
ORNL is managed by UT-Battelle
for the US Department of Energy

Use of Continuous
Integration Tools
for Application
Performance
Monitoring

Verónica G. Vergara Larrea
Wayne Joubert
Chris Fuson

CUG2015
April 26 - 30, 2015

Chicago, IL

2 CUG2015

Overview

• Part 1: Background & Motivation

• Part 2: Application Performance Monitoring

• Part 3: Environment Monitoring

Part 1:

Background

4 CUG2015

Background & Motivation

• High performance computing systems are
increasingly complex
–  Hardware (HW) and software (SW) stack

• How to measure impact of HW/SW changes?
–  Performance of applications, user environment stability

• Proposed solution: Application level monitoring
system
– Often: develop a tool from scratch
–  Another option: use/repurpose well-supported existing

tools (no need to reinvent the wheel!)

5 CUG2015

Background & Motivation

• Many tools available from a system administration
perspective
–  Nagios, Ganglia, Cray’s Node Health Checker, etc
–  Help detect failures with systems and services

•  Sustained system performance monitoring
–  NERSC’s SSP metric, DoD’s monitoring system
–  Detect performance degradation using benchmarks and

applications

•  In-house tools often developed
–  Significant center resources needed to maintain

• CI tools already provide most of the features needed to
monitor performance and stability

6 CUG2015

CI vs. Monitoring workflow

CI workflow
•  Target: software project
•  Test, test, test

•  After every commit:
–  Build software
–  Run set of tests

•  Test on a regular schedule

•  Alert when failures occur

Monitoring workflow
•  Many targets: scientific

application, benchmark,
environment test

•  After system software
upgrade:
–  Build application
–  Submit job

•  Run regularly to track
performance over time

•  Alert when failures occur

•  Alert when performance
degradation observed

7 CUG2015

Requirements

Tool
•  Open source

•  Freely available

•  Recent release and/or bug
fixes available

•  Well-supported

•  Flexible

•  Portable

•  Easy to deploy

•  Minimal amount of
customization needed to fit
the workflow

Monitoring Workflow
•  Graphical user interface

•  Full job control

•  Interactive dashboard

•  Configurable analysis and
plotting

•  Reporting capabilities

•  Customizable notifications

•  Security features available

•  Archiving capabilities

•  Resilient to failures

8 CUG2015

CI Tools Evaluated

• Started with popular CI tools
• Grouped tools into:

–  commercial vs. freely available
–  closed vs. open source
–  hosted vs. deployable

• Top FOSS contenders: Jenkins, Buildbot,
Continuum, Go

• Commercial/paid: TeamCity, Bamboo, Travis CI

9 CUG2015

CI Tools Evaluated (cont’d)

Tool License Latest
Release Dashboard Features Plugins Plotting

Buildbot GPL Dec 2014 ✓ Launch,
report 10s ✗

Continuum Apache
2.0 Jun 2014 ✓ Full-

control 10s ✗

CruiseControl BSD-style Sep 2010 ✓ Launch,
report 10s ✗

Go Apache
2.0 Jan 2015 ✓ Launch,

report 10s ✓

Jenkins CC & MIT Jan 2015 ✓ Full-
control > 1,000 ✓

Travis CI MIT Oct 2014 ✓ Report

TeamCity Proprietary Jan 2015 ✓ Full-
control ✓

Bamboo Proprietary Nov 2014 ✓ Full-
control ✓

10 CUG2015

Why Jenkins?

• Large user community behind it
– Over 100,000 users

• Provides full job control and management
–  Interactive dashboard
–  Flexible job scheduling

• Extensible with over a thousand plugins
• Plotting and reporting capabilities
• Customizable views
• Robust notification capabilities

Part 2:

Application
Performance
Monitoring

12 CUG2015

Jenkins initial setup
•  The Jenkins application is easy to download, launch with Java

•  User can access Jenkins through a web browser interface

•  Installed Plot plugin, Parametrized Trigger plugin, LDAP plugin,
Dashboard View plugin, AnchorChain plugin

•  Set up as two directories:
–  Jenkins install directory
–  Supporting scripts directory

•  Scripts directory is stored in git repo

•  Jenkins configure files for defining dashboards and build targets stored
also in scripts directory for version control

13 CUG2015

Jenkins dashboard
•  Main dashboard presents list of executable build targets on right

•  Left panel shows status of builds currently being executed

•  “build” here can be a software build or any executable operation

14 CUG2015

Jenkins build targets
•  Configure page used to configure the operations to perform a build

15 CUG2015

Example: DAXPY
•  Test case: execute DAXPY kernel on 1-16 cores of a single node

•  Shell script 1: create and compile executable

•  Shell script 2: create and submit PBS scripts to run executable and
collect timing results to files; spin loop to wait for PBS jobs to complete

•  Settings on Jenkins DAXPY build configure page:
–  Execute two scripts
–  Run Plot plugin on results
–  Set up to run periodically with cron-like syntax

