Custom Product Integration and the Cray Programming Environment

Sean Byland, Ryan Ward
Cray Inc.
Saint Paul, MN USA
seanb@cray.com, ward@cray.com

Abstract—With Cray’s increasing customer base and prod-
uct portfolio, a faster, more scalable, and more flexible software
access solution for the Cray Programming Environment was
required. The xt-asyncpe product-offering required manual
updates to add new product and platform support, took a
significant amount of time to evaluate the environment when
building applications, and didn’t harness useful standards
used by the Linux community. CrayPE 2, by incorporating
the flexibility of modules, the power of pkg-config, and a
programmatic design, offers a stronger solution going forward.
It provides not only a simplified extensibility and more robust
solution for adding products to a system, but also yields
a significant reduction in application build time for users.
This paper discusses the issues addressed and the improved
functionality available to support Cray, customers, and third-
party software access.

Keywords-CrayPE; CrayPE 2; Programming Environment;
Integration;

I. INTRODUCTION

The number of software products and HPC libraries that
may be potentially be useful for Cray customers has grown
at a massive rate, as has the number and variety of Cray
customers. When required, Cray has provided programming
environment products, often built for different programming
environments, compilers, accelerators, or CPUs. Cray has
chosen to support products, programming models, and sys-
tems configurations that will help the greatest number of
customers. This is required since it is nearly impossible
to support all the possible configurations that customers
may desire. This axiom led us to the conclusion that we
needed to redesign CrayPE from the ground up, to make
product integration as simple and seamless as possible while
opening up any internal CrayPE capabilities to all Cray
users. Standardizing product integration not only allows
Cray users to develop and integrate products that match
their own unique needs, but eases the long-term support
cost for Cray, allowing Cray to support a larger number
of products and system configurations. This redesign and
implementation was first released as CrayPE 2.0.

During CrayPE 2’s design evaluation, we determined that
while it was essential to retain the environment modules
and front-end drivers functionality that made CrayPE 2’s
predecessor (xt-asyncpe) unique and useful for compiling
HPC applications, the older driver solution was no longer
viable. Retaining products’ compiling/linking information in

the front-end scripts, while readable and convenient for a
small number of products, has the implicit disadvantage of
requiring engineer intervention to maintain dependencies,
manage version control, or add new products. In order to
mitigate these disadvantages, CrayPE 2 moved all product-
specific information for a given product into a file-format
that would be familiar to users.

II. CRAYPE 2 DESIGN OBJECTIVES

While the primary design goal of CrayPE 2 was to
lower the cost of integration, a number of supporting goals
needed to be included to make this possible. In addition,
other desirable improvements could be implemented with a
redesign:

« No engineer intervention needed to update the compil-
ing front-end for the purpose of adding product support.
The front-end needs to be product- and version-agnostic
and to require no explicit version tracking.

o A system that could be learned and used easily.

o A system that would easily integrate into both Cray and
standard GNU/Linux systems.

o A compiling front-end that works programmatically.

o Increased performance.

e A system that would allow the library stack to be
used independently and treated as a separate abstraction
layer.

« Improvements in error detecting and reporting.

III. FUNCTIONALITY OF CRAYPE 2

To provide compilation and linking support for user-level
software, standard Linux distributions use a utility, pkg-
config. For Cray, the advantages of pkg-config were clearly
desirable: it uses a standardized file format, has compatibility
checking, and handles dependencies and linking order well.
However, pkg-config is designed for standard desktop or
server Linux distribution and typically supports only com-
piling with one compiler, for one hardware configuration,
and for a single version of product’s libraries. Due to these
limitations, a stand-alone pkg-config is not a viable solution
for Cray systems.

While pkg-config doesn’t have functionality for selecting
single combinations from a large number of heterogeneous
configurations, CrayPE environment modules do, through
the use of loading, unloading, and swapping desired product

or targeting modules. Using a hybrid approach — loading
modules to restrict pkg-config to a single configuration and
then calling pkg-config for linking/compiling flags — CrayPE
2 is able to get the most use of the robust and effective
elements of both systems. This allows any HPC user to
compile and link (in the same way all Cray products do)
with a custom-built version of software, making use of both
library dependency resolution and diverse system targeting.
Only adding pkg-config (*.pc) files and a modulefile are
required, both of which can easily be updated and controlled
by users.

