
Porting the Urika-GD Graph Analytic Database to the XC30/40 Platform

Kristyn Maschhoff, Robert Vesse and James Maltby

Analytics R&D

Cray, Inc., Seattle, WA

{kristyn, rvesse, jmaltby}@cray.com

Abstract- The Urika-GD appliance is based on a state of the art

graph analytics database that provides high performance on

complex SPARQL queries. This performance is due to a

combination of custom multithreaded processors, a shared

memory programming model, and a unique high performance

interconnect.

We will present our work on porting the database and graph

algorithms to the XC30/40 platform. Coarray C++ was used to

provide a PGAS environment with a global address space, a

Cray-developed Soft Threading library was used to provide

additional concurrency for remote memory accesses, and the

Aries network provides RDMA and synchronization features.

We describe the changes necessary to refactor these algorithms

and data structures for the new platform.

Having this type of analytics database available on a general-

purpose HPC platform enables new use cases, and several will

be discussed. Finally we will compare the performance of the

new XC30/40 implementation to the Urika-GD appliance.

Keywords- Urika-GD; Multithreading; PGAS; Semantics;

SPARQL; RDF; XC30/40

I. INTRODUCTION

The Urika-GD appliance is a high performance semantic
graph database based on the industry-standard RDF graph
data format and the SPARQL graph query language. Urika-
GD, launched in 2012, is based on the Cray XMT2
multithreaded shared-memory supercomputer. For the
Urika-GD project we designed a high-performance graph
database query engine that took advantage of the XMT2’s
unique hardware architecture. This query engine has been
very successful, and offers the highest performance in the
industry on complex queries over graph-structured data.

In order to expand the use of this form of analytics across
Cray’s product line, we have ported the Urika-GD query
engine to the XC30/40 family of supercomputers. A new
user interface has also been designed to take best advantage
of the somewhat different operating environment. This new
package, referred to internally as Cray Graph Engine (CGE),
is nearing full functionality and we will present early
performance benchmarks against the existing Urika-GD.

The remainder of the paper is organized as follows. The
first section covers the Urika-GD appliance formulation and
data format. The second section describes the process of
porting the Urika query engine from XMT2 to XC in detail,

including discussion of the PGAS programming model. The
next section covers the relative performance data, followed
by a section describing the user interface changes necessary
for the XC environment. Finally, there is a description of
use cases.

A. What are SPARQL and RDF?

RDF (Resource Description Format) [1] is a data
representation first proposed by the World Wide Web
Consortium (W3C) in 1999. It was originally intended to
provide a flexible data representation for data across the
World Wide Web, but it has proven to be very useful for
description of any irregularly-connected data. The more
common “relational” data model used in most SQL
databases is based on tables, but RDF stores its data as a
labeled, directed multi-graph. As a consequence, its data
access patterns are very different than that of a standard SQL
database. The basic unit of data storage in RDF describes a
single graph edge and is referred to as a “quad,” since it has
four fields.

SPARQL is a query language designed to work with
RDF databases, and it is also a W3C standard [2]. It is
designed to look very similar to the well-known SQL query
language, but with features designed to work with graphs as
opposed to tables.

B. Basic Graph Patterns

The primary unit of search for the SPARQL query
language is the Basic Graph Pattern, or BGP, instead of the
row or column for tabular databases. A BGP consists of a
connected set of nodes and edges that form a small graph.
Names or types may be specified for some, all or none of the
nodes and edges in the BGP. Finding all the instances of a
BGP across a large graph is basically a subgraph
isomorphism problem. A SPARQL query always starts with
a BGP search, followed by additional filters, joins or other
operators.

C. Architectural issues with Graph analytics

Because the data in an RDF database is graph structured,
any node in the graph may share edges with any other set of
nodes distributed across the memory of the system. Nodes
may share edges with a few other nodes, or very highly
connected nodes may have hundreds or thousands of
immediate neighbors. This poses problems for distributed
memory systems, since communication of information across
the dataset is highly irregular, and may approach all-to-all for
tightly connected graphs. Also, domain decomposition of

graph data for load balancing is an unsolved problem in
general.

D. Shared Memory Implementation

The ideal platform for a graph database of this type is a
shared memory system with fast uniform access to all
memory locations in the system. Luckily the Cray XMT /
XMT2 provides this type of memory model. The
Threadstorm processors on the XMT2 use a latency hiding
technique [3] to create a large shared memory pool out of all
of the compute node memory of the entire system, even
though it is actually physically distributed. Thus, for the
Urika-GD version of the database the graph is stored in a
single largely one-dimensional data structure that spans the
entire memory of the machine. Since memory access is
effectively uniform, there is no need to partition or organize
the graph for performance reasons.

E. Multithreading on the XMT

Because the search for BGPs is a highly parallel process,
it is also desirable to have a high level of parallelism. The
Threadstorm processors offer 128 hardware streams per
node, and software threads may be allocated to the streams
as needed. Since system sizes typically range from 64 to 512
nodes, thousands to tens of thousands of software threads
may be employed for a given BGP search. This high level of
parallelism is also useful for the other SPARQL functions.

II. PORTING THE URIKA-GD BACK END QUERY ENGINE

TO XC

The Urika-GD back end query engine, which today runs
on the Cray XMT2 architecture, performs several functions.
First, the query engine is responsible for reading RDF,
translating it into its memory-resident representation of the
database, and writing the database to disk. Second, the query
engine is able to read in a previously compiled database from
disk in order to build its memory-resident database image.
Third, it must accept SPARQL queries from the front end,
evaluate them against the memory-resident database, and
return the results to the front end. Fourth, it must accept
SPARUL (SPARQL Update) commands from the front end
and update the memory-resident database according to those
commands. Finally, it must accept a checkpoint command
from the front end and write the database to disk.

Although our initial porting focus was on being able to
load in the database and run some basic SPARQL queries,
each of the functions of the query engine mentioned above
provided some unique challenges.

