
Cyberthreat analytics using graph analysis

Eric Dull
Cray, Inc

Seattle, WA
edull@cray.com

Abstract— In cyber security analysis, everything is growing at
prodigious rates: data feeds, numbers of computers and
phones on the network, number of users, and the number of
threats that security and information technology professionals
must evaluate, prioritize, and mitigate. The one thing that
isn’t growing in enterprises is the number of security
professionals available to perform this analysis. Without
enough expert staff, every enterprise only gets further and
further behind the curve with the threats. Enterprises need a
different analytic approach and strategy to make every one of
their personnel more effective. Cyber-threat analytics is that
approach. Cyber-threat analytics focuses the analyst time
available in the enterprise to the most important threats
present within the enterprise by combining threat data with
computer network data using graph algorithms.

Graph algorithms have been applied to computer network
data in multiple contexts. Cray, through engagements with its
customers and partners, has utilized graph analytics in
performing computer network analysis and identifing threats
and risks to enterprise-scale networks. One of these networks
is SCinet. SCinet is the high-bandwidth network that supports
the SC technical conference and exhibit hall. SC14 had the
largest network to date, with 1.2 terabits per second reaching
the show floor and 11,000 devices using SCinet. SCinet has a
/17 subnet (32,766 IP addresses) of publicly routable IPv4
space and is designed, constructed, operated, and dismantled
by 300 volunteers.

SCinet’s scale of data (18 billion triples from 5 days of data),
time-to-first solution (analytics need to be developed in minutes
to an hour or two), and time-to-solution (answers need to be
generated in seconds to minutes to be useful) requirements
make it a great analogue for enterprise networks and analytic
challenges.

This paper describes computer network data, cyber-threat
analytics, graph algorithms, and a use case where these have
been applied together to perform analysis on an enterprise-
scale network.

Keywords: Graph algorithms, computer network security,
SCinet, XMT2, Urika-GD, SPARQL, RDF

I. INTRODUCTION
Computer network data analysis and computer security

analysis are areas that continue to grow in complexity, scale
and maturity. Existing analytic approaches are signature
based analytic approaches that look for known malicious
traffic. These approaches are too inflexible to adapt to new

behaviors or attacks in a dynamic analytic environment such
as an enterprise-scale network. More flexible approaches
give analysts more freedom to change analytics as the threats
change but suffer from poor performance when faced with
enterprise scale data sets. Cray has used graph analysis
techniques and its Urika-GD graph discovery appliance [1]
to successfully perform flexible, large-scale computer
network analysis. This paper discusses Cray’s approach and
analytic techniques.

II. BACKGROUND
Understanding Cray’s use of graph algorithms to analyze

computer network data requires a base of knowledge in
computer network data, graph algorithms, challenges faced
in performing analysis with computer network data, a
definition of cyberthreat analysis, and Cray’s Urika-GD
graph discovery appliance.

A. Computer network data
Computer network data consists of at least two types of

data: transactional and enrichment. Transactional data is
voluminous and represents actions and activities across the
network. Enrichment data is smaller is scale than
transactional data and provides context about the meaning
of actors generating transactions. In computer network data,
actors include computers and users. Transactional and
enrichment data are used together to produce meaningful
analytic results. For example, a common transactional data
type, Netflow [2], contains information about two IP [38]
(Internet Protocol) addresses that have communicated with
each other and the nature of that communication.
Enrichment data, such as how those IP addresses are
assigned and the common usages of the ports used in the
communication, allow analysts to identify common and
unusual activities on a given enterprise’s network when
combined with the transactional data.

Transactional computer network data is generated by
network sensors observing computers using networks at
many different levels of the OSI (Open Systems
Interconnection) network model [36], from layer 2 ARP
[37] (Address Resolution Protocol) requests through layer 3
IP traffic, layer 4 TCP [34] (Transmission Control Protocol)
and UDP [35] (User Datagram Protocol) traffic, layer 5
sessionized TCP traffic, and layer 7 applications such as
HTTP [3], Domain Name Service [4], FTP [5], and Telnet
[6]. Common transactional data types include network flow

activity, Domain Name Server requests and responses,
emails, Application indicators, and HTTP requests and
responses.

Enrichment data includes enterprise IP role (server,
client, desktop, wireless client, mobile device, etc) and
assignment, WHOIS [7] database information, common
network port assignment, and Autonomous System
information. Enrichment data are static data sets, smaller in
scale and volume, and change more slowly than
transactional data.

