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Abstract- The Urika-GD appliance is based on a state of the art 

graph analytics database that provides high performance on 

complex SPARQL queries.  This performance is due to a 

combination of custom multithreaded processors, a shared 

memory programming model, and a unique high performance 

interconnect.  

We will present our work on porting the database and graph 

algorithms to the XC30/40 platform.  Coarray C++ was used to 

provide a PGAS environment with a global address space, a 

Cray-developed Soft Threading library was used to provide 

additional concurrency for remote memory accesses, and the 

Aries network provides RDMA and synchronization features.  

We describe the changes necessary to refactor these algorithms 

and data structures for the new platform. 

Having this type of analytics database available on a general-

purpose HPC platform enables new use cases, and several will 

be discussed.  Finally we will compare the performance of the 

new XC30/40 implementation to the Urika-GD appliance. 

Keywords- Urika-GD; Multithreading; PGAS; Semantics; 

SPARQL; RDF; XC30/40 

I. INTRODUCTION 

The Urika-GD appliance is a high performance semantic 
graph database based on the industry-standard RDF graph 
data format and the SPARQL graph query language.  Urika-
GD, launched in 2012, is based on the Cray XMT2 
multithreaded shared-memory supercomputer.  For the 
Urika-GD project we designed a high-performance graph 
database query engine that took advantage of the XMT2’s 
unique hardware architecture.  This query engine has been 
very successful, and offers the highest performance in the 
industry on complex queries over graph-structured data. 

In order to expand the use of this form of analytics across 
Cray’s product line, we have ported the Urika-GD query 
engine to the XC30/40 family of supercomputers.  A new 
user interface has also been designed to take best advantage 
of the somewhat different operating environment. This new 
package, referred to internally as Cray Graph Engine (CGE), 
is nearing full functionality and we will present early 
performance benchmarks against the existing Urika-GD. 

The remainder of the paper is organized as follows.  The 
first section covers the Urika-GD appliance formulation and 
data format.  The second section describes the process of 
porting the Urika query engine from XMT2 to XC in detail, 

including discussion of the PGAS programming model.  The 
next section covers the relative performance data, followed 
by a section describing the user interface changes necessary 
for the XC environment.  Finally, there is a description of 
use cases. 

A. What are SPARQL and RDF? 

RDF (Resource Description Format) [1] is a data 
representation first proposed by the World Wide Web 
Consortium (W3C) in 1999.  It was originally intended to 
provide a flexible data representation for data across the 
World Wide Web, but it has proven to be very useful for 
description of any irregularly-connected data.  The more 
common “relational” data model used in most SQL 
databases is based on tables, but RDF stores its data as a 
labeled, directed multi-graph.  As a consequence, its data 
access patterns are very different than that of a standard SQL 
database.  The basic unit of data storage in RDF describes a 
single graph edge and is referred to as a “quad,” since it has 
four fields. 

SPARQL is a query language designed to work with 
RDF databases, and it is also a W3C standard [2].  It is 
designed to look very similar to the well-known SQL query 
language, but with features designed to work with graphs as 
opposed to tables. 

B. Basic Graph Patterns 

The primary unit of search for the SPARQL query 
language is the Basic Graph Pattern, or BGP, instead of the 
row or column for tabular databases.  A BGP consists of a 
connected set of nodes and edges that form a small graph.  
Names or types may be specified for some, all or none of the 
nodes and edges in the BGP.  Finding all the instances of a 
BGP across a large graph is basically a subgraph 
isomorphism problem.  A SPARQL query always starts with 
a BGP search, followed by additional filters, joins or other 
operators. 

C. Architectural issues with Graph analytics 

Because the data in an RDF database is graph structured, 
any node in the graph may share edges with any other set of 
nodes distributed across the memory of the system.  Nodes 
may share edges with a few other nodes, or very highly 
connected nodes may have hundreds or thousands of 
immediate neighbors.  This poses problems for distributed 
memory systems, since communication of information across 
the dataset is highly irregular, and may approach all-to-all for 
tightly connected graphs.  Also, domain decomposition of 



graph data for load balancing is an unsolved problem in 
general. 

D. Shared Memory Implementation 

The ideal platform for a graph database of this type is a 
shared memory system with fast uniform access to all 
memory locations in the system.  Luckily the Cray XMT / 
XMT2 provides this type of memory model.  The 
Threadstorm processors on the XMT2 use a latency hiding 
technique [3] to create a large shared memory pool out of all 
of the compute node memory of the entire system, even 
though it is actually physically distributed.  Thus, for the 
Urika-GD version of the database the graph is stored in a 
single largely one-dimensional data structure that spans the 
entire memory of the machine.  Since memory access is 
effectively uniform, there is no need to partition or organize 
the graph for performance reasons. 

E. Multithreading on the XMT 

Because the search for BGPs is a highly parallel process, 
it is also desirable to have a high level of parallelism.  The 
Threadstorm processors offer 128 hardware streams per 
node, and software threads may be allocated to the streams 
as needed.  Since system sizes typically range from 64 to 512 
nodes, thousands to tens of thousands of software threads 
may be employed for a given BGP search.  This high level of 
parallelism is also useful for the other SPARQL functions. 

II. PORTING THE URIKA-GD BACK END QUERY ENGINE 

TO XC 

The Urika-GD back end query engine, which today runs 
on the Cray XMT2 architecture, performs several functions. 
First, the query engine is responsible for reading RDF, 
translating it into its memory-resident representation of the 
database, and writing the database to disk.  Second, the query 
engine is able to read in a previously compiled database from 
disk in order to build its memory-resident database image.  
Third, it must accept SPARQL queries from the front end, 
evaluate them against the memory-resident database, and 
return the results to the front end.  Fourth, it must accept 
SPARUL (SPARQL Update) commands from the front end 
and update the memory-resident database according to those 
commands.  Finally, it must accept a checkpoint command 
from the front end and write the database to disk. 

Although our initial porting focus was on being able to 
load in the database and run some basic SPARQL queries, 
each of the functions of the query engine mentioned above 
provided some unique challenges. 

