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Abstract— In cyber security analysis, everything is growing at 
prodigious rates: data feeds, numbers of computers and 
phones on the network, number of users, and the number of 
threats that security and information technology professionals 
must evaluate, prioritize, and mitigate.  The one thing that 
isn’t growing in enterprises is the number of security 
professionals available to perform this analysis.  Without 
enough expert staff, every enterprise only gets further and 
further behind the curve with the threats.  Enterprises need a 
different analytic approach and strategy to make every one of 
their personnel more effective.  Cyber-threat analytics is that 
approach.  Cyber-threat analytics focuses the analyst time 
available in the enterprise to the most important threats 
present within the enterprise by combining threat data with 
computer network data using graph algorithms. 

Graph algorithms have been applied to computer network 
data in multiple contexts.  Cray, through engagements with its 
customers and partners, has utilized graph analytics in 
performing computer network analysis and identifing threats 
and risks to enterprise-scale networks.  One of these networks 
is SCinet.  SCinet is the high-bandwidth network that supports 
the SC technical conference and exhibit hall.  SC14 had the 
largest network to date, with 1.2 terabits per second reaching 
the show floor and 11,000 devices using SCinet.  SCinet has a 
/17 subnet (32,766 IP addresses) of publicly routable IPv4 
space and is designed, constructed, operated, and dismantled 
by 300 volunteers.   

SCinet’s scale of data (18 billion triples from 5 days of data), 
time-to-first solution (analytics need to be developed in minutes 
to an hour or two), and time-to-solution (answers need to be 
generated in seconds to minutes to be useful) requirements 
make it a great analogue for enterprise networks and analytic 
challenges.   

This paper describes computer network data, cyber-threat 
analytics, graph algorithms, and a use case where these have 
been applied together to perform analysis on an enterprise-
scale network. 

Keywords: Graph algorithms, computer network security, 
SCinet, XMT2, Urika-GD, SPARQL, RDF 

I.  INTRODUCTION  
Computer network data analysis and computer security 

analysis are areas that continue to grow in complexity, scale 
and maturity.  Existing analytic approaches are signature 
based analytic approaches that look for known malicious 
traffic.  These approaches are too inflexible to adapt to new 

behaviors or attacks in a dynamic analytic environment such 
as an enterprise-scale network.  More flexible approaches 
give analysts more freedom to change analytics as the threats 
change but suffer from poor performance when faced with 
enterprise scale data sets.  Cray has used graph analysis 
techniques and its Urika-GD graph discovery appliance [1] 
to successfully perform flexible, large-scale computer 
network analysis.  This paper discusses Cray’s approach and 
analytic techniques. 

II.  BACKGROUND 
Understanding Cray’s use of graph algorithms to analyze 

computer network data requires a base of knowledge in 
computer network data, graph algorithms, challenges faced 
in performing analysis with computer network data, a 
definition of cyberthreat analysis, and Cray’s Urika-GD 
graph discovery appliance. 

A. Computer network data 
Computer network data consists of at least two types of 

data: transactional and enrichment.  Transactional data is 
voluminous and represents actions and activities across the 
network.  Enrichment data is smaller is scale than 
transactional data and provides context about the meaning 
of actors generating transactions.  In computer network data, 
actors include computers and users.  Transactional and 
enrichment data are used together to produce meaningful 
analytic results.  For example, a common transactional data 
type, Netflow [2], contains information about two IP [38] 
(Internet Protocol) addresses that have communicated with 
each other and the nature of that communication.  
Enrichment data, such as how those IP addresses are 
assigned and the common usages of the ports used in the 
communication, allow analysts to identify common and 
unusual activities on a given enterprise’s network when 
combined with the transactional data. 