A. Background on Porting Effort and Early Investigations

As part of our early investigations into the feasibility of
porting the Urika-GD appliance to the XC30, we studied two
different approaches for porting the back-end query engine
(the portion which today runs on the XMT2 architecture).
The first was a “Soft-XMT approach” where we used an
experimental memory domain library layer with soft-threads
to emulate the shared memory programming environment of
the XMT on the XC30. The second was an approach where
we instead would rewrite the existing application to use a

more standard HPC programming methodology, taking
advantage of the global address space provided on the XC30
and the synchronization features of the Aries network. The
advantage of the Soft-XMT approach would be minimal
code changes from the existing Urika-GD query engine code
base running on Cray XMT2 hardware today. As the pace of
code development for Urika-GD was still very active, being
able to either quickly pull over changes, or possibly maintain
a single code base for both platforms, was highly desirable.

As a graph analytics application, maintaining optimal
network performance for small word remote references, both
puts and gets, was essential, thus we knew we wanted to
leverage the low-level DMAPP library communication layer.
Communication aspects of the query engine backend are
similar to GUPS in many ways. The focus for the feasibility
study was on the Basic Graph Patten (BGP) of the query
engine. Initially we just extracted a time-dominant kernel of
BGP in the Merge step described later and wrote both UPC
and Coarray C++ implementations of this kernel. At the time
we started our early investigation, the Coarray C++ project
was also in early development as well. Although initially we
were able to achieve better performance using UPC, working
with Cray’s compiler team, we were able to eventually
match UPC performance using Coarray C++. Converting the
full Urika-GD application, which is predominantly C++, to
use UPC, would have been an unwelcome challenge.

We were then able to compare performance for this
simple kernel extraction to our “Soft-XMT” approach. One
important observation we made at this point was that using a
PGAS distribution of our internal data structures, we could
very much benefit from locality, reducing the total number of
remote references by as much as 75% for this simple kernel.
The performance that could be gained by exposing locality
led us to select Coarray C++ method over the “Soft-XMT”
approach. This required more significant modifications to the
Urika-GD source code, but in practice it turned out to be
limited to a manageable number of sections. The Coarray
C++ model provided us with the performance advantages of
the low-level DMAPP communication layer (used indirectly
via the PGAS library) and also the ability to take advantage
of locality when available.

B. Coarray C++

The back end query engine of CGE is written as a
distributed application using Coarray C++ as the underlying
distribution mechanism. Coarray C++ is a C++ template
library that runs on top of Cray's Partitioned Global Address
Space (PGAS) library (libPGAS) and permits multiple
processes (images) on multiple compute nodes to share data
and synchronize operations. libPGAS is an internal Cray
library supporting the Cray compiler, built on top of
DMAPP. [4]

The sharing of data occurs using a symmetric heap,
which is a virtual address space that is logically shared
across all images. The logical sharing of the symmetric heap
results in C++ symbols that refer to the same virtual address
within the symmetric heap on all images. This implies that
the order in which symmetric heap allocations are made is
strictly ordered the same way across all images and that the

size of allocations is strictly agreed upon across all images as
well. In CGE we utilize both symmetric and asymmetric
allocations for managing distributed data structures.
Dynamically sized symmetric allocations, where all images
allocate the same amount of memory from the symmetric
heap in a collective manner, provide optimal performance.
However, for memory saving considerations we also use
coarrays of pointers, which then allow images to allocate
memory independently (asymmetric allocations). In these
situations the allocated memory is not likely to be located at
the same address within every image’s address space.

C. Query Engine Execution model

The coarray model of parallelism, at least at a high level,
is a Single Program Multiple Data (SPMD) model. An
advantage, from a program simplicity standpoint, of the
SPMD model is that each image can be seen as executing
serial code. This model turns out to be a good match to the
current query engine execution model.

When the query engine receives a query, the query is first
translated into a list of operators. We refer to this list as the
“dispatcher list”. It is a sequence of query engine operations,
in Reverse Polish Notation order, to be performed by the
query engine. Note that the sequential dispatcher list
represents a design decision we made early on in XMT
development not to parallelize any of the SPARQL operators
at this level. For large-scale datasets, our assessment was that
the overwhelmingly large source of parallelism would be
data parallelism. Accordingly, each dispatched operator is
implemented as a data parallel operation.

The dispatcher uses a simple stack to hold intermediate
results between operations. We hold these intermediate
results in Intermediate Results Arrays (IRAs). With the
exception of Scan, which searches the database for matches
to one or more quad patterns, all of the query engine
operators input one or more IRAs, by popping them off the
stack, and return one IRA, pushing it onto the stack. Every
image holds an identical copy of the dispatcher list in local
memory, and each image holds a distinct chunk of the IRA
data locally.

The following class definition of the iResultArray class
shows how we use coarrays to distribute the set of candidate
solutions over images:

Note that we use a coarray of pointers to store only the
address of solHuris so that each image allocates only enough
memory to hold the solutions it has been assigned.

Since we rely on data parallelism to maintain load
balance, we periodically rebalance solutions within an IRA.
The iResultArray class provides a rebalance operator which
first rebalances solutions amongst images residing on the
same physical node, and if still necessary, re-distributes
solutions across all images.

The memory resident database consists of two primary
global class objects, the dictionary and the DBase. The
dictionary supports mapping between strings in the database
to our internal integer representation. We refer to these
integer representations as hashed URIs (HURIs). The
Database class stores the RDF dataset in a more compressed
and efficient format. The RDF data is represented as a set of
graphs, where each graph contains the quads belonging to
that graph

We use distributed hash tables for storing the dictionary
and the Database. These will be described in more detail in a
later section.

D. Optimizing communication over the network

The Basic Graph Pattern (also referred to as Quadpattern)
consists of a sequence of three operations: Scan, Join, and
Merge.