A. Background on Porting Effort and Early Investigations 

As part of our early investigations into the feasibility of 
porting the Urika-GD appliance to the XC30, we studied two 
different approaches for porting the back-end query engine 
(the portion which today runs on the XMT2 architecture).  
The first was a “Soft-XMT approach” where we used an 
experimental memory domain library layer with soft-threads 
to emulate the shared memory programming environment of 
the XMT on the XC30.  The second was an approach where 
we instead would rewrite the existing application to use a 

more standard HPC programming methodology, taking 
advantage of the global address space provided on the XC30 
and the synchronization features of the Aries network. The 
advantage of the Soft-XMT approach would be minimal 
code changes from the existing Urika-GD query engine code 
base running on Cray XMT2 hardware today. As the pace of 
code development for Urika-GD was still very active, being 
able to either quickly pull over changes, or possibly maintain 
a single code base for both platforms, was highly desirable. 

As a graph analytics application, maintaining optimal 
network performance for small word remote references, both 
puts and gets, was essential, thus we knew we wanted to 
leverage the low-level DMAPP library communication layer. 
Communication aspects of the query engine backend are 
similar to GUPS in many ways. The focus for the feasibility 
study was on the Basic Graph Patten (BGP) of the query 
engine. Initially we just extracted a time-dominant kernel of 
BGP in the Merge step described later and wrote both UPC 
and Coarray C++ implementations of this kernel. At the time 
we started our early investigation, the Coarray C++ project 
was also in early development as well. Although initially we 
were able to achieve better performance using UPC, working 
with Cray’s compiler team, we were able to eventually 
match UPC performance using Coarray C++. Converting the 
full Urika-GD application, which is predominantly C++, to 
use UPC, would have been an unwelcome challenge.  

We were then able to compare performance for this 
simple kernel extraction to our “Soft-XMT” approach. One 
important observation we made at this point was that using a 
PGAS distribution of our internal data structures, we could 
very much benefit from locality, reducing the total number of 
remote references by as much as 75% for this simple kernel. 
The performance that could be gained by exposing locality 
led us to select Coarray C++ method over the “Soft-XMT” 
approach. This required more significant modifications to the 
Urika-GD source code, but in practice it turned out to be 
limited to a manageable number of sections. The Coarray 
C++ model provided us with the performance advantages of 
the low-level DMAPP communication layer (used indirectly 
via the PGAS library) and also the ability to take advantage 
of locality when available.  

B. Coarray C++  

The back end query engine of CGE is written as a 
distributed application using Coarray C++ as the underlying 
distribution mechanism. Coarray C++ is a C++ template 
library that runs on top of Cray's Partitioned Global Address 
Space (PGAS) library (libPGAS) and permits multiple 
processes (images) on multiple compute nodes to share data 
and synchronize operations. libPGAS is an internal Cray 
library supporting the Cray compiler, built on top of 
DMAPP.  [4] 

The sharing of data occurs using a symmetric heap, 
which is a virtual address space that is logically shared 
across all images. The logical sharing of the symmetric heap 
results in C++ symbols that refer to the same virtual address 
within the symmetric heap on all images.  This implies that 
the order in which symmetric heap allocations are made is 
strictly ordered the same way across all images and that the 



size of allocations is strictly agreed upon across all images as 
well. In CGE we utilize both symmetric and asymmetric 
allocations for managing distributed data structures. 
Dynamically sized symmetric allocations, where all images 
allocate the same amount of memory from the symmetric 
heap in a collective manner, provide optimal performance. 
However, for memory saving considerations we also use 
coarrays of pointers, which then allow images to allocate 
memory independently (asymmetric allocations). In these 
situations the allocated memory is not likely to be located at 
the same address within every image’s address space. 

C. Query Engine Execution model 

The coarray model of parallelism, at least at a high level, 
is a Single Program Multiple Data (SPMD) model.  An 
advantage, from a program simplicity standpoint, of the 
SPMD model is that each image can be seen as executing 
serial code. This model turns out to be a good match to the 
current query engine execution model. 

When the query engine receives a query, the query is first 
translated into a list of operators.  We refer to this list as the 
“dispatcher list”. It is a sequence of query engine operations, 
in Reverse Polish Notation order, to be performed by the 
query engine. Note that the sequential dispatcher list 
represents a design decision we made early on in XMT 
development not to parallelize any of the SPARQL operators 
at this level. For large-scale datasets, our assessment was that 
the overwhelmingly large source of parallelism would be 
data parallelism.  Accordingly, each dispatched operator is 
implemented as a data parallel operation.  

The dispatcher uses a simple stack to hold intermediate 
results between operations. We hold these intermediate 
results in Intermediate Results Arrays (IRAs). With the 
exception of Scan, which searches the database for matches 
to one or more quad patterns, all of the query engine 
operators input one or more IRAs, by popping them off the 
stack, and return one IRA, pushing it onto the stack. Every 
image holds an identical copy of the dispatcher list in local 
memory, and each image holds a distinct chunk of the IRA 
data locally.  

The following class definition of the iResultArray class 
shows how we use coarrays to distribute the set of candidate 
solutions over images: 

 
 
 

Note that we use a coarray of pointers to store only the 
address of solHuris so that each image allocates only enough 
memory to hold the solutions it has been assigned. 

Since we rely on data parallelism to maintain load 
balance, we periodically rebalance solutions within an IRA. 
The iResultArray class provides a rebalance operator which 
first rebalances solutions amongst images residing on the 
same physical node, and if still necessary, re-distributes 
solutions across all images. 

The memory resident database consists of two primary 
global class objects, the dictionary and the DBase. The 
dictionary supports mapping between strings in the database 
to our internal integer representation.  We refer to these 
integer representations as hashed URIs (HURIs). The 
Database class stores the RDF dataset in a more compressed 
and efficient format. The RDF data is represented as a set of 
graphs, where each graph contains the quads belonging to 
that graph 

We use distributed hash tables for storing the dictionary 
and the Database.  These will be described in more detail in a 
later section. 