Transactional computer network data is generated by 
network sensors observing computers using networks at 
many different levels of the OSI (Open Systems 
Interconnection) network model [36], from layer 2 ARP 
[37] (Address Resolution Protocol) requests through layer 3 
IP traffic, layer 4 TCP [34] (Transmission Control Protocol) 
and UDP [35] (User Datagram Protocol) traffic, layer 5 
sessionized TCP traffic, and layer 7 applications such as 
HTTP [3], Domain Name Service [4], FTP [5], and Telnet 
[6].  Common transactional data types include network flow 



activity, Domain Name Server requests and responses, 
emails, Application indicators, and HTTP requests and 
responses. 

Enrichment data includes enterprise IP role (server, 
client, desktop, wireless client, mobile device, etc) and 
assignment, WHOIS [7] database information, common 
network port assignment, and Autonomous System 
information.  Enrichment data are static data sets, smaller in 
scale and volume, and change more slowly than 
transactional data.   

B. Challenges encountered performing computer network 
data analysis 
Analyzing computer network data encounters many 

challenges.  These challenges include managing and 
interacting with the millions to billions of records in 
transactional datasets, merging the transactional datasets 
with enrichment data sets, and generating results in seconds 
to hours.  Transactional data sets are growing larger as 
enterprises allow more and more devices to access their 
networks.  Published attacks on enterprises are also 
increasing, adding to the amount of analysis required on 
these datasets to protect enterprises’ core business practices.  
However, the computer security field is understaffed.  There 
is currently unmet demand for 1 million computer security 
professionals [8]. 

Enterprises do not have enough qualified analytic staff 
to perform the computer security analysis to protect their 
business practices and their analytic tools and approaches 
fail to overcome these challenges.  Current analytic 
approaches produce incomplete or inadequate findings in 
too long an amount of time to allow enterprises to overcome 
these challenges and perform timely, meaningful computer 
security analysis.  In fact, 99% of Point of Sale / credit card 
payment system breaches are discovered by someone other 
than the victim enterprise [9]. 

C. Applying graph analytics to computer network data 
analysis 
Graph analysis is an approach to performing computer 

network data analysis that can overcome these challenges.  
To perform graph analysis, the data to be analyzed is 
represented as a graph.  A graph is a computer science data 
structure that consists of nodes and edges.  Nodes represent 
objects: people, places, computers, time, or space.  Edges 
represent interactions or relationships between those objects.  
Graphs can represent nearly any type of structured data. 

Computer network data is structured and easily 
represented in graph data structures.  This graph 
representation addresses one of the challenges present in 
current analytic systems: merging multiple data sets.  The 
nodes in the graph can represent IP addresses, hostnames, 
and other entities present in computer network traffic.  The 
edges in the graph can represent the presence of these 
entities in different types of data.  When structured data sets 
are transformed into graphs, they can merge. 

Computer network data can be transformed into a graph 
by defining a mapping of entities present in computer 
networks, such as IP addresses, hostnames, and autonomous 
systems, to nodes and activities found on the network, such 
as one IP address connecting to another via TCP sessions or 
a hostname is assigned to an IP address through DNS, to 
edges.  Each graph format requires a different mapping 
process, and an example mapping of Netflow to RDF [23] 
(Resource Description Framework) is [14].  Example 
conversion code is available at [33]. 

Once the computer network data sets are represented as 
a graph, they can be analyzed using graphs algorithms.  
Graph algorithms have been applied to computer network 
data to address multiple analytic challenges, including 
botnet identification [10], unknown tradecraft-unknown 
threat identification [11] and high-speed network analysis 
[12].   

D. Graph algorithms 
There are a number of graph algorithms that are of 

interest when performing computer network data analysis.  
These algorithms include:  

• Subgraph isomorphism/pattern-matching [13],  
• Jaccard similarity coefficient [14], 
• Community detection [15], 
• Shortest path [16],  
• Betweenness centrality [17], and 
• Badness propagation [18]. 

 
Subgraph isomorphism or pattern matching is a simple 

graph algorithm that is analogous to a SELECT statement in 
SQL [19].  This algorithm accepts a user-input pattern, much 
like Boolean logic and returns all subgraphs, portions from 
the main graph, that match the analyst-provided pattern.  
Subgraph isomorphisms are used to select computer network 
activity of interest to the analyst.  The analyst then analyzes 
these subgraphs.  An example isomorphism is “Find all 
network flow records where the source and destination port 
at greater than 50000 and occurred between 2 and 3 am.” 