B. Challenges encountered performing computer network
data analysis
Analyzing computer network data encounters many

challenges. These challenges include managing and
interacting with the millions to billions of records in
transactional datasets, merging the transactional datasets
with enrichment data sets, and generating results in seconds
to hours. Transactional data sets are growing larger as
enterprises allow more and more devices to access their
networks. Published attacks on enterprises are also
increasing, adding to the amount of analysis required on
these datasets to protect enterprises’ core business practices.
However, the computer security field is understaffed. There
is currently unmet demand for 1 million computer security
professionals [8].

Enterprises do not have enough qualified analytic staff
to perform the computer security analysis to protect their
business practices and their analytic tools and approaches
fail to overcome these challenges. Current analytic
approaches produce incomplete or inadequate findings in
too long an amount of time to allow enterprises to overcome
these challenges and perform timely, meaningful computer
security analysis. In fact, 99% of Point of Sale / credit card
payment system breaches are discovered by someone other
than the victim enterprise [9].

C. Applying graph analytics to computer network data
analysis
Graph analysis is an approach to performing computer

network data analysis that can overcome these challenges.
To perform graph analysis, the data to be analyzed is
represented as a graph. A graph is a computer science data
structure that consists of nodes and edges. Nodes represent
objects: people, places, computers, time, or space. Edges
represent interactions or relationships between those objects.
Graphs can represent nearly any type of structured data.

Computer network data is structured and easily
represented in graph data structures. This graph
representation addresses one of the challenges present in
current analytic systems: merging multiple data sets. The
nodes in the graph can represent IP addresses, hostnames,
and other entities present in computer network traffic. The
edges in the graph can represent the presence of these
entities in different types of data. When structured data sets
are transformed into graphs, they can merge.

Computer network data can be transformed into a graph
by defining a mapping of entities present in computer
networks, such as IP addresses, hostnames, and autonomous
systems, to nodes and activities found on the network, such
as one IP address connecting to another via TCP sessions or
a hostname is assigned to an IP address through DNS, to
edges. Each graph format requires a different mapping
process, and an example mapping of Netflow to RDF [23]
(Resource Description Framework) is [14]. Example
conversion code is available at [33].

Once the computer network data sets are represented as
a graph, they can be analyzed using graphs algorithms.
Graph algorithms have been applied to computer network
data to address multiple analytic challenges, including
botnet identification [10], unknown tradecraft-unknown
threat identification [11] and high-speed network analysis
[12].

D. Graph algorithms
There are a number of graph algorithms that are of

interest when performing computer network data analysis.
These algorithms include:

• Subgraph isomorphism/pattern-matching [13],
• Jaccard similarity coefficient [14],
• Community detection [15],
• Shortest path [16],
• Betweenness centrality [17], and
• Badness propagation [18].

Subgraph isomorphism or pattern matching is a simple

graph algorithm that is analogous to a SELECT statement in
SQL [19]. This algorithm accepts a user-input pattern, much
like Boolean logic and returns all subgraphs, portions from
the main graph, that match the analyst-provided pattern.
Subgraph isomorphisms are used to select computer network
activity of interest to the analyst. The analyst then analyzes
these subgraphs. An example isomorphism is “Find all
network flow records where the source and destination port
at greater than 50000 and occurred between 2 and 3 am.”

Jaccard similarity coefficient is a graph algorithm that
finds nodes in the graph that have a high degree of
connectivity to an analyst-provided node. This algorithm
accepts an analyst-provided seed node (V1) and outputs a
ratio as defined in (1) for the similarity to other nodes in the
graph, such as V2. The numerator in (1) is the number of
nodes connected to both V1 and V2, and the denominator in
(1) is the number of nodes connected to V1 or V2. Figure 1
visually illustrates (1). The numerator for Figure 1 is 5, and
the denominator is 11. The resulting J for V1 and V2 is
5/11.

The analyst uses the list of coefficients to determine
which of the candidate V2 nodes is most similar to the
provided V1 seed node. An example application is botnet
command-and-control channel identification. The analyst
provides a seed port, from an intrusion detection system alert
about a malware download to an infected system. The
Jaccard similarity coefficient would be applied to the graph

of the network flow information to determine which other
ports are frequently observed being used by the same
systems as the port used for the malware download.

 JV1_V2 = |V1 ∩ V2| / | V1 ∪ V2| (1)

Figure 1. Example graph. V1 is the analyst-provided seed node. V2 is a

candidate node considered for its similarity. Green nodes are in contact
with both V1 and V2, and blue nodes are in contact with V1 or V2.