D. Optimizing communication over the network 

The Basic Graph Pattern (also referred to as Quadpattern) 
consists of a sequence of three operations: Scan, Join, and 
Merge.  

In the Scan step, we create an IRA for each query quad in 
the Quadpattern by searching through the local portion of the 
database residing on that image. Communication between 
images is only needed to balance the solutions across images. 

To illustrate a common communication pattern found in 
multiple places in CGE, we will describe the Join operation 
in more detail. In the Join phase, we attempt to reduce the 
size of the IRAs returned by the Scan phase by comparing 
the variable bindings across multiple IRAs. For each 
unbound variable (UBV) that appears in multiple IRAs, we 
determine which HURIs are valid for that UBV. To be valid, 
a HURI must appear in at least one solution of all IRAs that 
contain that UBV.  

To check for validity we use two integer arrays, masterA 
and tempA, which are globally distributed over all images. 
For simplicity assume these arrays are indexed by HURI. We 
initialize each element of masterA to 1 and each element of 
tempA to 0. We then update tempA by walking through the 
list of solutions, loading the HURI corresponding to a 
particular UBV (ubv_idx), and using this as an index to 
update the element of tempA. Here we use a simple block 
distribution for the IRA solutions so that we can easily 
compute which image and offset to write to. 

 

 

class iResultArray { 
  public: 
  int64_t global_numSolutions; 
  coarray<int64_t> local_numSolutions; 
  int64_t numUBV; 
  int64_t* UBVlist; 
  coarray<int64_t*> /* restrict */ solHuris; 
… 
} 

 

    for (i = 0; i < this_ira->local_numSolutions; i++) { 

       int64_t huri = this_ira->loadHuriElt(i, ubv_idx); 

       int64_t image = huri / maxV_image; 

       int64_t index = huri % maxV_image; 

       tempA(image)[index]=1; 

    } 

    sync_all(); 

   … 

c_a 

 



The call to the barrier sync_all() ensures that all puts 
have completed on all images. As written, this loop 
optimally issues non-blocking put operations using calls to 
libPGAS operations.  

This is all managed in the Cray coarray_cpp.h template 
file. From a network performance standpoint, we use the 
desired non-blocking implicit (nbi) variants of the remote put 
operations, relying on the dmapp library optimizations. The 
above put operations use calls to the internal __pgas_put_nbi 
which directly uses the corresponding optimized 
dmapp_put_nbi operation. 
A further optimization, used in multiple places throughout 
the CGE code base, is to first use local hashing to aggregate 
data to minimize network communication. The level of 
improvement obtained by first hashing locally is data 
dependent in terms of the relative size of the resulting 
number of local_keys compared to the local_numSolutions.  
The advantage is the smaller number of remote puts. 

Following the sync_all(), we then iterate over tempA, 
and when this is not set to 1, we set the corresponding 
element of masterA to 0.  Since we apply the same 
distribution to the masterA and tempA arrays, the load of 
tempA and the store to masterA are local operations on each 
image.  Each image iterates over the HURI indexes assigned 

to that image. 
Once this process is complete for each IRA, each element 

of masterA is set if the HURI is present in all IRAs or 
cleared otherwise. The last step is to iterate through each 
solution of each IRA. Any solution with a HURI that is not 
valid according to masterA is marked for deletion. 
This requires a remote lookup of the elements of masterA for 
each of the HURIs in the local list of keys. In order to have 
these remote get operations performed using the desired non-
blocking implicit get operations, we needed to explicitly call 
the get member function which uses __pgas_get_nbi and 
then use atomic_image_fence() which makes sure the get 

requests have completed. To fully benefit from using get_nbi 
operations, we also need concurrency. For this simple 

example, we simply use blocking so that each image can 
issue block_size get_nbi operations and then wait at a fence 
for these to complete. We then store the results from the 
remote lookup of masterA values into a local hash table for 
later use.   

In this simple code example for Join, exposing the 
concurrency for remote gets could easily be achieved 
without using multi-threading. In fact, in simple situations 
like these, we just use a simple loop blocking technique as 
shown above. Software emulation of multi-threading 
becomes necessary when the individual get requests occur in 
deeply nested function calls.  

E. Coupling Coarray C++ with a lightweight threading 

layer 

The lightweight threading technology we use originally 
comes from the work of the Cray Chapel development team 
[5]. 

We have modified this for our own use such that each 
image starts up and maintains its own lightweight thread 
runtime. Each image independently generates concurrency 
by having each thread initiate a context switch following 
following any remote non-blocking get operation. At the 
node level the Cray dmapp library provides further 
optimization when scheduling these gets onto the network. 

We have extended the Cray compiler-provided 
coarray_cpp.h template file to include additional member 
functions to allow us to issue a pgas_get_nbi call followed 

key_list =  local_table->get_keys(&num_local_keys); 

int64_t* key_flags = (int64_t*) 

              cqe_malloc(num_local_keys * sizeof(int64_t)); 

 

 for (i = 0; i < num_local_keys; i += BLK) { 

    int64_t blk_size = BLK; 

    if(i+BLK > num_local_keys - 1) 

           blk_size =  num_local_keys - i; 

 

    for (int64_t k = 0; k < blk_size; k++) { 

       int64_t huri = key_list[i+k]; 

       int64_t image = huri / maxV_image; 

       int64_t index = huri % maxV_image; 

       masterA(image)[index].get(&key_flags[i+k]); 

     } 

    atomic_image_fence(); 

 } 

 

// Use key_flags to insert value into hash table for later 

// lookup by huri 

 

for (i = 0; i < num_local_keys; i++) { 

   if(key_flags[i] == 1){ 

     local_table->set_data(key_list[i],key_flags[i]); 

   } 

 } 

 

     IntHashTablel *local_table; 

     local_table = cqe_new(IntHashTable, 

                           this_ira->local_numSolutions); 

 

     for (i = 0; i < this_ira->local_numSolutions; i++) { 

        int64_t huri =  this_ira->loadHuri( 

                                i, ubv_idx); 

        (void) local_table->insert(huri); 

      } 

 

      int64_t num_local_keys; 

      int64_t* key_list; 

 key_list = local_table->get_keys(&num_local_keys); 

 

      for (i = 0; i < num_local_keys; i++) { 

        int64_t huri = key_list[i]; 

        int64_t image = huri / maxV_image; 

        int64_t index = huri % maxV_image; 

        tempA(image)[index]=1; 

      } 

     sync_all(); 

 

 



by either a thread context switch or a thread specific fence. 
Here instead of using the original get(), one would then use a 
get_switch(). 