Jaccard similarity coefficient is a graph algorithm that 
finds nodes in the graph that have a high degree of 
connectivity to an analyst-provided node.  This algorithm 
accepts an analyst-provided seed node (V1) and outputs a 
ratio as defined in (1) for the similarity to other nodes in the 
graph, such as V2.  The numerator in (1) is the number of 
nodes connected to both V1 and V2, and the denominator in 
(1) is the number of nodes connected to V1 or V2.  Figure 1 
visually illustrates (1).  The numerator for Figure 1 is 5, and 
the denominator is 11.  The resulting J for V1 and V2 is 
5/11.   

The analyst uses the list of coefficients to determine 
which of the candidate V2 nodes is most similar to the 
provided V1 seed node.  An example application is botnet 
command-and-control channel identification.  The analyst 
provides a seed port, from an intrusion detection system alert 
about a malware download to an infected system.  The 
Jaccard similarity coefficient would be applied to the graph 



of the network flow information to determine which other 
ports are frequently observed being used by the same 
systems as the port used for the malware download. 

     JV1_V2 = |V1 ∩  V2|  /   | V1 ∪ V2| (1) 

 
Figure 1.  Example graph.  V1 is the analyst-provided seed node.  V2 is a 

candidate node considered for its similarity.  Green nodes are in contact 
with both V1 and V2, and blue nodes are in contact with V1 or V2. 

Community detection algorithms [20] identify groups of 
nodes that are related to each other, using a variety of 
measures of “related” including structural elements or 
maximizing connectivity within groups while minimizing 
connectivity outside of groups.  This algorithm accepts an 
input graph and outputs a list of nodes and the group or 
“community” to which each node belongs.  These types of 
algorithms should be used with particular care paid to the 
composition of the input graphs, as these algorithms analyze 
the topology of the input graph without consideration as to 
the semantic meaning of the nodes and edges.  For example, 
building an input graph that consists of network flow and 
user logins mixes two types of behavior (computer network 
activity and user login activity) into one graph.  Running a 
community detection algorithm across this graph produces 
meaningless communities as the input graph conflates 
different behaviors.   

An example application of a community detection 
algorithm is building a graph of email communications and 
then identifying communities of users based on their 
communication patterns.  This graph would help security 

analysts identify email accounts that start sending emails 
across communities in an unusual manner. 

Shortest path algorithms identify the shortest paths 
between two nodes or groups of analyst-supplied nodes.  The 
shortest paths are the ones that involve the fewest number of 
edges to connect a node from each analyst-supplied group.  
The algorithm accepts an input of two sets of nodes and 
outputs the shortest paths that connect the two sets.  The 
analyst then considers the results to identify the paths that are 
most likely to answer the analytic question at hand.  An 
example application of shortest path to a computer security 
analysis problem is having two sets of computers infected 
with different pieces of malware.  Shortest path analysis 
would reveal users or network activity connecting the two 
sets, aiding root-cause analysis of the infections. 

Centrality algorithms identify the most-central nodes 
within a graph, focusing analyst time and attention on the 
identified nodes.  There are many types of centrality 
algorithms, including degree, eigenvector, eigenvalue, and 
betweenness.  Betweenness centrality, also known all-pairs 
shortest-path) identifies the most-central nodes or edges 
through the method outlined in the pseudo-code below: 

• From every node, compute the shortest path(s) to 
every other node 

• For every node, count the number of shortest paths 
that go through it 

• For every edge, count the number of shortest paths 
that go through it 

• Divide the shortest path counts by the total number 
of shortest paths to generate centrality scores 

Betweenness centrality requires an input graph and 
outputs a list of scores for the nodes and the edges as to the 
fraction of shortest paths that pass through a given node or 
edge.  An example application of betweenness centrality in 
computer network security is vulnerability analysis.  An 
analyst would represent an enterprise’s network 
configuration as a graph and apply betweenness centrality to 
that graph to identify which nodes and edges are most 
responsible for efficient communication across the 
enterprise’s network.  If these nodes or edges are lost, the 
enterprise will suffer the greatest degradation of network 
performance. 