In the Scan step, we create an IRA for each query quad in
the Quadpattern by searching through the local portion of the
database residing on that image. Communication between
images is only needed to balance the solutions across images.

To illustrate a common communication pattern found in
multiple places in CGE, we will describe the Join operation
in more detail. In the Join phase, we attempt to reduce the
size of the IRAs returned by the Scan phase by comparing
the variable bindings across multiple IRAs. For each
unbound variable (UBV) that appears in multiple IRAs, we
determine which HURIs are valid for that UBV. To be valid,
a HURI must appear in at least one solution of all IRAs that
contain that UBV.

To check for validity we use two integer arrays, masterA
and tempA, which are globally distributed over all images.
For simplicity assume these arrays are indexed by HURI. We
initialize each element of masterA to 1 and each element of
tempA to 0. We then update tempA by walking through the
list of solutions, loading the HURI corresponding to a
particular UBV (ubv_idx), and using this as an index to
update the element of tempA. Here we use a simple block
distribution for the IRA solutions so that we can easily
compute which image and offset to write to.

class iResultArray {
 public:
 int64_t global_numSolutions;
 coarray<int64_t> local_numSolutions;
 int64_t numUBV;
 int64_t* UBVlist;
 coarray<int64_t*> /* restrict */ solHuris;
…
}

 for (i = 0; i < this_ira->local_numSolutions; i++) {

 int64_t huri = this_ira->loadHuriElt(i, ubv_idx);

 int64_t image = huri / maxV_image;

 int64_t index = huri % maxV_image;

 tempA(image)[index]=1;

 }

 sync_all();

 …

c_a

The call to the barrier sync_all() ensures that all puts
have completed on all images. As written, this loop
optimally issues non-blocking put operations using calls to
libPGAS operations.

This is all managed in the Cray coarray_cpp.h template
file. From a network performance standpoint, we use the
desired non-blocking implicit (nbi) variants of the remote put
operations, relying on the dmapp library optimizations. The
above put operations use calls to the internal __pgas_put_nbi
which directly uses the corresponding optimized
dmapp_put_nbi operation.
A further optimization, used in multiple places throughout
the CGE code base, is to first use local hashing to aggregate
data to minimize network communication. The level of
improvement obtained by first hashing locally is data
dependent in terms of the relative size of the resulting
number of local_keys compared to the local_numSolutions.
The advantage is the smaller number of remote puts.

Following the sync_all(), we then iterate over tempA,
and when this is not set to 1, we set the corresponding
element of masterA to 0. Since we apply the same
distribution to the masterA and tempA arrays, the load of
tempA and the store to masterA are local operations on each
image. Each image iterates over the HURI indexes assigned

to that image.
Once this process is complete for each IRA, each element

of masterA is set if the HURI is present in all IRAs or
cleared otherwise. The last step is to iterate through each
solution of each IRA. Any solution with a HURI that is not
valid according to masterA is marked for deletion.
This requires a remote lookup of the elements of masterA for
each of the HURIs in the local list of keys. In order to have
these remote get operations performed using the desired non-
blocking implicit get operations, we needed to explicitly call
the get member function which uses __pgas_get_nbi and
then use atomic_image_fence() which makes sure the get

requests have completed. To fully benefit from using get_nbi
operations, we also need concurrency. For this simple

example, we simply use blocking so that each image can
issue block_size get_nbi operations and then wait at a fence
for these to complete. We then store the results from the
remote lookup of masterA values into a local hash table for
later use.

In this simple code example for Join, exposing the
concurrency for remote gets could easily be achieved
without using multi-threading. In fact, in simple situations
like these, we just use a simple loop blocking technique as
shown above. Software emulation of multi-threading
becomes necessary when the individual get requests occur in
deeply nested function calls.

E. Coupling Coarray C++ with a lightweight threading

layer

The lightweight threading technology we use originally
comes from the work of the Cray Chapel development team
[5].

We have modified this for our own use such that each
image starts up and maintains its own lightweight thread
runtime. Each image independently generates concurrency
by having each thread initiate a context switch following
following any remote non-blocking get operation. At the
node level the Cray dmapp library provides further
optimization when scheduling these gets onto the network.

We have extended the Cray compiler-provided
coarray_cpp.h template file to include additional member
functions to allow us to issue a pgas_get_nbi call followed

key_list = local_table->get_keys(&num_local_keys);

int64_t* key_flags = (int64_t*)

 cqe_malloc(num_local_keys * sizeof(int64_t));

 for (i = 0; i < num_local_keys; i += BLK) {

 int64_t blk_size = BLK;

 if(i+BLK > num_local_keys - 1)

 blk_size = num_local_keys - i;

 for (int64_t k = 0; k < blk_size; k++) {

 int64_t huri = key_list[i+k];

 int64_t image = huri / maxV_image;

 int64_t index = huri % maxV_image;

 masterA(image)[index].get(&key_flags[i+k]);

 }

 atomic_image_fence();

 }

// Use key_flags to insert value into hash table for later

// lookup by huri

for (i = 0; i < num_local_keys; i++) {

 if(key_flags[i] == 1){

 local_table->set_data(key_list[i],key_flags[i]);

 }

 }

 IntHashTablel *local_table;

 local_table = cqe_new(IntHashTable,

 this_ira->local_numSolutions);

 for (i = 0; i < this_ira->local_numSolutions; i++) {

 int64_t huri = this_ira->loadHuri(

 i, ubv_idx);

 (void) local_table->insert(huri);

 }

 int64_t num_local_keys;

 int64_t* key_list;

 key_list = local_table->get_keys(&num_local_keys);

 for (i = 0; i < num_local_keys; i++) {

 int64_t huri = key_list[i];

 int64_t image = huri / maxV_image;

 int64_t index = huri % maxV_image;

 tempA(image)[index]=1;

 }

 sync_all();

by either a thread context switch or a thread specific fence.
Here instead of using the original get(), one would then use a
get_switch().