For example, here are additional functions we added to 
the coarray_cpp.h file. 

 
We needed a mechanism to be able to identify regions of 
code where we require multiple threads running in order to 
provide concurrency for deeply nested get() calls. This was 
accomplished by retargeting an existing OpenMP pragma 
recognized by the Cray compiler controlled via an 
environment variable. 

Here is an example of how we have invoked threading in 
the function Order used to implement the SPARQL ORDER 
BY operation. We use threading here since this uses an 
get_switch() as part of fetching the solution HURIs.  

 
 
 

FILTER and GROUP operations also make use of the 
threading layer in places where the individual get requests 
are buried deep in long call chains. 

F. Extending/customizing Coarray C++ template files 

For CGE we start with the coarray_cpp.h template file 
provided with the Cray compiler, but we have customized 
this to better suit our application requirements. In addition to 
adding threading specific member functions, we added 
othermember functions such as mget to simplify the syntax 
for multi-word gets. Another extension was to provide new 
member functions to allow vanilla loads and stores for 
coatomics so that we could make these loads and stores more 
lightweight in regions where we knew these values were not 
being updated.  

G. Distributed Hash Tables 

Probably the most utilized and important data structures 
in CGE are the various distributed hash tables. We use 
distributed string hash tables for storing the dictionary. We 
use distributed multi-word integer hash tables for storing the 
quads associated with each graph to allow enable fast 
insertions and deletions of quads. Distributed hash tables are 
also used to store expression results computed during the 
course of evaluating a query.  Similar to the string dictionary, 
which maps strings to HURIs, we need to be able to 
efficiently map expression results to HURIs and HURIs to 
expression results. 

 One illustrative example is the application of the 
SPARQL operator DISTINCT which is used to remove 
duplicate solutions. The back-end query engine 
implementation of Distinct takes as input an IRA, removes 
duplicate entries while preserving the order of the remaining 
entries, and returns an IRA with the duplicates removed.   

The basic strategy is to hash the solutions into a hash 
table, and note when we try to insert into the same location.  
A solution consists of a row of the IRA with the number of 
columns matching the number of variables. Since we need to 
preserve order, we insert both the key (multi-word key with 
the number of words being the number of variables in the 
IRA) and user data for each key. Here the user data keeps 
track of the original ordering.  

The DistMwordHashTable class (Distributed Multi-word 
Hash Table) is an extension of our simplest DistHashTable 
(Distributed Hash Table) class. When an image inserts data 
(key, user data) into the global hash table, the image first 
inserts the data into a local table. Based on the key, a home 
image for that key is determined by the hash function.  When 
the DistMwordHashTable sync() operator is called, the (key, 
user data) records are sorted into buckets based on the home 
image they belong to. Using coarrays, we communicate the 
number of keys each home node will receive from all of the 
other images, the pointers to the sorted keys and the sorted 
data, and the starting offsets. Each home image is then able 
to pull data from the other images and insert the keys into the 
global hash table. On the home image, we use double-
buffering and non-blocking gets to overlap the insertion of 
one block of keys with the fetching of the next block of keys 
to insert. In the case where we have user data, if a key was 

static void softthreads_switch_fence(void) { 

  static int any_outstanding = 0; // global to all softthreads 

 

  any_outstanding = 1;    // we just came from get/put_nbi() 

 

  softthreads_switch();   // switch to next softthread 

 

  if ( any_outstanding == 1 ) { 

    // still something out on network; 

    atomic_image_fence(); 

    any_outstanding = 0;   // anything out on network  

                                         // is now back 

  } 

 

  softthreads_switch();  // allow other threads to return and 

                                      // skip the atomic_image_fence() 

} 

 

void get_switch( pointer p, int64_t length ){  

    internal::__pgas_get_nbi( p, m_image, m_addr, sizeof( 
value_type )  ); 

    softthreads_switch_fence(); 

} 

 

#pragma omp parallel for schedule(static) 

  for(int64_t i = 0; i < num_solns; i++) { 

    int64_t tmp_offset =  

                     get_expr_offset(&sort_keys[(i*num_keys)]); 

    int64_t image = tmp_offset / max_local_solns; 

    int64_t image_offset = tmp_offset % max_local_solns; 

    int64_t new_soln_offset = i * num_soln_vars; 

    // Fetch the huris for this solution and store them  

    // into the soln_huris.  

    fetch_soln_huris(in_ira, image, image_offset,  

                                num_soln_vars, sol_huris_ptrs,  

                                &soln_huris[new_soln_offset]); 

  } 

 

 



not inserted (it was previously inserted), we update the user 
data for this key on the image sending the key with the data 
from the key already present in the table. This is done using 
non-blocking puts of the data from the home image back to 
the remote image. 

H. How this is used in our implementation of DISTINCT 

The first step is to allocate a multi-word global hash table 
using the DistMwordHashTable class with the total (global) 
number of solutions and the number of variables present. 
One requirement for using the global hash table classes is 
that all images need to be involved when calling the 
constructors, destructors, and sync operations. Insertions 
prior to the global sync and lookup operations can be 
performed independently. 

The global hash table includes a local host insertion table 
so that insertions are first hashed locally. This allows us to 
remove duplicates during the insert step before we sync with 
the other images, and before we send keys/data to the 
appropriate destinations. 

 
The DistMwordHashTable class operator sync() is used 

to synchronize the local hash table with all the other images. 
This updates the global hash table, and then updates the user 
data, writing updated data back to into the local tables using 
remote Put operations. We use the updated user data to 
determine, in the case of duplicates, which of the solutions 
we keep based on which solution was inserted into the global 
hash table first.  