A. pkg-config Fundamentals

For people who are unfamiliar with pkg-config, pkg-config
is a utility that was first developed by James Henstridge in
2009[1]. It introduced a standard file format (.pc extension)
for storing all metadata associated with a library. pkg-config
files have tags that store: name, version, description, URL,
compiling-specific flags, linking-specific flags, any required
libraries (static or dynamic), and any potential conflicting
libraries. pkg-config files can use variables that, with a
default value, can be overridden at execution time.

prefix=/usr/local
exec_prefix=S${prefix}
libdir=${exec_prefix}/lib
includedir=${exec_prefix}/include

Name: libpng

Description: Loads and saves PNG files
Version: 1.2.8

Libs: -LS${libdir} -lpngl2 -1z

Cflags: -I${includedir}/libpngl2

pkg-config can be called with a “--cflags” option to return
compiling flags and “--libs” to return linking flags, for any
listed or required products:

"> pkg-config —--1libs --cflags

——static netcdf_c++4
-I/opt/cray/netcdf/4.3.2/CRAY/83/include
-I/opt/cray/hdf5/1.8.13/CRAY/83/include
-L/opt/cray/netcdf/4.3.2/CRAY/83/11ib
-L/opt/cray/hdf5/1.8.13/CRAY/83/1ib
—lnetcdf_c++4 -1lrt —-lnetcdf -1rt
-1hdf5_hl -1z -1dl1 -1m -1rt -1hdf5

-1z -1dl -1m -1lrt

pkg-config will search for pc files that the user requests
(and required pc files) in both standard system locations and
locations specified by the user with PKG_CONFIG_PATH.

B. Modulefile Basics and Standard Conventions

Modulefiles use a fully functional scripting language,
Tcl, but interact with the user’s environment through three
primary module-specific commands: setenv, prepend-path,

and append-path. Setenv will set an environment variable,
replacing the value if it is already set; prepend-path and
append-path will add the value to the beginning or end
of an environment variable that may already contain a
value. In both CrayPE 2 and xt-asyncpe there exist common
environment variables that are manipulated for both compile
and run-time usability:

PATH - List of directories that contain
user-level binaries

LD_LIBRARY_PATH - List of directories
that contain shared or static libraries
needed for link-time or run-time

MANPATH - List of directories that contain

man pages
MODULEPATH - List of directories that
could contain additional modulefiles

C. CrayPE 2 Basics

CrayPE 2 reads a number of environment variables to
build both a PKG_CONFIG_PATH and pkg-config command,
to be executed to get all compiler/linker flags. The most
basic environment variable is PE_PKGCONFIG_PRODUCTS,
which contains a list of products that are loaded and
may have more product-specific environment variables dic-
tating the system attributes for which the product has
been compiled. In addition, there is also the variable $
product_name_[$language_JPKGCONFIG_LIBS, (where $language
can be ‘C’, ‘CXX’, ‘FORTRAN’, or omitted, to be in-
serted for all programming languages) that contains a list
of *.pc files. A modulefile could append product_name
to PE_PKGCONFIG_PRODUCTS and hpc_library to prod-
uct_name_C_PKGCONFIG_LIBS, as well as append a path to
PKG_CONFIG_PATH containing its pc files. Then, when the
C-language drivers are executed, they will pass hpc_library
to pkg-config, which will search PKG_CONFIG_PATH for
the required pc file that contains hpc_library compiling
and linking information. There are also basic environment
variables that modulefiles can set giving CrayPE additional
information such as, $product_name_REQUIRED_PRODUCTS,
for information about what other products have required
libraries (that need to be staged for a heterogeneous system)
or $product_name_MODULE_NAME, so CrayPE error messages
can print the problematic module.

D. CrayPE 2 Support for Single Build per Programming
Environment

By default, pkg-config assumes that any required pc files
that have a matching name and version are applicable
and will return the first match found. When libraries have
Fortran modules or C++ (name mangling), they typically
will be compatible only with binaries that are compiled
with the same programming environment: CCE, PGI, GNU
or Intel. In order to insure that CrayPE finds only li-
braries that are compatible with the user’s programming