For example, here are additional functions we added to
the coarray_cpp.h file.

We needed a mechanism to be able to identify regions of
code where we require multiple threads running in order to
provide concurrency for deeply nested get() calls. This was
accomplished by retargeting an existing OpenMP pragma
recognized by the Cray compiler controlled via an
environment variable.

Here is an example of how we have invoked threading in
the function Order used to implement the SPARQL ORDER
BY operation. We use threading here since this uses an
get_switch() as part of fetching the solution HURIs.

FILTER and GROUP operations also make use of the
threading layer in places where the individual get requests
are buried deep in long call chains.

F. Extending/customizing Coarray C++ template files

For CGE we start with the coarray_cpp.h template file
provided with the Cray compiler, but we have customized
this to better suit our application requirements. In addition to
adding threading specific member functions, we added
othermember functions such as mget to simplify the syntax
for multi-word gets. Another extension was to provide new
member functions to allow vanilla loads and stores for
coatomics so that we could make these loads and stores more
lightweight in regions where we knew these values were not
being updated.

G. Distributed Hash Tables

Probably the most utilized and important data structures
in CGE are the various distributed hash tables. We use
distributed string hash tables for storing the dictionary. We
use distributed multi-word integer hash tables for storing the
quads associated with each graph to allow enable fast
insertions and deletions of quads. Distributed hash tables are
also used to store expression results computed during the
course of evaluating a query. Similar to the string dictionary,
which maps strings to HURIs, we need to be able to
efficiently map expression results to HURIs and HURIs to
expression results.

 One illustrative example is the application of the
SPARQL operator DISTINCT which is used to remove
duplicate solutions. The back-end query engine
implementation of Distinct takes as input an IRA, removes
duplicate entries while preserving the order of the remaining
entries, and returns an IRA with the duplicates removed.

The basic strategy is to hash the solutions into a hash
table, and note when we try to insert into the same location.
A solution consists of a row of the IRA with the number of
columns matching the number of variables. Since we need to
preserve order, we insert both the key (multi-word key with
the number of words being the number of variables in the
IRA) and user data for each key. Here the user data keeps
track of the original ordering.

The DistMwordHashTable class (Distributed Multi-word
Hash Table) is an extension of our simplest DistHashTable
(Distributed Hash Table) class. When an image inserts data
(key, user data) into the global hash table, the image first
inserts the data into a local table. Based on the key, a home
image for that key is determined by the hash function. When
the DistMwordHashTable sync() operator is called, the (key,
user data) records are sorted into buckets based on the home
image they belong to. Using coarrays, we communicate the
number of keys each home node will receive from all of the
other images, the pointers to the sorted keys and the sorted
data, and the starting offsets. Each home image is then able
to pull data from the other images and insert the keys into the
global hash table. On the home image, we use double-
buffering and non-blocking gets to overlap the insertion of
one block of keys with the fetching of the next block of keys
to insert. In the case where we have user data, if a key was

static void softthreads_switch_fence(void) {

 static int any_outstanding = 0; // global to all softthreads

 any_outstanding = 1; // we just came from get/put_nbi()

 softthreads_switch(); // switch to next softthread

 if (any_outstanding == 1) {

 // still something out on network;

 atomic_image_fence();

 any_outstanding = 0; // anything out on network

 // is now back

 }

 softthreads_switch(); // allow other threads to return and

 // skip the atomic_image_fence()

}

void get_switch(pointer p, int64_t length){

 internal::__pgas_get_nbi(p, m_image, m_addr, sizeof(
value_type));

 softthreads_switch_fence();

}

#pragma omp parallel for schedule(static)

 for(int64_t i = 0; i < num_solns; i++) {

 int64_t tmp_offset =

 get_expr_offset(&sort_keys[(i*num_keys)]);

 int64_t image = tmp_offset / max_local_solns;

 int64_t image_offset = tmp_offset % max_local_solns;

 int64_t new_soln_offset = i * num_soln_vars;

 // Fetch the huris for this solution and store them

 // into the soln_huris.

 fetch_soln_huris(in_ira, image, image_offset,

 num_soln_vars, sol_huris_ptrs,

 &soln_huris[new_soln_offset]);

 }

not inserted (it was previously inserted), we update the user
data for this key on the image sending the key with the data
from the key already present in the table. This is done using
non-blocking puts of the data from the home image back to
the remote image.

H. How this is used in our implementation of DISTINCT

The first step is to allocate a multi-word global hash table
using the DistMwordHashTable class with the total (global)
number of solutions and the number of variables present.
One requirement for using the global hash table classes is
that all images need to be involved when calling the
constructors, destructors, and sync operations. Insertions
prior to the global sync and lookup operations can be
performed independently.

The global hash table includes a local host insertion table
so that insertions are first hashed locally. This allows us to
remove duplicates during the insert step before we sync with
the other images, and before we send keys/data to the
appropriate destinations.

The DistMwordHashTable class operator sync() is used

to synchronize the local hash table with all the other images.
This updates the global hash table, and then updates the user
data, writing updated data back to into the local tables using
remote Put operations. We use the updated user data to
determine, in the case of duplicates, which of the solutions
we keep based on which solution was inserted into the global
hash table first.

Most of the interesting work and communication

between images is handled within the sync() operation. Prior
to pulling the local keys/data to their appropriate destination
in the global hash table, we first sort the keys based on which
image will receive them. We use symmetric dynamically
sized coarrays to communicate the number of keys on each
image and the starting location for each image to starting
reading data.

We also save the pointers to the sorted keys and the
sorted data in coarrays to allow the home image for these
keys to access these since the number of keys to insert on
each image may vary between images.

 We have found that explicitly registering memory
(registering the base address along with the full extent of the
data that will be accessed remotely) avoids dmapp memory
registration errors of the form:

The registration currently uses an internal PGAS library

registration function. It is helpful to register the base address
and its extent with the PGAS library. This allows remote
images to access offsets within that memory without
registering the specific memory location each time. This
helps prevent running out of resources for registering
memory and can improve the performance of the remote
accesses.