 
Most of the interesting work and communication 

between images is handled within the sync() operation. Prior 
to pulling the local keys/data to their appropriate destination 
in the global hash table, we first sort the keys based on which 
image will receive them. We use symmetric dynamically 
sized coarrays to communicate the number of keys on each 
image and the starting location for each image to starting 
reading data. 

 

 
   

We also save the pointers to the sorted keys and the 
sorted data in coarrays to allow the home image for these 
keys to access these since the number of keys to insert on 
each image may vary between images. 
 

 We have found that explicitly registering memory 
(registering the base address along with the full extent of the 
data that will be accessed remotely) avoids dmapp memory 
registration errors of the form: 

 
 
 
The registration currently uses an internal PGAS library 

registration function. It is helpful to register the base address 
and its extent with the PGAS library. This allows remote 
images to access offsets within that memory without 
registering the specific memory location each time.  This 
helps prevent running out of resources for registering 
memory and can improve the performance of the remote 
accesses. 

 
We create a staggered ordering of images when getting 

the remote keys to insert into the home image hash table. We 
do this to avoid network contention so that all images do not 
all try to read data from the same image at the same time. 

The DistMwordHashTable::get_next_keys member 
function fetch the data. This function issues non-blocking 
gets to allow overlap for fetching the next block of keys. It is 
up to the caller of this function to make sure the gets 
complete before using the fetched data.  

One note on using this approach is that the allocation of 
the coptrs used to point to the remote addresses where we are 
to read from on the remote image is done in the caller, and 
these coptrs are passed into the function. This is necessary to 
make sure the coptr lives past the point where the non-
blocking get completes (until atomic_image_fence() is 
called). 

I. Summary of PGAS Porting Issues/Recommendations 

CGE utilizes hugepages to better support the random 
small word communication patterns which are typical in 
graph analytics applications. We also turn off software 
ordering in the PGAS library in order to improve the 
performance of small-word puts and gets. This is done with 
some care, as the user is then responsible for making sure 
any ordering constraints are handled explicitly.  

for (int64_t soln=0; soln < numSols; soln++) { 

    /* Insert mword key (huri) into global hash table*/ 

    int64_t* key = &theseHuris[soln*numUBV]; 

    int64_t soln_id = soln + soln_start; 

    global_hash.insert(key,soln_id); 

  } 

  global_hash.sync(); 

 

coarray<int64_t []> image_key_counts(num_images()); 

coarray<int64_t []> image_key_starts(num_images()); 

 
coarray<int64_t *> sorted_keys(tmp_sorted_keys); 
coarray<ght_user_data_t *> sorted_data(tmp_sorted_data); 

 
 

ERROR: dmapp_mem_register(const_cast<void*>(addr), 

length, desc ): The operation could not be completed due to 

insufficient resources. 

completed due to insufficient resources. 

  __pgas_register(tmp_sorted_keys, (num_keys *  

                            m_nwords * sizeof(int64_t))); 

  if(m_have_user_data) { 

    __pgas_register(tmp_sorted_data, (num_keys * 

                              sizeof(ght_user_data_t))); 

  } 

 



An additional parameter when running CGE on XC is 
managing the size of the symmetric heap. Although the 
launcher (cge-launch) sets this to a default value based on the 
amount of memory on the node and the number of images 
assigned to each node, depending on the size of the database 
and the memory requirements of the queries to be run, this 
may need to be adjusted explicitly as well. 

The application dynamically allocates and frees blocks of 
memory of various sizes.  With many images on each node 
competing for the same resources, this can be stressful for a 
parallel allocator.  The default allocator, tcmalloc, was 
designed for performance.  Unfortunately, the observed cost 
of this performance is that it can fragment memory in the 
face of many large (~32MiB +) allocation and free requests. 

  Two alternative allocators were tried: the system 
allocator from glibc and jemalloc.  Neither of these allocators 
exhibits the fragmentation issues seen with tcmalloc, but 
they can be slower. Some queries took twice as long to 
evaluate.  Other query evaluations were usually comparable 
to the tcmalloc implementation, but were occasionally 
significantly slower.  Keeping in mind that the application 
tries to keep the data load-balanced among images, we chose 
to pre-allocate a fraction of available memory on each image. 
This memory is managed by a simple buddy allocator.  Since 
each image has its own buddy allocator, the implementation 
is lock-free.  Currently, the buddy allocator is used for larger 
allocations but tcmalloc is still used for smaller ones.  While 
buddy allocators have a certain amount of internal 
fragmentation, this design is very effective at returning 
memory to its fully coalesced state after each query.  At the 
same time, its performance is comparable to tcmalloc. 

 

Table 1 PGAS Porting Recommendations 

 
Issue Recommendation 
Improve performance of 
remote PUTs and GETs 

Disable SW Ordering by setting the 
environment variable 
setenv PGAS_NO_SW_ORDERING 1 
Any ordering constraints must be 
handled explicitly by the user. 

Increase concurrency for 
remote GETs  

Issue multiple non-blocking 
operations before issuing an 
image_fence 

Expose concurrency for 
remote GETs in deeply nested 
calls 

Using lightweight threading layer to 
increase the number of non-blocking 
GETs issued. 

Reduce latency due to 
waiting on GET requests to 
complete 

Overlap computation and 
communication 

Asymmetric coarrays incur 
additional overhead for 
remote address lookup 

When possible, use symmetric 
coarray allocations. 