BadRank is an algorithm that takes known bad actors or 
elements in a graph and identifies other actors or elements 
that are likely also bad.  Conceptually, it is an extension of 
“guilt-by-reference” or “guilt-by-association.”  An example 
application in computer network security is the propagation 
of badness from known spam websites to other websites that 
are referred to by the known spam websites. 

These graph algorithms address another challenge 
present in current analytic tools: the maturity of workflows 
and analytic approaches.  Graph algorithms represent a rich, 
mature set of techniques that analysts can use to produce 
richer, more meaningful analytic results.  

E. Cyberthreat analysis 
Cyber security, itself a term of nebulous meaning, is 

growing field with emerging terms, techniques, and tools, 
and cyberthreat analysis is another emerging term that needs 
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definition.  Lockheed Martin has published a “Cyber Kill 
Chain” that describes the anatomy of a computer exploitation 
event [21].  This anatomy describes the reconnaissance, 
weaponization, delivery, exploitation, installation, command-
and-control, and adversary action on objectives steps that 
occur during the infiltration of an enterprise’s network.  
Adversary activity should be identified as early in the “Kill 
Chain” as possible to give enterprises the largest amount of 
time to craft and realize a response to prevent or mitigate 
adversary activity.  Cyberthreat analysis is where a number 
of enrichment and transactional datasets are combined to 
examine possible reconnaissance activities that would be the 
start of an adversary action chain. 

F. Cray’s Graph Analytic Appliance 
The final challenge that needs to be overcome is that 

posed by the sheer scale of transactional datasets (billions) 
and the performance requirement to deliver human-
interactive time (1-100 seconds) analytic results on 
algorithms run over the transactional data sets.  Cray’s 
Urika-GD graph discovery appliance satisfies these 
requirements and enables enterprises to overcome the 
challenges and meet their computer security analysis needs. 

Urika-GD provides responses to individual queries in 
approximately 1-100 seconds and utilizes two key 
characteristics to provide this response time: 

• SPARQL [22] / RDF and 
• Their robust, efficient implementation on Cray’s 

XMT2 hardware [24] 
1) RDF / SPARQL 

SPARQL is a query language for semantic-graph 
databases containing data represented in the Resource 
Description Framework (RDF), with its name being a 
recursive acronym for SPARQL Protocol and RDF Query 
Language. It comes from the semantic web community and 
is a recommendation of the World Wide Web Consortium 
[4]. The primary goal for RDF was to make web pages 
machine- readable, and the goal for SPARQL was to enable 
higher-level querying of the semantic web. The resulting 
capabilities proved to be valuable for graphs that did not 
necessarily originate as web pages; i.e., queries on highly 
heterogeneous and richly interconnected data, data that 
reflected the Open World Assumption [25] that one’s set of 
data is never complete and so tools must be built expecting 
to easily incorporate new data and new types of data. 
Readers who use SQL will find many SPARQL constructs 
familiar. 

RDF defines data in terms of triples consisting of a 
subject, a predicate or relationship, and an object. For 
example, the triple ”Cray is-headquartered-in Seattle” has 
”Cray” as the subject, ”is-headquartered-in” as the 
predicate, and ”Seattle” as the object. Well-defined RDF 
data will use Universal Resource Identifiers (URIs, [26]) for 
subjects, predicates, and most objects. An RDF graph is a 
collection of these triples.  

An example of SPARQL graph matching comes from 
Cray’s SCinet [27] analysis work.  It is presented in lines 1-

9. 
 

