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Machine Learning: Graph Computing Interest 

Interrogation 

Association 

Modeling, 
Simulation, 
& Validation 

Querying and Retrieval  
e.g.  Google, Databases  

Data-fusion 
e.g. Mashups 

The Lifecycle of Data-Driven Discovery 

Predictive Modeling 
e.g. Climate Change Prediction 

Better 
Data Collection 

The Process of Data-Driven Discovery 

Data science 
(Infrastructure-aware) 

Science of data (Data-aware) 

Pattern Discovery Pattern Recognition 

Science of scalable predictive functions 

Shared-storage, shared-memory, shared-nothing 

e.g. Deep learning, Feature extraction, Meta-tagging 

e.g. Hypothesis generation e.g. Classification, Clustering 

Graph Computing… 

• Supports discovery by interrogation, association and predictive modeling 

from structured and unstructured data 

• Supports discovery with evolving knowledge and incremental domain hints 

• Supports exploratory and confirmatory analysis  

• Data and meta-data integrated analytics 

• Flexible data structure seamless to growth while avoiding analytical 

artifacts  

 

S.R. Sukumar, “Data-driven Discovery: Challenges at Scale”, in the Proc. of the Big Data 

Analytics: Challenges and Opportunities Workshop in conjunction with ACM/IEEE International 

Conference for High Performance Computing, Networking, Storage and Analysis (Super 

Computing) , November 2014. 
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Why ? Discovery from Big Data “Graphs” 

Motivation: Fraud Detection in Healthcare 

Given a few examples of fraud (important activity), can we 

     (i)  Automatically discover patterns typically associated with suspicious activity?  

     (ii) Extrapolate such high-risk patterns for investigation and fraud prevention? 

A social network of fraud in Texas 

Motivation: Knowledge Discovery from Literature 

Given a knowledgebase and new clinical data/experiments, can we 

     (i)  Find “novel” patterns of interest? 

     (ii) Rank and evaluate the patterns for significance? 

Knowledge about a kinase associated with cancer 

V. Chandola, S.R. Sukumar and J. Schryver, "Knowledge Discovery from Massive 

Healthcare Claims Data", in the Proc. of the 19th ACM SIGKDD Conference on 

Knowledge Discovery, 2013 S.M. Lee, S- H. Lim, T.C. Brown, S. R. Sukumar, ”Graph mining meets the Semantic Web”, in the Proc. the 

Data Engineering meets the Semantic Web Workshop in conjunction with International Conference on Data 

Engineering,  2015. 
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Graph Computing at Scale: Infrastructure 

•Subject 1 

•Point 1 

•Point 2 

•Subject 2 

•Point 1 

•Point 2 

•Subject 3 

•Point 1 

•Point 2 

•Subject 4 

•Point 1 

•Point 2 

Software Tools Hardware 

Distributed-memory Distributed-storage 

In-memory 
 

Shared-memory 
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Scale (Data size) 

STINGER 

Trinity 

Distributed-memory Distributed-storage 

In-memory 
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Graph Computing at Scale: Infrastructure 

•Subject 1 

•Point 1 

•Point 2 

•Subject 2 

•Point 1 

•Point 2 

•Subject 3 

•Point 1 

•Point 2 

•Subject 4 

•Point 1 

•Point 2 

Programming Model Query Language 

Distributed-memory Distributed-storage 

In-memory 
 

Shared-memory 
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Scale (Data size) 

Distributed-memory Distributed-storage 

In-memory 
 

Shared-memory 
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Scale (Data size) 

Matrix-Vector 
 

i.e. Typically graph processing 
environments 

General Purpose 

Explicit multi-threading  

Bulk-Synchronous 
parallel 

Map Reduce 
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Graph Computing at Scale: Literature 

An overview of the state-of-the-art 

Desktop 

Single instance – SQL 

SQL 

Shared-memory 

Distributed-memory 

Distributed-storage 

Cloud instance – SQL 

Facebook Engineering 

Custom Computing 

High Performance Computing 

Explicit multi-threaded 

Hadoop Map-Reduce 

In-memory Appliances 

In-memory Computers 

Cloud computing 

In-memory Cloud Instance 

Bulk Synchronous 

Spark 

CombBLAS 

Data sizes  
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SQL set-theoretic algebra 

ORNL EAGLE 

• M. Najork, D. Fetterly, A. Halverson, K. Kenthapadi, and S. Gollapudi, "Of Hammers and Nails: An 

Empirical Comparison of Three Paradigms for Processing Large Graphs", in WSDM'12 

• R. McColl, D. Ediger, J. Poovey, D. Campbell, and D. A. Badger, "A Performance Evaluation of Open 

Source Graph Databases"  in PPAA'14.  