Community detection algorithms [20] identify groups of
nodes that are related to each other, using a variety of
measures of “related” including structural elements or
maximizing connectivity within groups while minimizing
connectivity outside of groups. This algorithm accepts an
input graph and outputs a list of nodes and the group or
“community” to which each node belongs. These types of
algorithms should be used with particular care paid to the
composition of the input graphs, as these algorithms analyze
the topology of the input graph without consideration as to
the semantic meaning of the nodes and edges. For example,
building an input graph that consists of network flow and
user logins mixes two types of behavior (computer network
activity and user login activity) into one graph. Running a
community detection algorithm across this graph produces
meaningless communities as the input graph conflates
different behaviors.

An example application of a community detection
algorithm is building a graph of email communications and
then identifying communities of users based on their
communication patterns. This graph would help security

analysts identify email accounts that start sending emails
across communities in an unusual manner.

Shortest path algorithms identify the shortest paths
between two nodes or groups of analyst-supplied nodes. The
shortest paths are the ones that involve the fewest number of
edges to connect a node from each analyst-supplied group.
The algorithm accepts an input of two sets of nodes and
outputs the shortest paths that connect the two sets. The
analyst then considers the results to identify the paths that are
most likely to answer the analytic question at hand. An
example application of shortest path to a computer security
analysis problem is having two sets of computers infected
with different pieces of malware. Shortest path analysis
would reveal users or network activity connecting the two
sets, aiding root-cause analysis of the infections.

Centrality algorithms identify the most-central nodes
within a graph, focusing analyst time and attention on the
identified nodes. There are many types of centrality
algorithms, including degree, eigenvector, eigenvalue, and
betweenness. Betweenness centrality, also known all-pairs
shortest-path) identifies the most-central nodes or edges
through the method outlined in the pseudo-code below:

• From every node, compute the shortest path(s) to
every other node

• For every node, count the number of shortest paths
that go through it

• For every edge, count the number of shortest paths
that go through it

• Divide the shortest path counts by the total number
of shortest paths to generate centrality scores

Betweenness centrality requires an input graph and
outputs a list of scores for the nodes and the edges as to the
fraction of shortest paths that pass through a given node or
edge. An example application of betweenness centrality in
computer network security is vulnerability analysis. An
analyst would represent an enterprise’s network
configuration as a graph and apply betweenness centrality to
that graph to identify which nodes and edges are most
responsible for efficient communication across the
enterprise’s network. If these nodes or edges are lost, the
enterprise will suffer the greatest degradation of network
performance.

BadRank is an algorithm that takes known bad actors or
elements in a graph and identifies other actors or elements
that are likely also bad. Conceptually, it is an extension of
“guilt-by-reference” or “guilt-by-association.” An example
application in computer network security is the propagation
of badness from known spam websites to other websites that
are referred to by the known spam websites.

These graph algorithms address another challenge
present in current analytic tools: the maturity of workflows
and analytic approaches. Graph algorithms represent a rich,
mature set of techniques that analysts can use to produce
richer, more meaningful analytic results.

E. Cyberthreat analysis
Cyber security, itself a term of nebulous meaning, is

growing field with emerging terms, techniques, and tools,
and cyberthreat analysis is another emerging term that needs

V1 V2

definition. Lockheed Martin has published a “Cyber Kill
Chain” that describes the anatomy of a computer exploitation
event [21]. This anatomy describes the reconnaissance,
weaponization, delivery, exploitation, installation, command-
and-control, and adversary action on objectives steps that
occur during the infiltration of an enterprise’s network.
Adversary activity should be identified as early in the “Kill
Chain” as possible to give enterprises the largest amount of
time to craft and realize a response to prevent or mitigate
adversary activity. Cyberthreat analysis is where a number
of enrichment and transactional datasets are combined to
examine possible reconnaissance activities that would be the
start of an adversary action chain.

F. Cray’s Graph Analytic Appliance
The final challenge that needs to be overcome is that

posed by the sheer scale of transactional datasets (billions)
and the performance requirement to deliver human-
interactive time (1-100 seconds) analytic results on
algorithms run over the transactional data sets. Cray’s
Urika-GD graph discovery appliance satisfies these
requirements and enables enterprises to overcome the
challenges and meet their computer security analysis needs.