environment, CrayPE has two different schemes that are
available to product integrators: fixed path variables and
volatile path variables. Modulefiles that follow the fixed
path scheme can set variables with the following for-
mat: PE_$prgenv_FIXED_PKGCONFIG_PATH, with an absolute
path to the pc files that are applicable to the “prgenv”
programming environment. CrayPE 2 will add all fixed
paths that are specific to the programming environment to
PKG_CONFIG_PATH before executing pkg-config. Fixed paths
are ideal when there is only one build per programming
environment, because they are set at module-load time and
don’t require much processing. As a pass-through environ-
ment variable, CrayPE doesn’t evaluate the paths in this
list. If a product has been built for more than one but
not all programming environments, the modulefile can set
$product_name_VOLATILE_PRGENV to the programming envi-
ronments that the module does support, allowing CrayPE 2
to detect if the product hasn’t been built for the programming
environment that the user has loaded.

E. CrayPE 2 Support for Multiple Builds per Programming
Environment

Fixed paths are easy to understand and cover most custom
integration requirements, but there are some situations where
more builds are required, special selection behavior needs
to be defined, or CrayPE run-time decisions are required. In
these cases, modulefiles can set a dynamic path called $prod-
uct_name_VOLATILE_PKGCONFIG_PATH. These paths leave an
open-ended keyword everywhere the pkg-config path can
vary and then CrayPE will substitute an absolute directory
for each keyword based on other information provided by
the module. For example:

/opt/cray/product_name/1.0.0/Q@PRGENVQ/
@$product_name_GENCOMPILERSQ/
@Sproduct_name_TARGET@/lib/pkgconfig

All keywords denoted by “@” will be replaced with an
applicable location and inserted into the PKG_CONFIG_PATH
before pkg-config executing, ensuring only a single set of
compatible libraries is found and returned by pkg-config.
1) Programming Environment Volatile Directories: The
volatile path keyword @PRGENV@ is automatically re-
placed by the programming environment directory matching
the user’s loaded PrgEnv-* module, which can be CCE,
GNU, PGI or INTEL. For improved error handling, the
module can also set $product_name_VOLATILE_PRGENV to a
list of programming environments that the product supports.
2) Generation Compiler Volatile Directories: When com-
piler vendors release new major compiler versions, library
compatibility can be broken. GNU, with the gcc compiler,
breaks Fortran module compatibility with almost every non-
minor release. This means that if a library has been com-
piled with gcc/4.6.0 and a user is compiling an application

with gcc/4.7.0, the libraries may not work with the user’s
application. In this example, the integrator could use the
keyword, @S$product_name_GENCOMPILERS@ in the volatile
path where each of the libraries’ compiler build directories
exist (the directories must match the name of the first
two compiler digits, “4.6” and “4.7”), and set the vari-
able $product_name_GENCOMPILERS_GNU with the directory
names “4.6”and “4.7”. Some compiler vendors typically
attempt to maintain backward compatibility, so CrayPE has
defined generation compiler fallback behavior. If the libraries
have not been built with the user’s compiler, CrayPE will
substitute a version of the libraries that have been built with
the closest older compiler. Here, if the user had gcc/4.8
loaded, CrayPE would substitute the 4.7 directory, but if
the user had gcc/4.5 loaded, CrayPE would issue an error
indicating that the user’s compiler is too old to work with
the libraries that exist on the system.

3) CPU Volatile Directories: In order to achieve optimal
performance, some libraries are compiled multiple times
with different CPU-specific optimizations enabled. If this
is required, the integrator can install the various CPU-
specific builds into directories that match the CPU name,
then use the keyword @$product_name_TARGET@ and set an
environment variable that indicates both valid compilers
and CPU targets. Libraries that have been compiled with
optimizations for older CPUs will work when used in
conjunction with an application that has newer compiler
CPU optimizations. CrayPE 2 maintains a list of compatible
CPU targets and will substitute the library directory that’s
been built with CPU optimizations that mostly match the
user’s targeted CPU. For example, if a library has been
built only with Intel Ivybridge optimizations and the user
is targeting the Haswell CPU, CrayPE 2 will substitute the
Ivybridge directory into the VOLATILE path. If the user
has opted to build an executable with no optimizations,
x86_64 (for cross-CPU compatibility), then the user would
receive an error stating that the only existing library build
contains incompatible CPU optimizations. Cray products
that provide a CPU-specific optimized build also include
a build without optimizations so CrayPE will always find a
compatible target.