•  Then can launch single DAXPY run or start periodic runs from the
DAXPY dashboard

•  For any build instance, user can view execution status on main page;
can view job console output in real time if desired; can later access build
artifacts for further inspection

16 CUG2015

DAXPY results

17 CUG2015

Example: application harness code
•  OLCF has an application test harness, used for acceptance testing and

IO system testing

•  Has two parts:
–  Harness code proper – schedules and monitors builds and runs of applications
–  Harness applications – defines build and execution procedures for selected

applications

•  Each harness application instance has several scripts:
–  build_executable.x – compile the code
–  submit_executable.x – create PBS script and submit
–  check_executable.x – check run results for correctness
–  report_executable.x (NEW) – extract run metrics of interest

•  Two “coupling” scripts were written to interface the already-existing large
set of harness applications to Jenkins:

–  harness_build – build the code
–  harness_submit – submit the run, spin loop until completion, collect results

18 CUG2015

Harness example: IMB
•  Simple run of Intel MPI Benchmarks suite to perform ping-pong test

•  Used existing harness code as-is, only needed to add
report_executable.x file to extract latency/bandwidth metrics from IMB
output file

19 CUG2015

An alternative: Splunk
•  Our experience with Jenkins indicated the plot capabilities were not as

flexible as would be desired

•  We also wanted to be able to visualize results from runs initiated by the
existing harness, which is not straightforward for Jenkins which wants to
own the build process

•  Investigated the Splunk log monitoring tool as an alternative

•  Does not satisfy all our original requirements, e.g., regarding job
management, but has superior reporting capablities

20 CUG2015

Splunk: Implementation
•  Used the install of Splunk already in use in the center

•  Made small changes to the harness to write key events to system log,
e.g., build/submit/run begin/end events

•  Modified report_executable.x for harness applications to write metrics of
interest to the system log, appropriately tagged

•  Wrote Splunk code to collect these events, group by application run
instance

•  Splunk reports and dashboard implmented to present results of
application runs over time

21 CUG2015

Splunk example: IMB
•  Used the same IMB example described previously

•  Ran in the harness, used Splunk to collect and display results

Part 3:

Environment
Monitoring

23 CUG2015

Environment Monitoring
•  Large number of environment variables, modules, tools that can impact system

use
•  Environment changes can be just as impactful as performance changes
•  Many environment triggers are behind scenes and not known to most users
•  Staff members have ability to change environment

–  Small change: should not impact anyone
–  Software installs become defaults

•  Verify consistent standard environments between systems, login nodes, and over
time

•  Examples:
–  Ensure modules same across login nodes
–  Find changes in a system’s default modules over time
–  Ensure batch job submissions follow system’s batch policies
–  Ensure pre-defined set of tools and environment variables exist on each system
–  Verify ability to send/retrieve data between the HPSS and Data Transfer Nodes

24 CUG2015

Module Monitor Example

25 CUG2015

Throwing a wrench in the works – Two
factor authentication

•  Center requirement
–  System Access
–  Prevents automated ssh
–  Limits plug-ins

•  BioUno’s PBS plug-in

•  Center-wide batch system
–  Already in place to enable user workflows
–  Provides ability to submit batch jobs between OLCF user systems

•  qsub between Titan, Data Transfer System, Pre/Post Processing and Analysis
•  Jenkins can also use to access OLCF user facing systems

–  Replace ssh with qsub
–  All work must go through batch system

•  Compute jobs, Compiles, Environment checks

26 CUG2015

Center-wide Batch Access

•  Must manage batch jobs
–  ssh returns once task completes or fails
–  qsub returns immediately

•  Given task may not start for minutes, hours, days
–  Do not want to load queue with multiples of same test

•  Often batch system accepts jobs when target system unavailable

•  Methods to track batch job progress
–  Testers need ability to submit work to batch system and wait until batch job completes
–  Provide language independent functionality to testers (script, plugin)
–  Two methods tested:

•  Utilize center-wide filesystems
•  Reduce batch polling load
•  Provides additional insight into job progress
•  Control time allowed for each step

•  qstat, showq
•  Straightforward
•  Queue polling issues?

•  Load
•  Communication timeouts

1. Poll Queue 2. Monitor Files

27 CUG2015

Conclusions

• Cron concern, but tool is more than cron
•  Allows us to visually organize and list tests

–  Can see big picture and holes in testing

•  Known tool
–  Security, infrastructure, staff already familiar
–  Reduce barrier for others to contribute

• Not Jenkins experts, still plugins/features to investigate
•  Jenkins has already proven to be beneficial; we will

continue to add tests and investigate additional plugins

28 CUG2015

Acknowledgements

• Many people contributed to this effort: Don Maxwell,
Arnold Tharrington, Clay England, Rich Ray, Jason
Kincl, Ashley Barker, Adam Carlyle, Robert French, Tony
DiGirolamo, Ryan Adamson.

•  This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

29 CUG2015

Questions?

Thank you!