Urika-GD provides responses to individual queries in
approximately 1-100 seconds and utilizes two key
characteristics to provide this response time:

• SPARQL [22] / RDF and
• Their robust, efficient implementation on Cray’s

XMT2 hardware [24]
1) RDF / SPARQL

SPARQL is a query language for semantic-graph
databases containing data represented in the Resource
Description Framework (RDF), with its name being a
recursive acronym for SPARQL Protocol and RDF Query
Language. It comes from the semantic web community and
is a recommendation of the World Wide Web Consortium
[4]. The primary goal for RDF was to make web pages
machine- readable, and the goal for SPARQL was to enable
higher-level querying of the semantic web. The resulting
capabilities proved to be valuable for graphs that did not
necessarily originate as web pages; i.e., queries on highly
heterogeneous and richly interconnected data, data that
reflected the Open World Assumption [25] that one’s set of
data is never complete and so tools must be built expecting
to easily incorporate new data and new types of data.
Readers who use SQL will find many SPARQL constructs
familiar.

RDF defines data in terms of triples consisting of a
subject, a predicate or relationship, and an object. For
example, the triple ”Cray is-headquartered-in Seattle” has
”Cray” as the subject, ”is-headquartered-in” as the
predicate, and ”Seattle” as the object. Well-defined RDF
data will use Universal Resource Identifiers (URIs, [26]) for
subjects, predicates, and most objects. An RDF graph is a
collection of these triples.

An example of SPARQL graph matching comes from
Cray’s SCinet [27] analysis work. It is presented in lines 1-

9.

1. PREFIX ocop: <http://opencog.net/p/>
2.
3. SELECT ?src_addr ?dest_addr
4. WHERE {
5. ?uid ocop:sourceAddress ?src_addr .
6. ?uid ocop:destinationAddress ?dest_addr .
7. ?uid ocop:hasProtocol oco:proto#tcp.
8. ?uid ocop:destinationPort oco:port#22.
9. }

SPARQL variables are denoted by an initial ? or $

character, e.g, ?src_addr in the example above. In the
example, the SPARQL statements within the WHERE
clause lines(4-9), known as a basic graph pattern, can be
interpreted as ”find all ?uids that have a protocol of tcp and
port of 22 (lines 7-8) and then find all ?src_addr ?dest_addr
(lines 5-6) pairs (line 3) that are connected to those ?uids.”
In English, the query can be restated as ”find source and
destination address that are communicating using SSH [39]
(Secure Shell) (tcp port 22).”

Cray’s implementation of RDF/SPARQL was designed
from the outset for very large memory, extreme parallelism,
and production environments. Its performance on standard
SPARQL benchmarks such as LUBM [28] is unmatched
because competing systems do not even publish their results
on big data sizes. While conforming with the SPARQL 1.1
standard, Cray has extended SPARQL with mechanisms
such as built-in graph functions that enable deep analysis of
on-the-fly generated graph in human-responsive time.
These built-in graph functions include community detection,
betweenness centrality, shortest-path, and BadRank
algorithms.

2) Urika-GD’s hardware characteristics
Urika-GD’s custom hardware has three distinct

elements:
• its large shared memory,
• scalable I/O system and
• purpose-built Threadstorm™ graph processor.
Urika-GD’s huge, globally shared memory architecture

of up to 512TB can hold the entire graph of relationships (5
billion – 2.5 trillion relationships) in memory. The scalable
I/O subsystem, which can scale up to 350TB per hour,
enables continuous updates to the graph as new data streams
in. If the entire graph can’t fit in memory, a number of
graph partitioning can be applied to segment the graph and
use the scalable I/O subsystem to load and unload the
segments into and out of memory.

The massively multi-threaded architecture of the
Threadstorm™ processor (128 independent threads) is
specially designed for analyzing graphs and allows threads
to continue executing even if some are waiting for data to be
returned from memory, preventing any processor stalls. This
architecture delivers orders of magnitude better performance
on complex graph problems than commodity hardware [40].

III. REPRESENTATIVE USE CASE:SCINET AT SC14
SC [29] is an annual supercomputing technical

conference in its 28th year supported by SCinet, the network
providing connectivity to the conference and exhibit hall.
SC14 refers to the conference held during 2014. Cray
participated in SCinet by performing computer network
security analysis as part of the network security committee.