We create a staggered ordering of images when getting

the remote keys to insert into the home image hash table. We
do this to avoid network contention so that all images do not
all try to read data from the same image at the same time.

The DistMwordHashTable::get_next_keys member
function fetch the data. This function issues non-blocking
gets to allow overlap for fetching the next block of keys. It is
up to the caller of this function to make sure the gets
complete before using the fetched data.

One note on using this approach is that the allocation of
the coptrs used to point to the remote addresses where we are
to read from on the remote image is done in the caller, and
these coptrs are passed into the function. This is necessary to
make sure the coptr lives past the point where the non-
blocking get completes (until atomic_image_fence() is
called).

I. Summary of PGAS Porting Issues/Recommendations

CGE utilizes hugepages to better support the random
small word communication patterns which are typical in
graph analytics applications. We also turn off software
ordering in the PGAS library in order to improve the
performance of small-word puts and gets. This is done with
some care, as the user is then responsible for making sure
any ordering constraints are handled explicitly.

for (int64_t soln=0; soln < numSols; soln++) {

 /* Insert mword key (huri) into global hash table*/

 int64_t* key = &theseHuris[soln*numUBV];

 int64_t soln_id = soln + soln_start;

 global_hash.insert(key,soln_id);

 }

 global_hash.sync();

coarray<int64_t []> image_key_counts(num_images());

coarray<int64_t []> image_key_starts(num_images());

coarray<int64_t *> sorted_keys(tmp_sorted_keys);
coarray<ght_user_data_t *> sorted_data(tmp_sorted_data);

ERROR: dmapp_mem_register(const_cast<void*>(addr),

length, desc): The operation could not be completed due to

insufficient resources.

completed due to insufficient resources.

 __pgas_register(tmp_sorted_keys, (num_keys *

 m_nwords * sizeof(int64_t)));

 if(m_have_user_data) {

 __pgas_register(tmp_sorted_data, (num_keys *

 sizeof(ght_user_data_t)));

 }

An additional parameter when running CGE on XC is
managing the size of the symmetric heap. Although the
launcher (cge-launch) sets this to a default value based on the
amount of memory on the node and the number of images
assigned to each node, depending on the size of the database
and the memory requirements of the queries to be run, this
may need to be adjusted explicitly as well.

The application dynamically allocates and frees blocks of
memory of various sizes. With many images on each node
competing for the same resources, this can be stressful for a
parallel allocator. The default allocator, tcmalloc, was
designed for performance. Unfortunately, the observed cost
of this performance is that it can fragment memory in the
face of many large (~32MiB +) allocation and free requests.

 Two alternative allocators were tried: the system
allocator from glibc and jemalloc. Neither of these allocators
exhibits the fragmentation issues seen with tcmalloc, but
they can be slower. Some queries took twice as long to
evaluate. Other query evaluations were usually comparable
to the tcmalloc implementation, but were occasionally
significantly slower. Keeping in mind that the application
tries to keep the data load-balanced among images, we chose
to pre-allocate a fraction of available memory on each image.
This memory is managed by a simple buddy allocator. Since
each image has its own buddy allocator, the implementation
is lock-free. Currently, the buddy allocator is used for larger
allocations but tcmalloc is still used for smaller ones. While
buddy allocators have a certain amount of internal
fragmentation, this design is very effective at returning
memory to its fully coalesced state after each query. At the
same time, its performance is comparable to tcmalloc.

Table 1 PGAS Porting Recommendations

Issue Recommendation
Improve performance of
remote PUTs and GETs

Disable SW Ordering by setting the
environment variable
setenv PGAS_NO_SW_ORDERING 1
Any ordering constraints must be
handled explicitly by the user.

Increase concurrency for
remote GETs

Issue multiple non-blocking
operations before issuing an
image_fence

Expose concurrency for
remote GETs in deeply nested
calls

Using lightweight threading layer to
increase the number of non-blocking
GETs issued.

Reduce latency due to
waiting on GET requests to
complete

Overlap computation and
communication

Asymmetric coarrays incur
additional overhead for
remote address lookup

When possible, use symmetric
coarray allocations.

Improve performance of
remote gets

Cache coptrs to remote memory

Avoid dmapp resource errors Explicitly register memory with PGAS
Memory fragmentation using
tcmalloc

Preallocate memory to be managed
by the application, using buddy
allocator

III. PERFORMANCE OF CGE VS. URIKA-GD

Despite the changes in memory model, we have
experienced generally improved performance with CGE on
XC30/40 vs. Urika-GD. The benchmark data presented here
is for equal number of nodes of Urika-GD and on XC40.
The test cases are the two most widely used SPARQL
benchmarks, Lehigh University BenchMark (LUBM) [6] and
SParql Performance Benchmark (SP2B) [7]. Performance
on the LUBM benchmark concentrates primarily on the
Basic Graph Pattern (BGP), which is very communications
intensive and tests the efficiency of the parallelization.
Figure 1 and Table 2 show execution times for LUBM25K
on 64 nodes. LUBM25K is a moderate-sized benchmark,
around 3 billion quads. Performance for the XC40 was
generally superior to Urika-GD, particularly on the most
complex query, query 9.

Query number Urika-GD CGE-XC Speedup

1 0.31 0.28 1.12

2 8.66 1.66 5.22

3 0.31 0.39 0.81

4 0.68 1.14 0.59

5 0.38 0.43 0.86

6 1.11 0.13 8.79

7 0.51 0.86 0.59

8 1.61 0.97 1.66

9 19.48 9.57 2.04

10 0.31 0.40 0.77

11 0.61 0.24 2.53

12 1.15 0.43 2.69

13 0.71 0.41 1.72

14 0.85 0.13 6.67

Table 2. LUBM25k comparison, 64 nodes

Performance for a 4x larger benchmark, LUBM100k, is

shown for 256 nodes in Figure 2 and Table 3. Performance
is roughly equivalent on query 9, but still better on simpler
queries. Additional optimizations to improve scaling are in
development.