• N. Satish, N. Sundaram, Md. Mostofa Ali Patwary, J. Seo, J. Park, M. A. Hassaan, Shubho Sengupta, 

Zhaoming Yin, and Pradeep Dubey, "Navigating the Maze of Graph Analytics Frameworks using 

Massive Graph Datasets", in SIGMOD'14 

• Y. Lu, J. Cheng, D. Yan, H. Wu, "Large-Scale Distributed Graph Computing Systems: An Experimental 

Evaluation", in VLDB'14. 

 

References: 
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The Opportunity at ORNL 

Titan Apollo CADES (Cloud) 

Discovery 

Approach 

Modeling and Simulation Association Querying, Prediction 

Architecture Shared-compute Shared-memory Shared-storage 

Scalability Compute  

(# of cores) 

Horizontal  

(# of datasets) 

Vertical  

(# of rows) 

Algebra Linear Relationship Set-theoretic 

Challenge (Pros) Resolution Heterogeneity Cost 

Challenge (Cons) Dimensionality Custom Solution Flexibility  

Leadership #2 in the world (2013) 1 of 15 installs (2013) -- 

User-interface OpenMP, MPI, CUDA SPARQL SQL 

ORNL Resources 

S- H. Lim, S.M. Lee, G. Ganesh, T.C. Brown and S.R. Sukumar, “Graph processing platforms at scale: practices and experiences, under review to the IEEE International 

Symposium on Performance Analysis of Systems and Software, 2014. 
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Graph Computing at Scale: Pattern Search 

1

10

100

1000
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Urika

Networkx

Fuseki

Pegasus

SQL on Desktop

Amazon+Fuseki

Amazon+SQL

Spark+GraphX

Data sizes  
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Big Data 
 ‘Overhead’ 

Big data vs. Small Data 
 ‘Data size > Memory’ 

Graph analysis 
using SQL fails 

Limit of desktop 
computers Academic 

publications do not 
go beyond this size 

Winner of  
Graph500 in 2014 

Rule of thumb: Any query that takes longer than 45 seconds (on ~ TBs) is bad code ! 

We are an order of magnitude better on size 

and latency on pattern search. 
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Graph Computing at Scale: Data Science 

Scalability: In-disk vs. In-memory 

Map-Reduce vs. Spark vs. SPARQL 

Pegasus – ICDM Best Paper 2010 
 

Spark+GraphX – USENIX NSDI Best Paper 2014 

What is the best “programming-paradigm” for graph 
computing? 
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Graph Computing at Scale: Data Science 
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Datasets 

Algorithm: Degree Distribution 

Mac

AWS

Urika

Expected Runtime based on order complexity
analysis
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Datasets 

Algorithm: Triangle Counting 
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Urika

Expected runtime based on order compelxity analysis
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Datasets 

Algorithm: Graph Eccentricity 
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Algorithm: Connected Components 

Laptop

AWS(m)

Urika

Expected run-time based on order
complexity analysis

How are we doing in comparison with Amazon services? 
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Graph Computing at Scale: Algorithms Benchmark 

Desktop vs. Database vs. Cloud 
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Triangle Count 
Lessons learned… 

• Performance  (feasibility) of graph algorithms are a function of 

the architecture and data (not just size). 

• Depends on space and time complexity of algorithm  

 

• One size does not fit all. 

 

• With graph analysis, scale-up does not guarantee speed-up. 

• Needs smarter re-design of algorithms. 
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Graph Computing at Scale: Summary 

We now have one machine that is able to do 
both pattern search and pattern mining 

within “reasonable” time constraints 
 

• Compared to CMU Pegasus (2010) – ten times speed-up. 

 

• Compared to Berkley GraphX (2014) on a select few algorithms– 2 to 5 times speed-up. 