1. PREFIX  ocop:  <http://opencog.net/p/> 
2.  
3. SELECT ?src_addr ?dest_addr 
4. WHERE { 
5. ?uid ocop:sourceAddress ?src_addr . 
6. ?uid ocop:destinationAddress ?dest_addr . 
7. ?uid ocop:hasProtocol oco:proto#tcp. 
8. ?uid ocop:destinationPort oco:port#22. 
9. } 

 
SPARQL variables are denoted by an initial ? or $ 

character, e.g, ?src_addr in the example above. In the 
example, the SPARQL statements within the WHERE 
clause lines(4-9), known as a basic graph pattern, can be 
interpreted as ”find all ?uids that have a protocol of tcp and 
port of 22 (lines 7-8)  and then find all ?src_addr ?dest_addr 
(lines 5-6) pairs (line 3) that are connected to those ?uids.” 
In English, the query can be restated as ”find source and 
destination address that are communicating using SSH [39] 
(Secure Shell) (tcp port 22).” 

Cray’s implementation of RDF/SPARQL was designed 
from the outset for very large memory, extreme parallelism, 
and production environments.   Its performance on standard 
SPARQL benchmarks such as LUBM [28] is unmatched 
because competing systems do not even publish their results 
on big data sizes. While conforming with the SPARQL 1.1 
standard, Cray has extended SPARQL with mechanisms 
such as built-in graph functions that enable deep analysis of 
on-the-fly generated graph in human-responsive time.  
These built-in graph functions include community detection, 
betweenness centrality, shortest-path, and BadRank 
algorithms. 

2) Urika-GD’s hardware characteristics 
Urika-GD’s custom hardware has three distinct 

elements:  
• its large shared memory,  
• scalable I/O system and  
• purpose-built Threadstorm™ graph processor. 
Urika-GD’s huge, globally shared memory architecture 

of up to 512TB can hold the entire graph of relationships (5 
billion – 2.5 trillion relationships) in memory. The scalable 
I/O subsystem, which can scale up to 350TB per hour, 
enables continuous updates to the graph as new data streams 
in.  If the entire graph can’t fit in memory, a number of 
graph partitioning can be applied to segment the graph and 
use the scalable I/O subsystem to load and unload the 
segments into and out of memory. 

The massively multi-threaded architecture of the 
Threadstorm™ processor (128 independent threads) is 
specially designed for analyzing graphs and allows threads 
to continue executing even if some are waiting for data to be 
returned from memory, preventing any processor stalls. This 
architecture delivers orders of magnitude better performance 
on complex graph problems than commodity hardware [40]. 



III.  REPRESENTATIVE USE CASE:SCINET AT SC14 
SC [29] is an annual supercomputing technical 

conference in its 28th year supported by SCinet, the network 
providing connectivity to the conference and exhibit hall.  
SC14 refers to the conference held during 2014.  Cray 
participated in SCinet by performing computer network 
security analysis as part of the network security committee.  

A. What is SCinet? 
SCinet is the high-bandwidth network that supports the 

SC technical conference and exhibit hall.  SC14 had the 
largest network to date, with 1.2 terabits per second 
reaching the show floor and 11,000 devices using SCinet.  
SCinet has a /17 (32K IP addresses) of publicly routable 
IPv4 space.  The SCinet network diagram is in Figure 2 and 
demonstrates the complexity of SCinet and the elements that 
are similar to enterprise networks.  SCinet is a volunteer 
organization of 300+ individuals from National Labs, 
universities, and vendors working together to design, 
construct, operate, and dismantle the network every year.  
The network is operational for approximately 10 days every 
year during the conference. 

 
Figure 2.  SC14’s SCinet network layout 

At SC14, the SCinet network security team had two 
primary missions:  

1. Detect and mitigate any outbound scanning or 
attacking behavior.  

2. Identify, quantify and inform likely compromised 
hosts on the network. 

Cray supported these missions with “Discover,” a 2 
terabyte Cray Urika-GD graph discovery appliance.  