Figure 1. LUBM25k results on 64 nodes

Query number Urika-GD CGE-XC Speedup

1 0.35 0.28 1.25

2 10.87 2.51 4.33

3 0.36 0.36 1.00

4 0.87 1.17 0.74

5 0.42 0.40 1.05

6 1.19 0.13 9.54

7 0.64 0.98 0.65

8 1.89 1.05 1.80

9 27.68 27.79 1.00

10 0.36 0.44 0.81

11 0.72 0.24 2.95

12 1.38 0.44 3.12

13 1.00 0.42 2.39

14 0.98 0.13 7.63

Table 3. LUBM100k comparison, 256 nodes

Performance on the SP2B benchmark is more dependent

on the other SPARQL operators such as FILTER,
DISTINCT and ORDER BY. As such, it is less sensitive to
communications and more sensitive to node compute power.
Figure 3 and Table 4 show results for SP2B500m on 256
nodes.

Table 4. SP2B comparison, 256 nodes

Performance is considerably better on the more powerful

nodes of the XC40.

IV. USER INTERFACE PORTING ISSUES

In porting the database server from Urika-GD, which is a
hardware appliance, to the XC30/40 platform we had to
rethink our user interface paradigm. The existing Urika-GD
product is designed as an appliance so we provide a central
management interface known as the Graph Analytics
Manager (GAM) on top of the database server. GAM
provides users with access to various functionalities for both
analytics and system administration depending on the users’
permissions. Much of this functionality was designed
around the appliance nature of the system i.e. it aimed to
provide a single pane of glass for interacting with Urika-GD.
As a result we knew there would only ever be one GAM
instance running and we were therefore able to make a lot of
assumptions about file system layout, network ports for
communications, and how the user would interact with the
system.

In porting to XC30/40 it was clear that this paradigm was
no longer appropriate for what was intended to become a
user application. Thus we needed to allow for potentially
many instances of the software to be running on the system
such that they wouldn’t interfere with each other. This
implied a number of design constraints for the port:

 All components needed to be able to communicate
on arbitrary ports that could be user specified

 User interface needed to be much more lightweight
and minimal than the Urika-GD interface

 User interface needed to permit batch style
interactions i.e. command line and potentially non-
interactive

With these constraints in mind we designed a new user

interface that is command line based with an optional
minimalist web interface launched via the same command
line. This web interface is primarily needed to provide the
ability for the port to be accessed via standard compliant
SPARQL endpoints by any SPARQL capable tooling.

Query number Urika-GD CGE-XC Speedup

1 0.50 0.14 3.66

2 14.05 5.31 2.65

3 2.67 0.43 6.25

4 173.80 76.57 2.27

6 38.18 12.73 3.00

7 85.75 50.93 1.68

8 307.62 67.93 4.53

9 4.41 0.79 5.59

10 0.23 0.01 15.17

11 4.98 1.39 3.57

12b 292.89 67.87 4.32

12c 0.21 0.03 8.16

Figure 2. LUBM100k results on 256 nodes

Figure 3. SP2B500m results on 256 nodes

A. User Interface Components

The user interface can be divided into two main
functionalities: job launch and user interaction. These are
provided by the cge-launch and cge-cli commands
respectively.

The cge-launch command is responsible for launching
the CGE server and providing a well-known port to which
the user interface can be connected. The launcher is capable
of interacting with various different job schedulers, currently
SLURM and Torque/MOAB, with the ability to support
other job schedulers in the future if necessary. This allows
the CGE server to be launched across XC30/40 systems
configured with different job schedulers using a consistent
command line interface. Once the CGE server is launched
the launcher detects the compute node host and port on
which the server is listening and sets up forwarding from the
user’s desired (and possibly externally visible) port to the
internal host and port.

After the CGE server is launched the cge-cli command
(the Command Line Interface (CLI)) can be used to interact
with it as desired. This command provides multiple sub-
commands that can be used to perform different actions on
the database including both analytic interactions (queries and
updates) and administrative actions (configuration and
shutdown). Additionally as already noted it can be used to
launch a web interface that provides standards compliant
SPARQL endpoints [8] such that SPARQL aware tools can
communicate with the database.

The cge-cli command is designed to allow operation in
both interactive and non-interactive modes. In non-
interactive mode some functionality is more limited but it
allows interactions with the CGE server to be incorporated
into batch scripts as desired.

B. Network Communications

One limitation of the XMT platform is that it isn’t
possible to do ad-hoc TCP/IP connections between the login
and compute nodes due to the unique hardware and software
kernel present on the compute notes. Instead we use the
Cray Lightweight User Communication (LUC) [9] library to
create a persistent long-lived connection between GAM and
the database server across which RPC calls could be made.
In moving to the XC30/40 platform we were able to take
advantage of a standard Linux OS with a standard TCP/IP
and sockets stack that allowed us to rewrite portions of the
communications between the UI and the database engine.

Since portions of our existing RPC calls from Urika-GD
already ship complex serialized data structures across the
network for the XC30/40 platform we chose to wrap these
existing data structures in a simple binary protocol. This
protocol reads and writes messages to and from the network
using a compact header to instruct the receiver of the nature
of the message. Each message type is capable of carrying an
appropriate payload that may be a binary data structure,
command arguments or empty.

The main complexity that this introduced in the port was
the need to have a listening socket in a PGAS application
where for the most part the images work in lock step. We

only needed one listening socket so it was necessary to
architect the application such that only a single image would
be responsible for managing the socket. We chose to use
Image 0 as our leader. We set up the socket there on
application start up and then this image waits to receive
messages from users. The other images are blocked at a
sync_all() waiting for Image 0 to reach it while Image 0 is
waiting for messages. On receipt of a message it validates
the message and then proceeds to the sync_all() call; this
wakes the other images and they then all proceed to process
the message in parallel. Finally Image 0 again becomes the
sole process left running as it sends the appropriate response
back to the user before proceeding to wait for the next
message.