 

• Compared to Desktops – 1000 times larger size for similar latency 

 

• First of its kind handling “heterogeneous-graphs” with near real-time latency. 

 

• First of its kind “SPARQL-based Graph-Theoretic Data Analysis” tools 

• Has huge potential with the W3C and LinkedData Community. 

 

• Users with no knowledge of SPARQL (or linear algebra) can work with EAGLE on their 

domain-specific problems. 
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Eureka !  With Urika : ‘App’ Store 

PLUS GRAPH-IC PAUSE KENODES FELT EAGLE-C 

Code 
Development 

Graph  
Creation 

Scalable 
Algorithms 

Interactive 
Visualization 

Reasoning + 
Inference 

Hypothesis 
Creation 

Programmatic-Python Login for Urika-
like SPARQL End-points 

Flexible, Extract, Transform and 
Load Toolkit 

EAGLE ‘Is a’ algorithmic Graph Library for 
Exploratory-Analysis 

Graph- Interaction Console Predictive Analytics using SPARQL-Endpoints 
Knowledge Extraction using Network-

Oriented Discovery Enabling System 

Some parts are open-source @ https://github.com/ssrangan/gm-sparql 

Framework of Knowledge Discovery for a future beyond the Big Data Era 

https://github.com/ssrangan/gm-sparql
https://github.com/ssrangan/gm-sparql
https://github.com/ssrangan/gm-sparql
https://github.com/ssrangan/gm-sparql
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PLUS – Programmatic Python Login for Urika-like SPARQL Endpoints 

• What does PLUS do? 

– Clone Urika-like developer environment 

• SPARQL end-point vs. SQL end-point 

– Deploy code in developer environment at scale on Urika with 
minimal changes (1 line of code change) 

– JDBC-like connection to graph database + Urika Firewalls 

– Provides programmatic API for iterative algorithms 

– Software, parallelism and query optimization unit test environment 

SPARQL Wrapper 

Ruby 

PyScripter IDE 
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FELT – Flexible Extract Transform and Load Toolkit 

Patient f1 f2 f3 .. .. f100 

P1 

… 

Pn 

Adjacency Matrices Edgelists 

Flat files 

Relational databases 

• What does FELT do? 

• Urika only understands RDF triples 

• Converting “graph-data” to RDF is an art that 
depends on the type of query we want to pose 

• Creating customized graph-models for the 
same dataset. 

• Map-Reduce Implementation for graph 
construction on Hadoop. 
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GRAPHIC – Graph - Interaction Console 

• What does GRAPHIC do? 

• Visualizes RDF triples 

• Makes pattern search easier 
on interactive console 
(particularly on EVEREST) 

• Works on iPads, EVEREST 
and most computers. 
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EAGLE: Eagle ‘Is a’ Algorithmic Graph Library for Exploration 

• What does EAGLE-C (C for Command-line do)? 

• Lego-blocks for custom algorithms 

• ‘First-ever’ SPARQL implementation for graph-theoretic inference  

• Some of the poplar graph-theoretic algorithms implemented and tested so far 

• Summary metrics (~ 20 for both homogenous and heterogeneous graphs) 

• Degree (Diversity Degree) 

• Triangles (Count, Equilateral, Isosceles, Scalene) 

• N-gons 

• Shortest-path 

• PageRank (General, Personalized, BadRank, TrustRank) 

• Connected Components 

• Radius 

• Eccentricity 

• Degree-stratified clustering co-efficient 

• Peer-pressure clustering 

• Recommender systems 

• Label Propagation 

Source code available: 

 

https://github.com/ssrangan/gm-sparql 

https://github.com/ssrangan/gm-sparql
https://github.com/ssrangan/gm-sparql
https://github.com/ssrangan/gm-sparql
https://github.com/ssrangan/gm-sparql
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PAUSE: Predictive Analytics using SPARQL Endpoints 

• What does PAUSE do? 

• Analyze multi-structure data (numeric data + domain knowledge/meta-data) 

• Implements similarity analysis, link prediction, simultaneous feature sub-setting 

and feature matching 

? 

? 

What is the probability of a particular edge to occur ?  

 

Predictive inference using recommender system 

strategies. 
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Extracting Novel and Useful Associations 

Graph A Graph B Graph C 
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Where are the new connections?  