Improve performance of 
remote gets 

Cache coptrs to remote memory 

Avoid dmapp resource errors Explicitly register memory with PGAS 
Memory fragmentation using 
tcmalloc 

Preallocate memory to be managed 
by the application, using buddy 
allocator 

 

III. PERFORMANCE OF CGE VS. URIKA-GD 

Despite the changes in memory model, we have 
experienced generally improved performance with CGE on 
XC30/40 vs. Urika-GD.  The benchmark data presented here 
is for equal number of nodes of Urika-GD and on XC40.  
The test cases are the two most widely used SPARQL 
benchmarks, Lehigh University BenchMark (LUBM) [6] and 
SParql Performance Benchmark (SP2B) [7].  Performance 
on the LUBM benchmark concentrates primarily on the 
Basic Graph Pattern (BGP), which is very communications 
intensive and tests the efficiency of the parallelization.  
Figure 1 and Table 2 show execution times for LUBM25K 
on 64 nodes.  LUBM25K is a moderate-sized benchmark, 
around 3 billion quads.  Performance for the XC40 was 
generally superior to Urika-GD, particularly on the most 
complex query, query 9. 

 

  
 

Query number Urika-GD CGE-XC Speedup 

1 0.31 0.28 1.12 

2 8.66 1.66 5.22 

3 0.31 0.39 0.81 

4 0.68 1.14 0.59 

5 0.38 0.43 0.86 

6 1.11 0.13 8.79 

7 0.51 0.86 0.59 

8 1.61 0.97 1.66 

9 19.48 9.57 2.04 

10 0.31 0.40 0.77 

11 0.61 0.24 2.53 

12 1.15 0.43 2.69 

13 0.71 0.41 1.72 

14 0.85 0.13 6.67 

Table 2. LUBM25k comparison, 64 nodes 
 
Performance for a 4x larger benchmark, LUBM100k, is 

shown for 256 nodes in Figure 2 and Table 3.  Performance 
is roughly equivalent on query 9, but still better on simpler 
queries.  Additional optimizations to improve scaling are in 
development. 

 

Figure 1.  LUBM25k results on 64 nodes 



 

 

Query number Urika-GD CGE-XC Speedup 

1 0.35 0.28 1.25 

2 10.87 2.51 4.33 

3 0.36 0.36 1.00 

4 0.87 1.17 0.74 

5 0.42 0.40 1.05 

6 1.19 0.13 9.54 

7 0.64 0.98 0.65 

8 1.89 1.05 1.80 

9 27.68 27.79 1.00 

10 0.36 0.44 0.81 

11 0.72 0.24 2.95 

12 1.38 0.44 3.12 

13 1.00 0.42 2.39 

14 0.98 0.13 7.63 

Table 3. LUBM100k comparison, 256 nodes 
 
 
Performance on the SP2B benchmark is more dependent 

on the other SPARQL operators such as FILTER, 
DISTINCT and ORDER BY.  As such, it is less sensitive to 
communications and more sensitive to node compute power.  
Figure 3 and Table 4 show results for SP2B500m on 256 
nodes.   

 
 

 
 
 
 

 

Table 4. SP2B comparison, 256 nodes 
 
Performance is considerably better on the more powerful 

nodes of the XC40. 
 

IV. USER INTERFACE PORTING ISSUES 

In porting the database server from Urika-GD, which is a 
hardware appliance, to the XC30/40 platform we had to 
rethink our user interface paradigm.  The existing Urika-GD 
product is designed as an appliance so we provide a central 
management interface known as the Graph Analytics 
Manager (GAM) on top of the database server.  GAM 
provides users with access to various functionalities for both 
analytics and system administration depending on the users’ 
permissions.  Much of this functionality was designed 
around the appliance nature of the system i.e. it aimed to 
provide a single pane of glass for interacting with Urika-GD.  
As a result we knew there would only ever be one GAM 
instance running and we were therefore able to make a lot of 
assumptions about file system layout, network ports for 
communications, and how the user would interact with the 
system. 

In porting to XC30/40 it was clear that this paradigm was 
no longer appropriate for what was intended to become a 
user application.  Thus we needed to allow for potentially 
many instances of the software to be running on the system 
such that they wouldn’t interfere with each other.  This 
implied a number of design constraints for the port: 

 

 All components needed to be able to communicate 
on arbitrary ports that could be user specified 

 User interface needed to be much more lightweight 
and minimal than the Urika-GD interface 

 User interface needed to permit batch style 
interactions i.e. command line and potentially non-
interactive 

 
With these constraints in mind we designed a new user 

interface that is command line based with an optional 
minimalist web interface launched via the same command 
line.  This web interface is primarily needed to provide the 
ability for the port to be accessed via standard compliant 
SPARQL endpoints by any SPARQL capable tooling. 

Query number Urika-GD CGE-XC Speedup 

1 0.50 0.14 3.66 

2 14.05 5.31 2.65 

3 2.67 0.43 6.25 

4 173.80 76.57 2.27 

6 38.18 12.73 3.00 

7 85.75 50.93 1.68 

8 307.62 67.93 4.53 

9 4.41 0.79 5.59 

10 0.23 0.01 15.17 

11 4.98 1.39 3.57 

12b 292.89 67.87 4.32 

12c 0.21 0.03 8.16 

Figure 2.  LUBM100k results on 256 nodes 

Figure 3.  SP2B500m results on 256 nodes 



A. User Interface Components 

The user interface can be divided into two main 
functionalities: job launch and user interaction. These are 
provided by the cge-launch and cge-cli commands 
respectively. 

The cge-launch command is responsible for launching 
the CGE server and providing a well-known port to which 
the user interface can be connected.  The launcher is capable 
of interacting with various different job schedulers, currently 
SLURM and Torque/MOAB, with the ability to support 
other job schedulers in the future if necessary.  This allows 
the CGE server to be launched across XC30/40 systems 
configured with different job schedulers using a consistent 
command line interface.   Once the CGE server is launched 
the launcher detects the compute node host and port on 
which the server is listening and sets up forwarding from the 
user’s desired (and possibly externally visible) port to the 
internal host and port. 

After the CGE server is launched the cge-cli command 
(the Command Line Interface (CLI)) can be used to interact 
with it as desired.  This command provides multiple sub-
commands that can be used to perform different actions on 
the database including both analytic interactions (queries and 
updates) and administrative actions (configuration and 
shutdown).  Additionally as already noted it can be used to 
launch a web interface that provides standards compliant 
SPARQL endpoints [8] such that SPARQL aware tools can 
communicate with the database. 