C. Security

Moving from an appliance to a user application also
implied that users would manage the security of their own
databases instead of relying on appliance administrators.
This meant that we needed to consider how users would
interact securely with their databases and how they would be
able to grant access to their databases to other users.

At the most basic level database security is managed via
standard file system permissions. A database lives in two
locations on the system: the data directory and the results
directory. The data directory contains the database’s actual
stored data in binary form while the results directory
contains the results of queries made against the database. If
Alice locks down the permissions on her data directory then
Bob is not able to access that database. This means that he
cannot take a copy of the database nor can he start up a CGE
server against that database.

The results directory is usually a different directory and
Alice may wish to allocate this directory or specific results
files within it more open permissions in order to share results
with other users. However users must be careful in doing
this because sharing some query results may be sufficient for
another user to recreate his own version of the database.

D. Securing Network Communications

It should be clear to any sufficiently deviously minded
reader that our initial approach to network communications
had some security holes in it. At first it was entirely possible
for Bob to run commands against a database launched by
Alice since we imposed no form of access controls. This
meant that Bob could unintentionally or maliciously interfere
with Alice’s database e.g. adding/deleting data or accessing
supposedly secure data. Also since we were using plain
socket communications any sufficiently privileged user
could eavesdrop upon or perform man in the middle attacks
on communications between any user and CGE server on the
system.

To address these issues we decided to wrap our
communications protocol inside of an encryption based
authenticated security protocol. Of the various choices
available the SSH protocol seemed like the one that would
be most familiar to users as most would already have had to
set up SSH access to Cray systems. There were also library
implementations of the SSH protocol available for both the

server and client implementations making for easy
integration. Thus we implemented an SSH protocol
transport as a secure wrapper around our own
communications.

Using this secure transport between CLI and server gives
us several advantages:

 The owner of a database can completely control
what other users have access to his or her data via
the CLI commands.

 Connections from the CLI to the server simply fail to
establish if the invoking user does not have an
authorized identity key,

 Connections are established without the use of
passwords, making non-interactive use of the CLI
possible,

 Users are protected from eavesdropping, man-in-the-
middle, and other kinds of attacks at least on CLI to
Server interactions.

 Users are authenticated and identified by the
protocol, so decisions can be made by the server
based on who the requesting user is.

To keep setup of our SSH transport simple from a user's

point of view, we decided to use the existing ~/.ssh directory
files already present for most users for basic authentication.
If Alice only wants to be able to interact with her own
database and is not interested in granting other users access,
she need only make sure that her SSH keys are set up to
allow her to use the ssh command to log into localhost. With
this configuration, Alice can be certain that no other user can
connect a CLI command to her server, and she can connect
CLI commands at will.

 Going beyond this, if Alice decides to allow Bob access,
she has a choice:

 Grant access to all of my databases,

 Grant access to only some of my databases.

To grant Bob access to all databases, Alice can add Bob's

public identity key to an authorized_keys file in her ~/.cge
directory. Bob will now be able to connect a CLI with any
server launched by Alice.

To grant Bob access to only one database, Alice can add
Bob's public identity key to an authorized_keys file in the
data directory containing the database she wants Bob to be
able to use, and take Bob's public identity key out of the
authorized_keys file in her ~/.cge directory. Now Bob will
only be allowed to connect to a server that is serving the
database in that particular data directory. Of course, Alice
can add Bob's key to as many data directory authorized_keys
files as she likes.

Part of the SSH protocol is a mechanism allowing the
server to authenticate itself to the client. This requires the
host to present a "Host Key" to the client, which the client
verifies matches what is expected. This allows a client to
decline to talk to an untrusted server.

In the simplest case, we solve this problem by using the
SSH public identity key (taken from the user's ~/.ssh
directory) of the user that launches CGE as the CGE server
Host Key. This should be sufficient in almost all cases, but
there may be situations in which a user needs to use a CGE
specific host key. In that case, the user can use ssh-keygen
to create a key-pair in his or her ~/.cge directory and that will
be used instead.

Recognition of the Host Key by a client is based on
entries in the client's known_hosts file. Conveniently, Host
Keys for hosts on non-standard SSH ports are differentiated
from other Host Keys from the same IP address by the
TCP/IP port number used by the server. This means that, as
long as a user does not use the standard SSH port to serve
access to a database, the normal SSH host key and the CGE
host key can be different and coexist.

The trusted server aspect of the SSH protocol is there to
protect secrets that might be exchanged between the client
and server against man-in-the-middle snooping, where a
snooper is interposed as follows:

 CLI <---> snooper <---> Server

In this kind of attack, the snooper looks like an SSH

server (but has the wrong host key) to the CLI and looks like
an SSH client (using some other authorized public identity
key) to the server. The snooper is then free to look at clear-
text data, most notably user passwords, before passing traffic
between the CLI and Server.

Because of this SSH clients generally verify the host key
and complain interactively when they don't recognize the
server. This means that the first connection with any new
server must be made interactively, and, if the key changes
subsequent connection attempts will fail. For CGE, this
potentially poses a challenge, in that Alice might choose to
start her server on port 12345 today and on port 23456
tomorrow. This would require interactive re-validation of
Alice's Host Key each time, which could become
cumbersome.

Fortunately, in the case of CGE, the security concern
about man-in-the-middle attacks is greatly attenuated by two
facts:

 We do not allow the use of passwords for
authentication, and

 Any snooper must have been started by an already
authorized user, who would already have any access
that the CLI user would have, so there is no chance
of unauthorized disclosure of database content
through the snooper.