A. What is SCinet?
SCinet is the high-bandwidth network that supports the

SC technical conference and exhibit hall. SC14 had the
largest network to date, with 1.2 terabits per second
reaching the show floor and 11,000 devices using SCinet.
SCinet has a /17 (32K IP addresses) of publicly routable
IPv4 space. The SCinet network diagram is in Figure 2 and
demonstrates the complexity of SCinet and the elements that
are similar to enterprise networks. SCinet is a volunteer
organization of 300+ individuals from National Labs,
universities, and vendors working together to design,
construct, operate, and dismantle the network every year.
The network is operational for approximately 10 days every
year during the conference.

Figure 2. SC14’s SCinet network layout

At SC14, the SCinet network security team had two
primary missions:

1. Detect and mitigate any outbound scanning or
attacking behavior.

2. Identify, quantify and inform likely compromised
hosts on the network.

Cray supported these missions with “Discover,” a 2
terabyte Cray Urika-GD graph discovery appliance.

B. Cray’s SCinet participation
Cray participates in SCinet on the network security

committee, because SCinet is a reasonable analogue for an
enterprise-scale network, with 11,000 devices on the
network and billions of transactional records (1.6 billion
transactions generated in 5 days). SCinet’s computer
network data analysis encounters the same challenges as
enterprises when conducting computer network data

analysis. Cray’s analytic approach at SCinet demonstrates
overcoming the data scale time-to-first solution, and time-
to-solution challenges.

C. SCinet computer network data
Data is key when performing analysis, and at SCinet,

the network security team used BRO [30], an open-source
deep packet inspection system to monitor nearly 290 GB/s
of network bandwidth. These sensors generated nearly 1.6
billion transactional records, and Cray parsed the records
into 18.6 billion RDF triples for analysis. These
transactional records included multiple data types, including
network flow, HTTP, file download (files), odd network
behaviors (weird), IDS alerts (notice) [31], SYSLOG
notices [32], and SSL [33] certificate information. Figure 3
is a table of BRO-generated transactional records and triple
counts for each type of transactional data. The SCinet
network security team combined these transactional datasets
with enrichment data of IP assignment / role information for
each of the subnets present in SCinet’s network block.

Figure 3. Transactional records generated and used during SCinet

network security analysis

D. Graph algorithms used during SC14
Cray analyzed the graph formed from the RDF triples

generated from transactional records with three graph
algorithms: subgraph isomorphism / pattern matching,
Jaccard similarity coefficient, and betweenness centrality.
This section outlines the SPARQL code used to execute
these algorithms with Discover during SC14.

1) Jaccard similarity coefficient
This SPARQL code performs Jaccard similarity

coefficient calculations against graphs of network flow data.
Line 29 contains the analyst-provided seed, V1, port 9162.
Line 4 contains ?port and ?proto which are the candidate V2
ports, and ?client_count is the numerator, and
?big_client_count is the denominator from (1).

Written in approximately 60 minutes and executing in
less than 1 minute in its finished form, this example,
development time, and execution time demonstrate the
applicability of SPARQL and RDF to computer network
analysis problems.

1. PREFIX ocop: <http://opencog.net/p/>
2. PREFIX oco: <http://opencog.net/>
3.
4. SELECT ?proto ?port ?client_count ?big_client_count

5. WHERE {
6. { SELECT ?proto ?port (count(distinct ?ap_addr) as

?big_client_count)
7. WHERE {
8. ?uid3 ocop:sourceAddress> ?ap_addr.
9. ?uid3 ocop:destinationAddress> ?dest_addr2 .
10. ?uid3 ocop:destinationPort> ?port .
11. ?uid3 ocop:hasProtocol> ?proto .
12. ?uid3 ocop:hasRespBytes> ?rbytes2.
13. }
14. GROUP BY ?proto ?port
15. }
16. {
17. SELECT ?proto ?port (count(distinct ?ap_addr) as

?client_count)
18. WHERE {
19. ?uid3 ocop:sourceAddress> ?ap_addr.
20. ?uid3 ocop:destinationAddress> ?dest_addr2 .
21. ?uid3 ocop:destinationPort> ?port .
22. ?uid3 ocop:hasProtocol> ?proto .
23. ?uid3 <http://cs.org/p/hasRespBytes> ?rbytes2.
24. FILTER(?rbytes2 > 0)
25. ?uid4 ocop:sourceAddress> ?ap_addr.
26. ?uid4 ocop:destinationAddress> ?dest_addr .
27. ?uid4 ocop:destinationPort> oco:port#9162.
28. ?uid4 <http://cs.org/p/hasRespBytes> ?rbytes1.
29. FILTER(?rbytes1 > 0)
30. }
31. GROUP BY ?proto ?port
32. HAVING (?client_count > 1)
33. }
34. }
35. ORDER BY DESC(?client_count)

2) Betweenness centrality

This SPARQL code calculates betweenness centrality
over a subgraph built from network flow data revealing
chains of SSH sessions and some enrichment data. Lines
10-21 search for the first SSH sessions, and lines 24-35
search for any second SSH sessions. Lines 12-13 show the
SCinet network security team included IP assignment in the
graph with transactional data. Lines 25-27 show how
intrusion detection alerts are merged with network flow data
in lines 28-33. Lines 39-40 show how to call Cray’s
SPARQL extensions over the subgraph extracted in lines 6-
38.