The cge-cli command is designed to allow operation in 
both interactive and non-interactive modes.  In non-
interactive mode some functionality is more limited but it 
allows interactions with the CGE server to be incorporated 
into batch scripts as desired. 

 

B. Network Communications 

One limitation of the XMT platform is that it isn’t 
possible to do ad-hoc TCP/IP connections between the login 
and compute nodes due to the unique hardware and software 
kernel present on the compute notes.  Instead we use the 
Cray Lightweight User Communication (LUC) [9] library to 
create a persistent long-lived connection between GAM and 
the database server across which RPC calls could be made.  
In moving to the XC30/40 platform we were able to take 
advantage of a standard Linux OS with a standard TCP/IP 
and sockets stack that allowed us to rewrite portions of the 
communications between the UI and the database engine. 

Since portions of our existing RPC calls from Urika-GD 
already ship complex serialized data structures across the 
network for the XC30/40 platform we chose to wrap these 
existing data structures in a simple binary protocol.  This 
protocol reads and writes messages to and from the network 
using a compact header to instruct the receiver of the nature 
of the message.  Each message type is capable of carrying an 
appropriate payload that may be a binary data structure, 
command arguments or empty. 

The main complexity that this introduced in the port was 
the need to have a listening socket in a PGAS application 
where for the most part the images work in lock step.  We 

only needed one listening socket so it was necessary to 
architect the application such that only a single image would 
be responsible for managing the socket.  We chose to use 
Image 0 as our leader. We set up the socket there on 
application start up and then this image waits to receive 
messages from users.  The other images are blocked at a 
sync_all() waiting for Image 0 to reach it while Image 0 is 
waiting for messages.  On receipt of a message it validates 
the message and then proceeds to the sync_all() call; this 
wakes the other images and they then all proceed to process 
the message in parallel.  Finally Image 0 again becomes the 
sole process left running as it sends the appropriate response 
back to the user before proceeding to wait for the next 
message. 

C. Security 

Moving from an appliance to a user application also 
implied that users would manage the security of their own 
databases instead of relying on appliance administrators.  
This meant that we needed to consider how users would 
interact securely with their databases and how they would be 
able to grant access to their databases to other users. 

At the most basic level database security is managed via 
standard file system permissions.  A database lives in two 
locations on the system: the data directory and the results 
directory.  The data directory contains the database’s actual 
stored data in binary form while the results directory 
contains the results of queries made against the database. If 
Alice locks down the permissions on her data directory then 
Bob is not able to access that database.  This means that he 
cannot take a copy of the database nor can he start up a CGE 
server against that database. 

The results directory is usually a different directory and 
Alice may wish to allocate this directory or specific results 
files within it more open permissions in order to share results 
with other users.  However users must be careful in doing 
this because sharing some query results may be sufficient for 
another user to recreate his own version of the database. 

D. Securing Network Communications 

It should be clear to any sufficiently deviously minded 
reader that our initial approach to network communications 
had some security holes in it.  At first it was entirely possible 
for Bob to run commands against a database launched by 
Alice since we imposed no form of access controls.  This 
meant that Bob could unintentionally or maliciously interfere 
with Alice’s database e.g. adding/deleting data or accessing 
supposedly secure data.  Also since we were using plain 
socket communications any sufficiently privileged user 
could eavesdrop upon or perform man in the middle attacks 
on communications between any user and CGE server on the 
system. 

To address these issues we decided to wrap our 
communications protocol inside of an encryption based 
authenticated security protocol.  Of the various choices 
available the SSH protocol seemed like the one that would 
be most familiar to users as most would already have had to 
set up SSH access to Cray systems.  There were also library 
implementations of the SSH protocol available for both the 



server and client implementations making for easy 
integration.  Thus we implemented an SSH protocol 
transport as a secure wrapper around our own 
communications.   

Using this secure transport between CLI and server gives 
us several advantages: 

 

 The owner of a database can completely control 
what other users have access to his or her data via 
the CLI commands. 

 Connections from the CLI to the server simply fail to 
establish if the invoking user does not have an 
authorized identity key, 

 Connections are established without the use of 
passwords, making non-interactive use of the CLI 
possible, 

 Users are protected from eavesdropping, man-in-the-
middle, and other kinds of attacks at least on CLI to 
Server interactions. 

 Users are authenticated and identified by the 
protocol, so decisions can be made by the server 
based on who the requesting user is. 

 
To keep setup of our SSH transport simple from a user's 

point of view, we decided to use the existing ~/.ssh directory 
files already present for most users for basic authentication.  
If Alice only wants to be able to interact with her own 
database and is not interested in granting other users access, 
she need only make sure that her SSH keys are set up to 
allow her to use the ssh command to log into localhost.  With 
this configuration, Alice can be certain that no other user can 
connect a CLI command to her server, and she can connect 
CLI commands at will. 

 Going beyond this, if Alice decides to allow Bob access, 
she has a choice: 

 

 Grant access to all of my databases, 

 Grant access to only some of my databases. 
 
To grant Bob access to all databases, Alice can add Bob's 

public identity key to an authorized_keys file in her ~/.cge 
directory.  Bob will now be able to connect a CLI with any 
server launched by Alice. 

To grant Bob access to only one database, Alice can add 
Bob's public identity key to an authorized_keys file in the 
data directory containing the database she wants Bob to be 
able to use, and take Bob's public identity key out of the 
authorized_keys file in her ~/.cge directory.  Now Bob will 
only be allowed to connect to a server that is serving the 
database in that particular data directory.  Of course, Alice 
can add Bob's key to as many data directory authorized_keys 
files as she likes. 

Part of the SSH protocol is a mechanism allowing the 
server to authenticate itself to the client.  This requires the 
host to present a "Host Key" to the client, which the client 
verifies matches what is expected.  This allows a client to 
decline to talk to an untrusted server. 