E. Arbitrary Package Configuration pkg-config Variables

pkg-config allow the user to have variables in the pkg-
config file that will have a value defined in the pkg-config
file but can be overridden on the command line at pkg-
config execution time. In order to give CrayPE 2 greater
flexibility with potential future integration requirements,
CrayPE 2 includes a method of reading module-set
environment variables to conditionally supply pkg-config
with variable definitions. Here the module has to define a
variable name, which contains two parts: a key-word that
dictates conditional behavior, and the variable name as it
appears in the pc file. The modulefile must also define

variables containing definitions for any potential conditional
evaluation. If product_name has libraries compiled both with
and without OpenMP (an API that supports multi-platform
shared memory multiprocessing programming) in the same
directory with one archive called libproduct name.a and
another called libproduct_name_mp.a, the pc file libs section
could contain -Iproduct_name$OMP_SUFFIX. A module file
could define $product_name_PKGCONFIG_VARIABLES as
OMP_SUFFIX_@openmp@,
$product_name_OMP_SUFFIX openmp as _mp which would
trigger CrayPE to apply a
“--define-variable=$product_name_OMP_REQUIRES=_mp”
to pkg-config, when OpenMP is enabled, linking in the
OpenMP specific library.

G. Default Product Dependency Resolution

When the CrayPE 2 module is loaded, it sources a
number of modulefile segments that contain information
pertaining to all default products. This allows CrayPE 2
and therefore pkg-config to resolve dependencies without
loading the dependent module. Functionally this reduces
over-linking by allowing pkg-config to only return libraries
that satisfy dependencies, not all libraries that are provided
with a module. Viewing variables set by the CrayPE module
allows the user to gather information about the current state
of all default products.

H. CrayPE 2 Integration Tools and Debugging

1) craypkg-gen: The heart of CrayPE product integration
requires nothing more than adding applicable .pc files and
modulefiles to a product’s directories, but many software
developers aren’t familiar with either tclsh/modulefiles or .pc
files. To provide a good starting point to people who wish
to integrate a product into the CrayPE software stack, and
to lower the amount of time required to integrate a product,
Cray developed and released a tool called craypkg-gen[3],
which generates both modulefiles and pc files.

2) CrayPE 2 Debugging Options: In order to decrease
the complexity in CrayPE2’s infrastructure, we wanted all
product-specific integration steps to be abstracted to their
own layer, accessible and able to be bypassed. For this we
added a number of CrayPE2-specific options that enable it
to print the flags returned by pkg-config without compiling,
the PKG_CONFIG_PATH that is generated and used by pkg-
config, the .pc files passed to pkg-config, and custom pkg-
config variable declarations. This enables users, if desired, to
use CrayPE to see what linking/compiling options are being
generated or to stage their environment for pkg-config to be
used independently of CrayPE 2’s front-end drivers.

Some third-party build tools aren’t engineered to handle
extra options being passed to the compiler, and some users
want to be able to print the options, manipulate them, and
pass the updated options directly to the compiling driver

without the front-end adding more options. To support this,
CrayPE 2 has an option to bypass pkg-config execution.

IV. CONCLUSION

CrayPE 2’s primary objective was to allow HPC users to
integrate their own products within the Cray Programming
Environment, with the same capabilities and features that
are required to support Cray-released products. Through the
creation of an open API this has been made a reality —
users can add simple products quickly and use whatever
functionality they need for varying language, dependencies,
compiler, or accelerator support. Because CrayPE 2 doesn’t
need to be updated on a monthly basis to add product
support, more time can be devoted to feature development.
As with most major redesigns, the bug rate initially went up,
but has since fallen to levels below CrayPE 2’s initial release.
Because CrayPE 2 has well-defined behavior, uses pkg-
config, and is compiled, it now takes one one-hundredth of
the time to generate the PE library stack before compilation.
Cray looks forward to hearing what HPC sites and users
choose to do with their additional capabilities.

ACKNOWLEDGMENT

CrayPE 2 heavily leverages the well-designed and well-
executed software, pkg-config, currently maintained by pkg-
config developers, Tollef Fog Heen and Dan Nicholson, and
hosted by freedesktop.org.

REFERENCES

[1] F. Heen and D. Nicholson “pkg-config” freedesktop.org 2 July
2013. Web. 06 Apr. 2015

[2] Cray Inc. Man page: CrayPE_API April 6, 2015

[3] Cray Inc. Man page: craypkg-gen April 6, 2015