Written in approximately 40 minutes and executing in
less than 1 minute in its finished form, this example,
development time, and execution time also demonstrates the
applicability of SPARQL and RDF to computer network
analysis problems.

1. PREFIX ocop: <http://opencog.net/p/>
2. PREFIX oco: <http://opencog.net/>
3.
4. SELECT ?vertices ?scores

5. WHERE {
6. CONSTRUCT{
7. ?src_addr <urn:p/hasSSH> ?dest_addr.
8. ?dest_addr <urn:p/hasSSH> ?dest_addr2 }
9. WHERE {
10. SELECT distinct ?src_addr ?dest_addr ?dest_addr2
11. WHERE
12. {?booth2 a <http://sc14.org/class#SCinet_subnet> .
13. ?booth2 oco:hasMember ?dest_addr .
14. ?uid3 ocop:sourceAddress ?dest_addr .
15. ?uid3 ocop:destinationAddress ?dest_addr2 .
16. ?uid3 ocop:hasProtocol oco:proto#tcp.
17. ?uid3 ocop:destinationPort oco:port#22.
18. ?uid3 ocop:start ?start_time2.
19. ?uid3 <http://cs.org/p/hasRespBytes> ?rbytes2.
20. FILTER (?rbytes2 > 12000)
21. FILTER (?start_time < ?start_time2)
22. OPTIONAL
23. {
24. SELECT ?src_addr ?dest_addr ?start_time
25. {?uid <http://cs.org/p/hasNoticeNote>

<http://cs.org/notice_node#SSH::Password_Guessing>.
26. ?uid <http://cs.org/p/hasNoticeMsg> ?msg.
27. ?uid <http://cs.org/p/hasOrigAddr> ?src_addr.
28. ?uid3 ocop:sourceAddress ?src_addr .
29. ?uid3 ocop:destinationAddress ?dest_addr .
30. ?uid3 ocop:hasProtocol oco:proto#tcp.
31. ?uid3 ocop:destinationPort oco:port#22.
32. ?uid3 ocop:start ?start_time.
33. ?uid3 <http://cs.org/p/hasRespBytes> ?rbytes2.
34. FILTER(?rbytes2 > 12000)
35. }
36. LIMIT 500
37. }
38. }
39. }INVOKE yd:graphAlgorithm.betweenness_centrality

(.5,1)
40. PRODUCING ?vertices ?scores
41. }
42. ORDER BY DESC(?scores)

E. Analytic findings from graph analysis during SC14
Cray and the SCinet network security team used

subgraph isomorphism, Jaccard similarity coefficient, and
betweenness centrality to generate a number of analytic
findings during SC14. This discusses the network security
events that occurred during SC14 and how graph algorithms
were used during the analysis of these events.

1) Subgraph isomorphism

The SCinet network security team used subgraph
isomorphism/pattern search to detect outbound scanning and
outbound SYN flooding behaviors.

Detecting outbound scanning can be performed using a
graph concept called dispersion: the out-degree of a given

node. In computer network analysis, dispersion is used with
port and protocol combinations to show nodes exhibiting
unusual behaviors in a specific area. Cray has used
dispersion at SC13 and SC14 to successfully identify
outbound scanning. At SC14, Cray identified infected
clients on the wireless network scanning for vulnerable
servers or sending malware out of the network

SYN flooding is a computer network attack where a
client opens partial connections to a host and leaves them
open. This attack is designed to remove a host from the
network by exhausting its ability to accept inbound
connections. If the host isn’t on the network, it isn’t
accessible in the current “available-everywhere” networked-
computing environment. At SC14, the network security
team observed two clients on the network participating in
SYN flood attacks. These two network events accounted
for 86% of all network flow observed on the network. The
flow count histogram is shown in figure 4 with the two SYN
floods circled in red.

