners.

1
Copyright 2015 Cray Inc 4/24/15

Berkeley Data Analytics Stack (BDAS)

4/24/15 Copyright 2015 Cray Inc

●  Spark in-memory analytics framework
●  Includes modules for graph analysis, SQL, machine learning, and streaming

●  Tachyon distributed in-memory file system
●  Mesos cluster manager

2

Focus
of this
work

(Diagram: UC Berkeley AMPLab)

Spark Execution Model

4/24/15 Copyright 2015 Cray Inc

●  Master-slave parallelism
●  Driver (master)

●  Executes main
●  Distributes RDDs & tasks to executors

●  Resilient Distributed Dataset (RDD)
●  Spark's primary data abstraction
●  Partitioned amongst executors
●  Fault-tolerant via lineage

●  Executors (slaves)
●  Lazily execute tasks (operations on

partitions of the RDD)
●  Global all-to-all shuffles for data

exchange

3

Driver

main()

…

Executor

 Task

Task

Node 1

Executor

 Task

Task

Executor

 Task

Task

Node N

Executor

 Task

Task

Node 0

= Java Virtual Machine Instance

Spark Shuffle

4/24/15 Copyright 2015 Cray Inc

●  All data exchanges
between executors
implemented via shuffle
●  Senders (“mappers”) send

data to block managers; block
managers write to disks, tell
scheduler how much destined
for each reducer

●  Barrier until all mappers
complete shuffle writes

●  Receivers (“reducers”)
request data from block
managers that have data for
them; block managers read
and send

4

Map task
thread

Block
manager

Disk

Reduce
task

thread
TCP

Spark
Scheduler

Shuffle write

Shuffle read

Meta data

Spark Programming Model: Example

4/24/15 Copyright 2015 Cray Inc
5

val arr1M = Array.range(1,1000001) !
val rdd1M = sc.parallelize(arr1M, 40)!
val evens = rdd1M.filter(!
 a => (a%2) == 0!
)!
evens.take(5)!
!
>>> Array[Int] = Array(2, 4, 6, 8, 10)!

Create array of
{1, 2, …, 1,000,000}

Partition array into a 40-
partition RDD distributed
across executor nodes.

(Can also create from file.)

Spark transformation
(modify data in RDDs)

Spark action
(return result to driver) Lazy Evaluation: No computation until result requested

com
pute

Tachyon

4/24/15 Copyright 2015 Cray Inc

● Distributed in-memory filesystem
●  HDD/SSD I/O replaced with DRAM loads and stores

●  Fault tolerance via:
●  Asynchronous checkpoints to (persistent) underfilesystem
●  Persistent lineage tracking

6

DRAM

 Application

Node 1

Tachyon

Underfilesystem
(HDD/SSD)

Application

DRAM

 Application

Node 2

Tachyon

Underfilesystem
(HDD/SSD)

TCP sockets

Spark and Tachyon on Cray Systems

4/24/15 Copyright 2015 Cray Inc

●  This paper reports our experiences running and
optimizing BDAS on three Cray systems
●  Urika-XA Exterme Analytics Platform

●  48 dual socket nodes, 16-core Haswell, FDR Infiniband, 800
GB SSD and 1TB HDD on every node, 128 GB DRAM/node

●  Cloudera Distribution of Hadoop 5.3, w/ Spark 1.2
●  Prototype Aries-based system with node-local SSDs

●  43 dual socket nodes, 12-core Haswell, Cray Aries, 800 GB
SSD and 1TB HDD on every node, 128 GB DRAM/node

●  Spark 1.3 and Tachyon 0.6.1 on top of CentOS 6.4
●  XC 40

●  Used 43 nodes, dual 16-core Haswell, Cray Aries interconnect,
128 GB DRAM/node

●  Spark 1.3 in Cluster Compatibility Mode (CCM)

7

Configuring Spark for Cray Systems

4/29/15 Copyright 2015 Cray Inc

●  Spark Shuffle: responsible for data movement between executors
●  File I/O is often shuffle bottleneck
●  Sort-based shuffle: consolidates intermediate files; friendlier to OS cache
●  Urika-XA, Prototype Aries system: moved shuffle files to local SSDs
●  XC systems: placed shuffle files in local RAM disk

●  Has tendency to fill RAM, so allocated secondary shuffle directory on Lustre

●  Studying additional configs related to network capabilities
●  Default parameters tuned for commodity interconnects: willing to spend a lot of

compute time to save on network traffic
●  Does this make sense with a more capable interconnect?
●  Recent research (Ousterhout et al, NSDI '15 in May) indicates network tuning

may have gone to far – compute now the bottleneck…

8

Configuring Spark Memory Usage

4/24/15 Copyright 2015 Cray Inc

● Need to balance memory usage between Spark, Virtual
Machines/Interpreters, OS file buffer
●  Extra executor memory minimizes spills to disk
●  Leaving "slack" in Java heap => less garbage collection overhead
●  Extra memory not used by applications => larger OS file buffer (improves

shuffle performance)
●  On XC, more RAM disk space improves shuffles
●  Best performance in our tests: typically ~50% of total memory to executors

9

Spark Results

4/24/15 Copyright 2015 Cray Inc

●  Local SSDs provide large
benefit
●  Aries prototype and Urika-

XA SSDs vs XC RAM disk
●  Preventing RAM disk

exhaustion requires
backing with Lustre

● Recent results (post-
paper) show we can
cut another 25% by
eliminating
compresssion

10

Tachyon Results

4/24/15 Copyright 2015 Cray Inc

● Compared loading GraphX edgelist file from Lustre vs
Tachyon
●  Flushed OS file caches between runs

● At least 2x speedup from Tachyon

11

Dataset Size Lustre to
GraphRDD

Tachyon to
GraphRDD

Tachyon Load
Speedup

LiveJournal 1.0 GB 13.8 seconds 5.4 seconds 2.6x
Twitter 24.3 GB 41.1 seconds 19.4 seconds 2.1x

Potential Future Optimizations

4/24/15 Copyright 2015 Cray Inc

● Replace TCP sockets with native Aries communication
●  High-performance Big Data project at Ohio State: Hadoop,

HDFS, and Spark via RDMA over Infiniband
●  Unstructured Data Acellerator (UDA) plugin (Mellanox,

Auburn University): Hadoop MapReduce Shuffle over Infiniband
● Explore causes of RAM disk exhaustion on XC

●  Appears to fill up quicker than should
●  Currently round robin betweek RAM/Lustre … bias towards RAM?
●  Investigating Spark code w/ AMPLab assistance
●  Or, move shuffle files to DataWarp

12

Potential Future Optimizations

4/24/15 Copyright 2015 Cray Inc

●  Integrate optimized libraries and engines
●  Linear algebra common in MLLib (Spark machine learning) – AMPLab

sped up perfomance by swapping in optimized linear algebra libraries
●  Cray Graph Engine (see CUG paper, talk earlier this week) outperforms

GraphX algorithms by 10x
●  Investigate calling Cray libraries and integerating with CGE

●  Continue investigation of Compute/Network configuration
tradeoffs
●  Compression
●  Locality wait
●  Speculation
●  Max MB in flight

13

Summary

4/29/15 Copyright 2015 Cray Inc

●  Paper describes our experiences running Spark and Tachyon
across a variety of Cray platforms

●  Investigated configurations, tuning, and potential optimizations
●  Network/compute tradeoffs
●  Shuffle improvements
●  Tigher integration of Cray libraries, engines

●  Questions? Contact the authors (mikeri@cray.com,
kristyn@cray.com), or Venkat Krishnamurthy <venkat@cray.com>.

14