In the simplest case, we solve this problem by using the 
SSH public identity key (taken from the user's ~/.ssh 
directory) of the user that launches CGE as the CGE server 
Host Key.  This should be sufficient in almost all cases, but 
there may be situations in which a user needs to use a CGE 
specific host key.  In that case, the user can use ssh-keygen 
to create a key-pair in his or her ~/.cge directory and that will 
be used instead. 

Recognition of the Host Key by a client is based on 
entries in the client's known_hosts file.  Conveniently, Host 
Keys for hosts on non-standard SSH ports are differentiated 
from other Host Keys from the same IP address by the 
TCP/IP port number used by the server.  This means that, as 
long as a user does not use the standard SSH port to serve 
access to a database, the normal SSH host key and the CGE 
host key can be different and coexist. 

The trusted server aspect of the SSH protocol is there to 
protect secrets that might be exchanged between the client 
and server against man-in-the-middle snooping, where a 
snooper is interposed as follows: 

 
             CLI <---> snooper <---> Server 
 
In this kind of attack, the snooper looks like an SSH 

server (but has the wrong host key) to the CLI and looks like 
an SSH client (using some other authorized public identity 
key) to the server.  The snooper is then free to look at clear-
text data, most notably user passwords, before passing traffic 
between the CLI and Server. 

Because of this SSH clients generally verify the host key 
and complain interactively when they don't recognize the 
server.  This means that the first connection with any new 
server must be made interactively, and, if the key changes 
subsequent connection attempts will fail.  For CGE, this 
potentially poses a challenge, in that Alice might choose to 
start her server on port 12345 today and on port 23456 
tomorrow.  This would require interactive re-validation of 
Alice's Host Key each time, which could become 
cumbersome. 

Fortunately, in the case of CGE, the security concern 
about man-in-the-middle attacks is greatly attenuated by two 
facts: 

 

 We do not allow the use of passwords for 
authentication, and 

 Any snooper must have been started by an already 
authorized user, who would already have any access 
that the CLI user would have, so there is no chance 
of unauthorized disclosure of database content 
through the snooper. 

 
This means that, while we have to use Host Keys to 

complete the SSH protocol, there is minimal need for server 
trust in our implementation.  Therefore the CLI may 
optionally be configured to automatically trust new host keys 
presented to it.  

The final advantage of using an authenticated protocol is 
that the identity of the user invoking the CLI command is 
known to the server in a way that cannot be spoofed.  This 



means that the server can use that identity to make security 
related decisions on behalf of the owner of the database.  
While our use of this is limited at present since we currently 
restrict shutting down a CGE server to the user who started 
the server, it opens up the possibility of more detailed 
security policies, all under control of the owner of a 
database, in the future. 

E. Leveraging Parallel IO 

On the Urika-GD platform the systems are attached to a 
fast parallel file system (usually Lustre), which is mounted 
on the system.  Parallel IO for input and output by the 
database server is achieved using the Cray libsnapshot 
library for XMT.  This handles dividing up the IO tasks 
across all XMT compute nodes and performing the IO in 
parallel through the appropriate service nodes. 

On the XC platform, access to fast parallel file systems is 
globally available on compute nodes through standard 
POSIX file operations.  This means we do not need the 
libsnapshot mechanism for IO.  Instead, when file IO is 
required, individual images on individual nodes can parcel 
out a large IO operation amongst themselves and do the IO 
directly in parallel. 

While this greatly simplifies parallel IO, it raises a 
concern about saturating available throughput between a 
compute node and the file system.  Since we run multiple 
images per node in the CGE server, and a single image has 
sufficient power to saturate the file system IO available to 
that node, if we allowed all of the images on the node to do 
parallel IO, the IO congestion would likely degrade IO 
throughput. 

To avoid congestion, we created the concept of an Image 
Group, in which all images residing on a given node are in 
the same group, and there is a group leader image, defined as 
the image with the lowest numbered image ID in the group.  
Using this construct, we are able to limit the IO on a given 
node to an image (the image group leader) and take 
advantage of locality to carry out all of the IO that would 
otherwise have been assigned to the other images in the 
group.  By taking this approach to parallel IO, we have been 
able to make use of available IO bandwidth. 

V. USE CASES ON XC30 / 40 

The benefit of having this advanced graph analytic 
capability as part of a large, multi-purpose computer system 
like the XC30/40 is the ability to enable complex, multi-step 
workflows on a single computer system, reducing data 
movement and decreasing time to solution. 

A good example of a multi-step workflow is the Institute 
for Systems Biology (ISB) drug repurposing analysis.  This 
analysis consisted of three highly compute-intensive steps.  
First, a Natural Language Processing (NLP) analysis was 
performed on the Medline literature database, using a 
thousand-node cluster.  Next, a Random Forest Classifier 
was applied to experimental genomic data from The Cancer 
Genome Atlas (TCGA), to quantify experimental 
relationships between genes in cancer.  This analysis was 
performed on 200,000 nodes of Google Compute.  The data 
from those two analyses was converted into RDF format and 

combined with other public RDF databases about known 
drugs and pathways and loaded into Urika-GD.  Urika-GD 
was used to discover new relationships amongst drugs, genes 
and pathways, and identify candidates for drug repurposing.  
It was successfully used to identify an HIV drug that may 
actually be effective against breast cancer. 

This analysis was performed on three different high 
performance computer systems, but with the advent of CGE 
they could all be performed on a single XC30/40 system. 

VI. CONCLUSIONS 

The Urika-GD semantic Graph database has successfully 
been ported to a new architecture, that of the XC30/40.  This 
was made possible by taking advantage of the Coarray C++ 
programming model available on the XC and its Aries 
network.  Performance on the XC30/40 is significantly 
improved over the XMT2-based Urika-GD, with the 
performance improvement varying with the nature of the 
benchmark query.  Further scaling work is planned, and 
improvement is certainly possible. 

Moving the semantic database from a dedicated 
appliance to a shared, batch scheduled HPC environment like 
the XC30/40 required a significant redesign of the user 
interface, as well as reworking of the security model.  
However, we believe that the Cray Graph Engine will prove 
to be extremely useful for large, mixed analytics workflows 
on HPC systems. 
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