Figure 4. SCinet’s network flow counts. Green diamonds are from

10GB/s commodity links, and orange diamonds are from 100GB/s sensors.
The y-axis is logarithmic

2) Jaccard similarity coefficient
All of the network security team’s tools identified these

SYN floods. The team then looked for the root cause of the
SYN floods. Cray combined alerts from one IDS system
(showing a malware download on an odd port) with network
flow and Jaccard similarity coefficients to identify likely
infected client behaviors. This analysis revealed that port
7668 was most similar to the seed port of 9162. A
visualization of clients exhibiting network activity on both
of these ports is figure 5.

Figure 5. Jaccard similarity coefficient visualization for V1=9162 and

V2=7668

The root cause of the infection was believed to be
malware targeting Linux systems running SSH servers that
infected the systems by brute-forcing passwords to accounts
with SSH login privileges on the systems. Password brute-
forcing is where an adversary connects to an SSH server and
attempts to guess the password for an account on the
system. The adversary repeatedly connects, guessing
different passwords each time until they find one that works.

With the Linux malware in the environment, the
network security team spent the four days of the conference
identifying infected hosts using IDS tools and then notifying
infected users. The team identified multiple hosts per day
and visited multiple booths each day to inform them of their
infection and recommend mitigations.

3) Betweenness centrality
The last day of SC14, the network security team used a

subgraph isomorphism to build a subgraph of SSH sessions
that seemed to originate from hosts that successfully brute-
forced SSH passwords. This subgraph is displayed in figure
6. The network security team then applied betweenness
centrality to the generated subgraph. This analysis revealed
the host where system administrators and security staff
should begin to mitigate the infection network. This host is
circled in red in figure 6.

Figure 6. SSH connection subgraph and

IV. APPLYING GRAPH ANALYTICS TO CYBERTHREAT
ANALYTICS

Cray has supported computer network security analytic
needs using graph algorithms at SC14 and through other
engagements. These algorithms and approaches can also be
applied to cyberthreat analytics when combined with graphs
built from appropriate data sources. These data sources
include published vulnerabilities and exploits, blacklists, and
professional networking publications. Combining these data
sets and applying graph algorithms allows enterprises to
perform cyberthreat analytics earlier in the “Cyber Kill
Chain.”

V. CONCLUSION
Graph algorithms and analytic approaches are a new tool

available to enterprises attempting to overcome the
challenges presented by large, heterogeneous data sets that
require flexible, responsive analytic execution. Cray,
through its work as part of SCinet during SC14, applied
graph algorithms to help answer computer network security
analytic questions against large (18 billion triple),
heterogeneous (multiple types of data) graphs using flexible
analytics based on open standards (SPARQL / RDF). These
approaches generated new analytic results and enabled
SCinet’s network security team to be more flexible and
respond to myriad new threats in minutes to hours. These
approaches can be easily adapted to use additional datasets
and be applied by enterprises seeking to become more
resilient against increasingly sophisticated adversaries and
malicious activities.

ACKNOWLEDGMENT

E.D. thanks his family for giving him the time to
participate in SCinet and SC14 in the two weeks before
Thanksgiving.

REFERENCES
[1] http://www.cray.com/products/analytics/urika-gd
[2] http://www.cisco.com/c/en/us/products/ios-nx-os-software/netflow-

version-9/index.html
[3] Network Working Group. Hypertext transfer protocol (RFC 2616).

Technical report, Internet Engineering Task Force, 1999.
[4] Network Working Group. Domain Name Service (RFC 1034).

Technical report, Internet Engineering Task Force, 1987.
[5] Network Working Group. File Transfer Protocol (RFC 959).

Technical report, Internet Engineering Task Force, 1985
[6] Network Working Group. Telnet Protocol specification (RFC 854).

Technical report, Internet Engineering Task Force, 1987
[7] Network Working Group. WHOIS (RFC 954). Technical report,

Internet Engineering Task Force, 1987
[8] Cisco 2014 annual security report,

http://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf
[9] Verizon 2014 Data Breach Investigation Report,

http://www.verizonenterprise.com/DBIR/2014/
[10] J. Janies, Protographs: Graph-Based Approach to NetFlow Analysis;

In Proceedings from FloCon 2011
[11] E. Dull, Discovering Unknown Network Activity Using Graphs and

Computer Network Data; In Proceedings from FloCon 2014
[12] E. Dull, and S.P. Reinhardt, Network flow analysis at 880 Gb/s:

Lessons learned from SCinet '11-'14; In Proceedings from FloCon
2015

[13] Jinsoo Lee, Wook-Shin Han, Romans Kasperovics, and Jeong-Hoon
Lee. 2012. An in-depth comparison of subgraph isomorphism
algorithms in graph databases. Proc. VLDB Endow. 6, 2 (December
2012), 133-144. DOI=10.14778/2535568.2448946

[14] E. Dull, R. Kartch, and R.W. Technintin, Semantic Representations of
Network Flow: A Proposed Standard with the What, the Why, and
the How; In Proceedings from FloCon 2015

[15] E. Jason Riedy, Henning Meyerhenke, David Ediger, and David A.
Bader. Parallel community detection for massive graphs. In David A.
Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner,
editors, Graph Partitioning and Graph Clustering, volume 588 of
Contemporary Mathematics, pages 207–222. American Mathematical
Society, 2013.

[16] Dijkstra, E. W. (1959). "A note on two problems in connexion with
graphs". Numerische Mathematik 1: 269–271.
doi:10.1007/BF01386390

[17] Collins, M. (2014). Network security through data analysis: Building
situational awareness.

[18] Kolda, Tamara G; Procopio, Michael J; “Generalized badrank with
graduated trust”, Sandia National Laboratories, California, 2009

[19] Information technology -- Database languages -- SQL -- Part 1:
Framework.
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm
?csnumber=63555

[20] M.E.J. Newman, “Modularity and community structure in networks”,
Data Analysis, Statistics and Probability (physics.data-an); Statistical
Mechanics (cond-mat.stat-mech); Physics and Society (physics.soc-
ph), Journal reference: Proc. Natl. Acad. Sci. USA 103, 8577-8582
(2006), DOI: 10.1073/pnas.0601602103, arXiv:physics/0602124

[21] Lockheed Martin, “Cyber Kill Chain”,
http://www.lockheedmartin.com/us/what-we-do/information-
technology/cyber-security/cyber-kill-chain.html

[22] S. Harris and A. Seaborne. SPARQL 1.1 query language (W3C
recommendation 21 march 2013). Technical report, World Wide Web
Consortium, 2013. http://www.w3.org/TR/sparql11-query/

[23] RDF Working Group. Resource Description Framework (RDF).
Technical report, World Wide Web Consortium, 2004.
http://www.w3.org/RDF/.

[24] D. Mizell, “Introduction to the Cray XMT”,
http://wwwjp.cray.com/downloads/XMT-Presentation.pdf

[25] D. Gruhl, R. Guha, D. Liben-nowell, and A. Tomkins. Information
diffusion through blogspace. In In WWW ’04, pages 491–501. ACM
Press, 2004.

[26] Network Working Group. Uniform resource identifier (URI): Generic
syntax (RFC 3986). Technical report, Internet Engineering Task
Force, 2005. http://tools.ietf.org/html/rfc3986.

[27] “SCinet overview”, http://sc14.supercomputing.org/scinet
[28] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL

knowledge base systems. Journal of Web Semantics, 3(2-3), 2005.
[29] “About the SC Conference Series”,

http://supercomputing.org/about.php
[30] “The BRO Network Security Monitor”, https://www.bro.org/
[31] Network Working Group. The Syslog protocol (RFC 5424).

Technical report, Internet Engineering Task Force, 2009.

[32] Network Working Group. The Secure Sockets Layer Version 3.0
(RFC 6101). Technical report, Internet Engineering Task Force, 2011

[33] https://sourceforge.net/projects/opencyberontology/
[34] Network Working Group. Transmission Control Protocol (RFC 793).

Technical report, Information Systems Institute, University of
Southern California, 1981

[35] Network Working Group. User Datagram Protocol (RFC 768).
Technical report, Information Systems Institute, University of
Southern California, 1980

[36] Information Technology – Open Systems Interconnection – Basic
Reference Model: The Basic Model, http://www.ecma-
international.org/activities/Communications/TG11/s020269e.pdf

[37] Network Working Group. An Ethernet Address Resolution Protocol
(RFC 826). Technical report, Internet Engineering Task Force, 1982

[38] Network Working Group. Internet Protocol (RFC 791). Technical
report, Information Systems Institute, University of Southern
California, 1981

[39] Network Working Group. The Secure Shell Protocol Architecture
(RFC 4251). Technical report, Internet Engineering Task Force, 2006.

[40] John Feo. Graph Analytics in Big Data. Proceedings of HPC Graph
Analytics workshop 2012 @ SC12.