B. Cray’s SCinet participation 
Cray participates in SCinet on the network security 

committee, because SCinet is a reasonable analogue for an 
enterprise-scale network, with 11,000 devices on the 
network and billions of transactional records (1.6 billion 
transactions generated in 5 days).  SCinet’s computer 
network data analysis encounters the same challenges as 
enterprises when conducting computer network data 

analysis.  Cray’s analytic approach at SCinet demonstrates 
overcoming the data scale time-to-first solution, and time-
to-solution challenges. 

C. SCinet computer network data 
Data is key when performing analysis, and at SCinet, 

the network security team used BRO [30], an open-source 
deep packet inspection system to monitor nearly 290 GB/s 
of network bandwidth. These sensors generated nearly 1.6 
billion transactional records, and Cray parsed the records 
into 18.6 billion RDF triples for analysis.  These 
transactional records included multiple data types, including 
network flow, HTTP, file download (files), odd network 
behaviors (weird), IDS alerts (notice) [31], SYSLOG 
notices [32], and SSL [33] certificate information.  Figure 3 
is a table of BRO-generated transactional records and triple 
counts for each type of transactional data. The SCinet 
network security team combined these transactional datasets 
with enrichment data of IP assignment / role information for 
each of the subnets present in SCinet’s network block. 

  

 
Figure 3.  Transactional records generated and used during SCinet 

network security analysis 

D. Graph algorithms used during SC14 
Cray analyzed the graph formed from the RDF triples 

generated from transactional records with three graph 
algorithms:  subgraph isomorphism / pattern matching, 
Jaccard similarity coefficient, and betweenness centrality.  
This section outlines the SPARQL code used to execute 
these algorithms with Discover during SC14. 

1) Jaccard similarity coefficient 
This SPARQL code performs Jaccard similarity 

coefficient calculations against graphs of network flow data.  
Line 29 contains the analyst-provided seed, V1, port 9162.  
Line 4 contains ?port and ?proto which are the candidate V2 
ports, and  ?client_count is the numerator, and 
?big_client_count is the denominator from (1).  

Written in approximately 60 minutes and executing in 
less than 1 minute in its finished form, this example, 
development time, and execution time demonstrate the 
applicability of SPARQL and RDF to computer network 
analysis problems. 

 
1. PREFIX  ocop:  <http://opencog.net/p/> 
2. PREFIX  oco:  <http://opencog.net/> 
3.  
4. SELECT ?proto ?port ?client_count ?big_client_count 



5. WHERE { 
6. { SELECT ?proto ?port (count(distinct ?ap_addr) as 

?big_client_count) 
7. WHERE { 
8. ?uid3 ocop:sourceAddress> ?ap_addr. 
9. ?uid3 ocop:destinationAddress> ?dest_addr2 . 
10. ?uid3 ocop:destinationPort> ?port . 
11. ?uid3 ocop:hasProtocol> ?proto . 
12. ?uid3 ocop:hasRespBytes> ?rbytes2. 
13. } 
14. GROUP BY ?proto ?port 
15. } 
16. { 
17. SELECT ?proto ?port (count(distinct ?ap_addr) as 

?client_count) 
18. WHERE { 
19. ?uid3 ocop:sourceAddress> ?ap_addr. 
20. ?uid3 ocop:destinationAddress> ?dest_addr2 . 
21. ?uid3 ocop:destinationPort> ?port . 
22. ?uid3 ocop:hasProtocol> ?proto . 
23. ?uid3 <http://cs.org/p/hasRespBytes> ?rbytes2. 
24. FILTER(?rbytes2 > 0) 
25. ?uid4 ocop:sourceAddress> ?ap_addr. 
26. ?uid4 ocop:destinationAddress> ?dest_addr . 
27. ?uid4 ocop:destinationPort> oco:port#9162. 
28. ?uid4 <http://cs.org/p/hasRespBytes> ?rbytes1. 
29. FILTER(?rbytes1 > 0) 
30. } 
31. GROUP BY ?proto ?port  
32. HAVING (?client_count > 1) 
33. } 
34. } 
35. ORDER BY DESC(?client_count) 