What are the “important” new connections? 

New longer paths 
New triangles and 

polygons 

KENODES – Knowledge Extraction using Network-Oriented Discovery Enabling System 
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Apps @ Work 

Motivation: Fraud Detection in Healthcare 

Given a few examples of fraud (important activity), can we 

     (i)  Automatically discover patterns typically associated with suspicious activity?  

     (ii) Extrapolate such high-risk patterns for investigation and fraud prevention? 

A social network of fraud in Texas 

Motivation: Knowledge Discovery from Literature 

Given a knowledgebase and new clinical data/experiments, can we 

     (i)  Find “novel” patterns of interest? 

     (ii) Rank and evaluate the patterns for significance? 

Knowledge about a kinase associated with cancer 

V. Chandola, S.R. Sukumar and J. Schryver, "Knowledge Discovery from Massive 

Healthcare Claims Data", in the Proc. of the 19th ACM SIGKDD Conference on 

Knowledge Discovery, 2013 S.M. Lee, S- H. Lim, T.C. Brown, S. R. Sukumar, ”Graph mining meets the Semantic Web”, in the Proc. the 

Data Engineering meets the Semantic Web Workshop in conjunction with International Conference on Data 

Engineering,  2015. 
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Fraud Detection and Prevention 

Given a few examples of fraud (important activity), can we 

     (i)  Automatically discover patterns typically associated with suspicious activity?  

     (ii) Extrapolate such high-risk patterns for investigation and fraud prevention? 

A social network of fraud in Texas 
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Pattern Discovery Example 

Graph Pattern Search 

“Affiliations to multiple hospitals, owning private 

and group practice are strong indicators of potential 

suspicious activity.” 

“All paths lead to Rome” 

“The country club phenomenon” 
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Predictive Analytics 

Extrapolating to unseen data Automated discrimination between two types of nodes based 

on various metrics in graphs whose generating model is not 

known a priori 

Normalized 

degree 

PageRank 

Betweeness Closeness 
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Apps @ Work 

Motivation: Knowledge Discovery from Literature 

Given a knowledgebase and new clinical data/experiments, can we 

     (i)  Find “novel” patterns of interest? 

     (ii) Rank and evaluate the patterns for significance? 

Knowledge about a kinase associated with cancer 

S.M. Lee, S- H. Lim, T.C. Brown, S. R. Sukumar, ”Graph mining meets the Semantic Web”, in the Proc. the 

Data Engineering meets the Semantic Web Workshop in conjunction with International Conference on Data 

Engineering,  2015. 
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Inspiring Motivation: Swanson’s Story from 1987 

Today: There are 133,193 

connections between migraine and 

magnesium. 
Swanson, Don R. "Migraine and magnesium: eleven 

neglected connections." (1987). 

1987 2014 

Magnesium 

Migraine 

Given a knowledgebase and new clinical data/experiments, can we 

     (i)  Find “novel” patterns of interest? 

     (ii) Rank and evaluate the patterns for significance? 

SEMANTIC MEDLINE: 70 million 

predications (133 node types and 69 

edge types)) from PubMed archive 

(more than 23.5 million citations, as of 

April 1st, 2014)  
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Reasoning Apps @ Work: Information Foraging 

Approach #2: Context-aware exploration  

Start Node: 

Smoking 

End Node: 

Lung Cancer 

Start Node: 

Smoking 

Context Node: 

mutation 

Context Node: 

mutation 

End Node: 

Lung Cancer 

In k-hops 

Start Node: 

Smoking 
End Node: 

Lung Cancer 

Multiple context nodes 

(1) Anchor nodes approach 

(2) k-hops in context approach 

Start Node: 

Smoking 

End Node: 

Lung Cancer 

Smoking_cigarratte, 
smoking_tabacco, smoking_habit, 

… 
  

Lung cancer stage I, stage I lung 
cancer, … 

(3) Context similarity  
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Apps @ Work: Back to Migraine and Magnesium 

