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Berkeley Data Analytics Stack (BDAS) 
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●  Spark in-memory analytics framework 
●  Includes modules for graph analysis, SQL, machine learning, and streaming 

●  Tachyon distributed in-memory file system 
●  Mesos cluster manager 
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Spark Execution Model 
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●  Master-slave parallelism 
●  Driver (master) 

●  Executes main 
●  Distributes RDDs & tasks to executors 

●  Resilient Distributed Dataset (RDD) 
●  Spark's primary data abstraction 
●  Partitioned amongst executors 
●  Fault-tolerant via lineage 

●  Executors (slaves) 
●  Lazily execute tasks (operations on 

partitions of the RDD) 
●  Global all-to-all shuffles for data 

exchange 
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Spark Shuffle 
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●  All data exchanges 
between executors 
implemented via shuffle 
●  Senders (“mappers”) send 

data to block managers; block 
managers write to disks, tell 
scheduler how much destined 
for each reducer 

●  Barrier until all mappers 
complete shuffle writes 

●  Receivers (“reducers”) 
request data from block 
managers that have data for 
them; block managers read 
and send 
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Spark Programming Model: Example 
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val arr1M = Array.range(1,1000001) !
val rdd1M = sc.parallelize(arr1M, 40)!
val evens = rdd1M.filter(!
              a => (a%2) == 0!
            )!
evens.take(5)!
!
>>> Array[Int] = Array(2, 4, 6, 8, 10)!

Create array of  
{1, 2, …, 1,000,000}   

Partition array into a 40-
partition RDD distributed 
across executor nodes. 

 
(Can also create from file.) 

Spark transformation 
(modify data in RDDs) 

Spark action 
(return result to driver) Lazy Evaluation: No computation until result requested 

com
pute 



Tachyon 
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● Distributed in-memory filesystem 
●  HDD/SSD I/O replaced with DRAM loads and stores 

●  Fault tolerance via: 
●  Asynchronous checkpoints to (persistent) underfilesystem 
●  Persistent lineage tracking 
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Spark and Tachyon on Cray Systems 
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●  This paper reports our experiences running and 
optimizing BDAS on three Cray systems 
●  Urika-XA Exterme Analytics Platform 

●  48 dual socket nodes, 16-core Haswell, FDR Infiniband, 800 
GB SSD and 1TB HDD on every node, 128 GB DRAM/node 

●  Cloudera Distribution of Hadoop 5.3, w/ Spark 1.2 
●  Prototype Aries-based system with node-local SSDs 

●  43 dual socket nodes, 12-core Haswell, Cray Aries, 800 GB 
SSD and 1TB HDD on every node, 128 GB DRAM/node 

●  Spark 1.3 and Tachyon 0.6.1 on top of CentOS 6.4 
●  XC 40 

●  Used 43 nodes, dual 16-core Haswell, Cray Aries interconnect, 
128 GB DRAM/node 

●  Spark 1.3 in Cluster Compatibility Mode (CCM) 
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Configuring Spark for Cray Systems 
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●  Spark Shuffle: responsible for data movement between executors 
●  File I/O is often shuffle bottleneck 
●  Sort-based shuffle: consolidates intermediate files; friendlier to OS cache 
●  Urika-XA, Prototype Aries system: moved shuffle files to local SSDs 
●  XC systems: placed shuffle files in local RAM disk 

●  Has tendency to fill RAM, so allocated secondary shuffle directory on Lustre 

●  Studying additional configs related to network capabilities 
●  Default parameters tuned for commodity interconnects: willing to spend a lot of 

compute time to save on network traffic 
●  Does this make sense with a more capable interconnect?   
●  Recent research (Ousterhout et al, NSDI '15 in May) indicates network tuning 

may have gone to far – compute now the bottleneck… 
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Configuring Spark Memory Usage 
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● Need to balance memory usage between Spark, Virtual 
Machines/Interpreters, OS file buffer 
●  Extra executor memory minimizes spills to disk 
●  Leaving "slack" in Java heap => less garbage collection overhead 
●  Extra memory not used by applications => larger OS file buffer (improves 

shuffle performance) 
●  On XC, more RAM disk space improves shuffles 
●  Best performance in our tests: typically ~50% of total memory to executors 
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Spark Results 
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●  Local SSDs provide large 
benefit 
●  Aries prototype and Urika-

XA SSDs vs XC RAM disk 
●  Preventing RAM disk 

exhaustion requires 
backing with Lustre 

● Recent results (post-
paper) show we can 
cut another 25% by 
eliminating 
compresssion 
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Tachyon Results 
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● Compared loading GraphX edgelist file from Lustre vs 
Tachyon 
●  Flushed OS file caches between runs 

● At least 2x speedup from Tachyon 
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Dataset Size Lustre to 
GraphRDD 

Tachyon to 
GraphRDD 

Tachyon Load 
Speedup 

LiveJournal 1.0 GB 13.8 seconds 5.4 seconds 2.6x 
Twitter 24.3 GB 41.1 seconds 19.4 seconds 2.1x 



Potential Future Optimizations 
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● Replace TCP sockets with native Aries communication 
●  High-performance Big Data project at Ohio State: Hadoop, 

HDFS, and Spark via RDMA over Infiniband 
●  Unstructured Data Acellerator (UDA) plugin (Mellanox, 

Auburn University): Hadoop MapReduce Shuffle over Infiniband 
● Explore causes of RAM disk exhaustion on XC 

●  Appears to fill up quicker than should 
●  Currently round robin betweek RAM/Lustre … bias towards RAM? 
●  Investigating Spark code w/ AMPLab assistance 
●  Or, move shuffle files to DataWarp 
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Potential Future Optimizations 
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●  Integrate optimized libraries and engines 
●  Linear algebra common in MLLib (Spark machine learning) – AMPLab 

sped up perfomance by swapping in optimized linear algebra libraries 
●  Cray Graph Engine (see CUG paper, talk earlier this week) outperforms 

GraphX algorithms by 10x 
●  Investigate calling Cray libraries and integerating with CGE 

●  Continue investigation of Compute/Network configuration 
tradeoffs 
●  Compression 
●  Locality wait 
●  Speculation 
●  Max MB in flight 
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Summary 
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●  Paper describes our experiences running Spark and Tachyon 
across a variety of Cray platforms 

●  Investigated configurations, tuning, and potential optimizations 
●  Network/compute tradeoffs 
●  Shuffle improvements 
●  Tigher integration of Cray libraries, engines 

●  Questions? Contact the authors (mikeri@cray.com, 
kristyn@cray.com), or Venkat Krishnamurthy <venkat@cray.com>. 
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