 
2) Betweenness centrality 

This SPARQL code calculates betweenness centrality 
over a subgraph built from network flow data revealing 
chains of SSH sessions and some enrichment data.  Lines 
10-21 search for the first SSH sessions, and lines 24-35 
search for any second SSH sessions.  Lines 12-13 show the 
SCinet network security team included IP assignment in the 
graph with transactional data.  Lines 25-27 show how 
intrusion detection alerts are merged with network flow data 
in lines 28-33. Lines 39-40 show how to call Cray’s 
SPARQL extensions over the subgraph extracted in lines 6-
38. 

Written in approximately 40 minutes and executing in 
less than 1 minute in its finished form, this example, 
development time, and execution time also demonstrates the 
applicability of SPARQL and RDF to computer network 
analysis problems. 
 
1. PREFIX  ocop:  <http://opencog.net/p/> 
2. PREFIX  oco:  <http://opencog.net/> 
3.  
4. SELECT ?vertices ?scores 

5. WHERE { 
6. CONSTRUCT{  
7. ?src_addr <urn:p/hasSSH> ?dest_addr. 
8. ?dest_addr <urn:p/hasSSH> ?dest_addr2 } 
9. WHERE { 
10. SELECT distinct ?src_addr ?dest_addr ?dest_addr2 
11. WHERE 
12. {?booth2 a <http://sc14.org/class#SCinet_subnet> . 
13. ?booth2 oco:hasMember ?dest_addr . 
14. ?uid3 ocop:sourceAddress ?dest_addr . 
15. ?uid3 ocop:destinationAddress ?dest_addr2 . 
16. ?uid3 ocop:hasProtocol oco:proto#tcp. 
17. ?uid3 ocop:destinationPort oco:port#22. 
18. ?uid3 ocop:start ?start_time2. 
19. ?uid3 <http://cs.org/p/hasRespBytes> ?rbytes2. 
20. FILTER (?rbytes2 > 12000) 
21. FILTER (?start_time < ?start_time2) 
22. OPTIONAL 
23. { 
24. SELECT ?src_addr ?dest_addr ?start_time 
25. {?uid <http://cs.org/p/hasNoticeNote>  

<http://cs.org/notice_node#SSH::Password_Guessing>. 
26. ?uid <http://cs.org/p/hasNoticeMsg> ?msg. 
27. ?uid <http://cs.org/p/hasOrigAddr> ?src_addr. 
28. ?uid3 ocop:sourceAddress ?src_addr . 
29. ?uid3 ocop:destinationAddress ?dest_addr . 
30. ?uid3 ocop:hasProtocol oco:proto#tcp. 
31. ?uid3 ocop:destinationPort oco:port#22. 
32. ?uid3 ocop:start ?start_time. 
33. ?uid3 <http://cs.org/p/hasRespBytes> ?rbytes2. 
34. FILTER(?rbytes2 > 12000) 
35. } 
36. LIMIT 500 
37. } 
38. } 
39. }INVOKE yd:graphAlgorithm.betweenness_centrality 

(.5,1) 
40. PRODUCING ?vertices ?scores 
41. } 
42. ORDER BY DESC(?scores) 
 

E. Analytic findings from graph analysis during SC14 
Cray and the SCinet network security team used 

subgraph isomorphism, Jaccard similarity coefficient, and 
betweenness centrality to generate a number of analytic 
findings during SC14.  This discusses the network security 
events that occurred during SC14 and how graph algorithms 
were used during the analysis of these events. 

 
1) Subgraph isomorphism 

The SCinet network security team used subgraph 
isomorphism/pattern search to detect outbound scanning and 
outbound SYN flooding behaviors. 