Magnesium Rev_INHIBITS Tantalum AUGMENTS Osseointegration 
NEG_COEXISTS_

WITH 

Bone_Regeneratio

n 

Rev_COEXISTS_

WITH 
Platelet_function 

Rev_NEG_MANIFE

STATION_OF 
Migraine_Disorders 0.405123 

Magnesium Rev_STIMULATES BW35 
NEG_ASSOCIATE

D_WITH 
Renal_Insufficiency Rev_PRECEDES Cervix_carcinoma 

Rev_NEG_PREDIS

POSES 

Combined_Oral_C

ontraceptives 

NEG_COMPLICAT

ES 
Migraine_Disorders 0.355147 

Magnesium 
NEG_COMPLICAT

ES 
Malaria 

ASSOCIATED_WIT

H 
heme_binding 

Rev_NEG_AUGME

NTS 

insulin_receptor_rel

ated_receptor_INS

RR 

Rev_CONVERTS_

TO 
Melatonin NEG_DISRUPTS Migraine_Disorders 0.351549 

Magnesium Rev_NEG_USES 
kidney_preservatio

n 
DIAGNOSES 

Unilateral_agenesis

_of_kidney 

Rev_COMPLICATE

S 

Congenital_obstruc

tion 
CAUSES Varicosity 

NEG_COMPLICAT

ES 
Migraine_Disorders 0.335784 

Magnesium Rev_NEG_USES 
kidney_preservatio

n 
TREATS 

Hypertension__Re

novascular 

ASSOCIATED_WIT

H 
noradrenergic 

Rev_ASSOCIATED

_WITH 
Varicosity 

NEG_COMPLICAT

ES 
Migraine_Disorders 0.304279 

Magnesium Rev_STIMULATES hemiacidrin Rev_USES 

Percutaneous_inse

rtion_of_nephrosto

my_tube 

AFFECTS Cervix_carcinoma 
Rev_NEG_PREDIS

POSES 

Combined_Oral_C

ontraceptives 

NEG_COMPLICAT

ES 
Migraine_Disorders 0.303071 

Magnesium NEG_PREVENTS Brain_Injuries NEG_AFFECTS 
Blood_Flow_Velocit

y 
Rev_CAUSES Dihydroergotamine same_as Triptans DISRUPTS Migraine_Disorders 0.288334 

Magnesium NEG_PREVENTS Brain_Injuries NEG_AFFECTS 
Blood_Flow_Velocit

y 
Rev_CAUSES Dihydroergotamine same_as Triptans AUGMENTS Migraine_Disorders 0.288062 

Magnesium NEG_CAUSES Hypomagnesemia 
Rev_NEG_COEXI

STS_WITH 

Renal_Osteodystro

phy 

Rev_COMPLICATE

S 
Repair_of_bladder CAUSES Interstitial_Cystitis 

Rev_COMPLICATE

S 
Migraine_Disorders 0.280192 

Magnesium 
NEG_COMPLICAT

ES 
Malaria Rev_TREATS Heparitin_Sulfate NEG_PART_OF 

Herpesvirus_1__Su

id 
INTERACTS_WITH Varicosity 

NEG_COMPLICAT

ES 
Migraine_Disorders 0.276062 

Results: Eureka ! Eureka ! 
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Apps @ Work: Back to Migraine and Magnesium 

Eureka ! Eureka ! 
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Graph Computing using Urika-GD: Summary 

Graph Computing… 
 

• Supports discovery by interrogation, association and 

predictive modeling from structured and 

unstructured data 

 

• Supports discovery with evolving knowledge and 

incremental domain hints 

 

• Supports exploratory and confirmatory analysis 

• Data and meta-data integrated analytics 

• Flexible data structure seamless to growth while 

avoiding analytical artifacts  

 

SEEKER: Schema Exploration and Evolving Knowledge Recorder 

Data, Schema and  Automated 

Meta-data Integration 

SNAKE: Social/Network Analytic Knowledge Extractor 

Data association, Record-

Linkage, Saliency extraction 

PAUSE: Predictive Analytics Using Software-Endpoints 

Pattern Discovery  Pattern Recognition Patents: 

 

Sreenivas R. Sukumar, Regina K. Ferrell, and Mallikarjun Shankar. Knowledge 

Catalysts, US Patent Application 14/089,395, filed November 25, 2013.  

 

Sreenivas R. Sukumar et al., Scalable Pattern Search in Multi-Structure Data, US 

Patent Application 62/106,342, filed January 22, 2015. 