This means that, while we have to use Host Keys to

complete the SSH protocol, there is minimal need for server
trust in our implementation. Therefore the CLI may
optionally be configured to automatically trust new host keys
presented to it.

The final advantage of using an authenticated protocol is
that the identity of the user invoking the CLI command is
known to the server in a way that cannot be spoofed. This

means that the server can use that identity to make security
related decisions on behalf of the owner of the database.
While our use of this is limited at present since we currently
restrict shutting down a CGE server to the user who started
the server, it opens up the possibility of more detailed
security policies, all under control of the owner of a
database, in the future.

E. Leveraging Parallel IO

On the Urika-GD platform the systems are attached to a
fast parallel file system (usually Lustre), which is mounted
on the system. Parallel IO for input and output by the
database server is achieved using the Cray libsnapshot
library for XMT. This handles dividing up the IO tasks
across all XMT compute nodes and performing the IO in
parallel through the appropriate service nodes.

On the XC platform, access to fast parallel file systems is
globally available on compute nodes through standard
POSIX file operations. This means we do not need the
libsnapshot mechanism for IO. Instead, when file IO is
required, individual images on individual nodes can parcel
out a large IO operation amongst themselves and do the IO
directly in parallel.

While this greatly simplifies parallel IO, it raises a
concern about saturating available throughput between a
compute node and the file system. Since we run multiple
images per node in the CGE server, and a single image has
sufficient power to saturate the file system IO available to
that node, if we allowed all of the images on the node to do
parallel IO, the IO congestion would likely degrade IO
throughput.

To avoid congestion, we created the concept of an Image
Group, in which all images residing on a given node are in
the same group, and there is a group leader image, defined as
the image with the lowest numbered image ID in the group.
Using this construct, we are able to limit the IO on a given
node to an image (the image group leader) and take
advantage of locality to carry out all of the IO that would
otherwise have been assigned to the other images in the
group. By taking this approach to parallel IO, we have been
able to make use of available IO bandwidth.

V. USE CASES ON XC30 / 40

The benefit of having this advanced graph analytic
capability as part of a large, multi-purpose computer system
like the XC30/40 is the ability to enable complex, multi-step
workflows on a single computer system, reducing data
movement and decreasing time to solution.

A good example of a multi-step workflow is the Institute
for Systems Biology (ISB) drug repurposing analysis. This
analysis consisted of three highly compute-intensive steps.
First, a Natural Language Processing (NLP) analysis was
performed on the Medline literature database, using a
thousand-node cluster. Next, a Random Forest Classifier
was applied to experimental genomic data from The Cancer
Genome Atlas (TCGA), to quantify experimental
relationships between genes in cancer. This analysis was
performed on 200,000 nodes of Google Compute. The data
from those two analyses was converted into RDF format and

combined with other public RDF databases about known
drugs and pathways and loaded into Urika-GD. Urika-GD
was used to discover new relationships amongst drugs, genes
and pathways, and identify candidates for drug repurposing.
It was successfully used to identify an HIV drug that may
actually be effective against breast cancer.

This analysis was performed on three different high
performance computer systems, but with the advent of CGE
they could all be performed on a single XC30/40 system.

VI. CONCLUSIONS

The Urika-GD semantic Graph database has successfully
been ported to a new architecture, that of the XC30/40. This
was made possible by taking advantage of the Coarray C++
programming model available on the XC and its Aries
network. Performance on the XC30/40 is significantly
improved over the XMT2-based Urika-GD, with the
performance improvement varying with the nature of the
benchmark query. Further scaling work is planned, and
improvement is certainly possible.

Moving the semantic database from a dedicated
appliance to a shared, batch scheduled HPC environment like
the XC30/40 required a significant redesign of the user
interface, as well as reworking of the security model.
However, we believe that the Cray Graph Engine will prove
to be extremely useful for large, mixed analytics workflows
on HPC systems.

ACKNOWLEDGEMENT

This work described would not be possible without the

contributions of many individuals on the CGE project: Jim
Harrell, Andy Kopser, Eric Lund, David Mizell, Chris
Rickett, Mike Ringenburg, Tom Webber and Karlon West.
We also would like to thank Troy Johnson and Steve
Vormwald for supporting our porting efforts, and providing
us with updated PGAS libraries as needed.

REFERENCES

[1] “Resource Description Framework (RDF): Concepts and Abstract

Syntax,” http://www.w3.org/TR/rdf-concepts/. W3C Rec. 03/2014.

[2] “SPARQL Query Language for RDF,”
http://www.w3.org/TR/sparql11-query/. W3C Rec. 03/2013.

[3] Andrew Kopser and Dennis Vollrath, “Overview of the Next
Generation Cray XMT,”, Cray Inc., Cray User Group 2011
Proceedings

[4] Johnson, T. A., Coarray C++. In 7th International Conference on
PGAS Programming Models, Edinburgh, Scotland (2013)

[5] Brad Chamberlain, Sung-Eun Choi, Martha Dumler, Tom
Hildebrandt, David Iten, Vass Litvinov, Greg Titus, Casey
BaAaglino, Rachel Sobel, Brandon Holt, Jeff Keasler “Chapel HPC
Challenge Entry, “ SC12, (2012)

[6] Guo, Yuanbo, Pan, Zhengxiang and Heflin, Jeff . LUBM: A
Benchmark for OWL Knowledge Base Systems. Web Semantics. 3(
2) July 2005. pp.158-182.

[7] Michael Schmidt, Thomas Hornung, Georg Lausen and Christoph
Pinkel, “SP2Bench: A SPARQL Performance Benchmark” Proc.
ICDE'09 (2009)

[8] Lee Feigenbaum, Gregory Todd Williams, Kendal Grant Clark, Elias
Torres eds. – 2013 – W3C - http://www.w3.org/TR/sparql11protocol/
Retrieved 12th March 2015

[9] Cray XMT Programming Environment User's Guide, Sept. 2012, S-
2479-202