Detecting outbound scanning can be performed using a 
graph concept called dispersion:  the out-degree of a given 



node.  In computer network analysis, dispersion is used with 
port and protocol combinations to show nodes exhibiting 
unusual behaviors in a specific area.  Cray has used 
dispersion at SC13 and SC14 to successfully identify 
outbound scanning.  At SC14, Cray identified infected 
clients on the wireless network scanning for vulnerable 
servers or sending malware out of the network 

SYN flooding is a computer network attack where a 
client opens partial connections to a host and leaves them 
open.  This attack is designed to remove a host from the 
network by exhausting its ability to accept inbound 
connections.  If the host isn’t on the network, it isn’t 
accessible in the current “available-everywhere” networked-
computing environment.  At SC14, the network security 
team observed two clients on the network participating in 
SYN flood attacks.  These two network events accounted 
for 86% of all network flow observed on the network.  The 
flow count histogram is shown in figure 4 with the two SYN 
floods circled in red. 
 

 
Figure 4.  SCinet’s network flow counts.  Green diamonds are from 

10GB/s commodity links, and orange diamonds are from 100GB/s sensors.  
The y-axis is logarithmic  

2) Jaccard similarity coefficient 
All of the network security team’s tools identified these 

SYN floods.  The team then looked for the root cause of the 
SYN floods.  Cray combined alerts from one IDS system 
(showing a malware download on an odd port) with network 
flow and Jaccard similarity coefficients to identify likely 
infected client behaviors.  This analysis revealed that port 
7668 was most similar to the seed port of 9162.  A 
visualization of clients exhibiting network activity on both 
of these ports is figure 5. 
 

 
Figure 5.  Jaccard similarity coefficient visualization for V1=9162 and 

V2=7668  

The root cause of the infection was believed to be 
malware targeting Linux systems running SSH servers that 
infected the systems by brute-forcing passwords to accounts 
with SSH login privileges on the systems.  Password brute-
forcing is where an adversary connects to an SSH server and 
attempts to guess the password for an account on the 
system.  The adversary repeatedly connects, guessing 
different passwords each time until they find one that works. 

With the Linux malware in the environment, the 
network security team spent the four days of the conference 
identifying infected hosts using IDS tools and then notifying 
infected users.  The team identified multiple hosts per day 
and visited multiple booths each day to inform them of their 
infection and recommend mitigations. 

3) Betweenness centrality 
The last day of SC14, the network security team used a 

subgraph isomorphism to build a subgraph of SSH sessions 
that seemed to originate from hosts that successfully brute-
forced SSH passwords.  This subgraph is displayed in figure 
6.  The network security team then applied betweenness 
centrality to the generated subgraph.  This analysis revealed 
the host where system administrators and security staff 
should begin to mitigate the infection network.  This host is 
circled in red in figure 6. 
 



 
Figure 6.  SSH connection subgraph and  

IV.  APPLYING GRAPH ANALYTICS TO CYBERTHREAT 
ANALYTICS 

Cray has supported computer network security analytic 
needs using graph algorithms at SC14 and through other 
engagements.  These algorithms and approaches can also be 
applied to cyberthreat analytics when combined with graphs 
built from appropriate data sources.  These data sources 
include published vulnerabilities and exploits, blacklists, and 
professional networking publications.  Combining these data 
sets and applying graph algorithms allows enterprises to 
perform cyberthreat analytics earlier in the “Cyber Kill 
Chain.” 

V. CONCLUSION 
Graph algorithms and analytic approaches are a new tool 

available to enterprises attempting to overcome the 
challenges presented by large, heterogeneous data sets that 
require flexible, responsive analytic execution.  Cray, 
through its work as part of SCinet during SC14, applied 
graph algorithms to help answer computer network security 
analytic questions against large (18 billion triple), 
heterogeneous (multiple types of data) graphs using flexible 
analytics based on open standards (SPARQL / RDF).  These 
approaches generated new analytic results and enabled 
SCinet’s network security team to be more flexible and 
respond to myriad new threats in minutes to hours.  These 
approaches can be easily adapted to use additional datasets 
and be applied by enterprises seeking to become more 
resilient against increasingly sophisticated adversaries and 
malicious activities.  
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